首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fluorescence-based sequencing is playing an increasingly important role in efforts to identify DNA polymorphisms and mutations of biological and medical interest. The application of this technology in generating the reference sequence of simple and complex genomes is also driving the development of new computer programs to automate base calling (Phred), sequence assembly (Phrap) and sequence assembly editing (Consed) in high throughput settings. In this report we describe a new computer program known as PolyPhred that automatically detects the presence of heterozygous single nucleotide substitutions by fluorescencebased sequencing of PCR products. Its operations are integrated with the use of the Phred, Phrap and Consed programs and together these tools generate a high throughput system for detecting DNA polymorphisms and mutations by large scale fluorescence-based resequencing. Analysis of sequences containing known DNA variants demonstrates that the accuracy of PolyPhred with single pass data is >99% when the sequences are generated with fluorescent dye-labeled primers and approximately 90% for those prepared with dye-labeled terminators.  相似文献   

3.

Background

Genomic deletions and duplications are important in the pathogenesis of diseases, such as cancer and mental retardation, and have recently been shown to occur frequently in unaffected individuals as polymorphisms. Affymetrix GeneChip whole genome sampling analysis (WGSA) combined with 100 K single nucleotide polymorphism (SNP) genotyping arrays is one of several microarray-based approaches that are now being used to detect such structural genomic changes. The popularity of this technology and its associated open source data format have resulted in the development of an increasing number of software packages for the analysis of copy number changes using these SNP arrays.

Results

We evaluated four publicly available software packages for high throughput copy number analysis using synthetic and empirical 100 K SNP array data sets, the latter obtained from 107 mental retardation (MR) patients and their unaffected parents and siblings. We evaluated the software with regards to overall suitability for high-throughput 100 K SNP array data analysis, as well as effectiveness of normalization, scaling with various reference sets and feature extraction, as well as true and false positive rates of genomic copy number variant (CNV) detection.

Conclusion

We observed considerable variation among the numbers and types of candidate CNVs detected by different analysis approaches, and found that multiple programs were needed to find all real aberrations in our test set. The frequency of false positive deletions was substantial, but could be greatly reduced by using the SNP genotype information to confirm loss of heterozygosity.  相似文献   

4.

Background

The identification of disease-associated genes using single nucleotide polymorphisms (SNPs) has been increasingly reported. In particular, the Affymetrix Mapping 10 K SNP microarray platform uses one PCR primer to amplify the DNA samples and determine the genotype of more than 10,000 SNPs in the human genome. This provides the opportunity for large scale, rapid and cost-effective genotyping assays for linkage analysis. However, the analysis of such datasets is nontrivial because of the large number of markers, and visualizing the linkage scores in the context of genome maps remains less automated using the current linkage analysis software packages. For example, the haplotyping results are commonly represented in the text format.

Results

Here we report the development of a novel software tool called CompareLinkage for automated formatting of the Affymetrix Mapping 10 K genotype data into the "Linkage" format and the subsequent analysis with multi-point linkage software programs such as Merlin and Allegro. The new software has the ability to visualize the results for all these programs in dChip in the context of genome annotations and cytoband information. In addition we implemented a variant of the Lander-Green algorithm in the dChipLinkage module of dChip software (V1.3) to perform parametric linkage analysis and haplotyping of SNP array data. These functions are integrated with the existing modules of dChip to visualize SNP genotype data together with LOD score curves. We have analyzed three families with recessive and dominant diseases using the new software programs and the comparison results are presented and discussed.

Conclusions

The CompareLinkage and dChipLinkage software packages are freely available. They provide the visualization tools for high-density oligonucleotide SNP array data, as well as the automated functions for formatting SNP array data for the linkage analysis programs Merlin and Allegro and calling these programs for linkage analysis. The results can be visualized in dChip in the context of genes and cytobands. In addition, a variant of the Lander-Green algorithm is provided that allows parametric linkage analysis and haplotyping.  相似文献   

5.
6.
7.
四种常用高通量测序拼接软件的应用比较   总被引:1,自引:0,他引:1  
新一代测序平台的诞生推动了对全基因组鸟枪法测序数据的拼接算法和软件的研究,自2005年以来多种用于高通量测序的序列拼接软件已经被开发出来,并且在不断地进行改进以提高拼接效果.本文利用目前广泛使用的高通量测序拼接软件Velvet、AbySS、SOAPdenovo和CLC Genomic Workbench分别对本试验室分离的一株噬菌体IME08的高通量测序结果进行拼接,介绍这几种拼接软件的安装使用及参数优化,并对不同软件的拼接结果进行比较,针对不同的拼接软件得到优化的拼接参数,可为其他研究人员使用上述软件提供参考借鉴.  相似文献   

8.
Oxytocin receptor gene single nucleotide polymorphisms have been associated with structural and functional alterations in brain regions, which involve social-emotional processing. Therefore, oxytocin receptor gene polymorphisms may contribute to individual differences in alexithymia, which is considered to be a dysfunction of emotional processing. The aim of this study was to evaluate the association between oxytocin receptor gene single nucleotide polymorphisms or haplotypes and alexithymia in patients with obsessive-compulsive disorder. We recruited 355 patients with obsessive-compulsive disorder (234 men, 121 women). Alexithymia was measured by using the Toronto Alexithymia Scale. We performed single-marker and haplotype association analyses with eight single nucleotide polymorphisms (rs237885, rs237887, rs2268490, rs4686301, rs2254298, rs13316193, rs53576, and rs2268498) in the oxytocin receptor gene. There were no significant associations between any of the eight single nucleotide polymorphism of the oxytocin receptor gene and alexithymia. In addition, a six-locus haplotype block (rs237885-rs237887-rs2268490-rs4686301-rs2254298-rs13316193) was not significantly associated with alexithymia. These findings suggest that genetic variations in the oxytocin receptor gene may not explain a significant part of alexithymia in patients with obsessive-compulsive disorder.  相似文献   

9.
Since the completion of the bovine sequencing projects, a substantial number of genetic variations such as single nucleotide polymorphisms have become available across the cattle genome. Recently, cataloguing such genetic variations has been accelerated using massively parallel sequencing technology. However, most of the recent studies have been concentrated on European Bos taurus cattle breeds, resulting in a severe lack of knowledge for valuable native cattle genetic resources worldwide. Here, we present the first whole-genome sequencing results for an endangered Korean native cattle breed, Chikso, using the Illumina HiSeq 2,000 sequencing platform. The genome of a Chikso bull was sequenced to approximately 25.3-fold coverage with 98.8% of the bovine reference genome sequence (UMD 3.1) covered. In total, 5,874,026 single nucleotide polymorphisms and 551,363 insertion/deletions were identified across all 29 autosomes and the X-chromosome, of which 45% and 75% were previously unknown, respectively. Most of the variations (92.7% of single nucleotide polymorphisms and 92.9% of insertion/deletions) were located in intergenic and intron regions. A total of 16,273 single nucleotide polymorphisms causing missense mutations were detected in 7,111 genes throughout the genome, which could potentially contribute to variation in economically important traits in Chikso. This study provides a valuable resource for further investigations of the genetic mechanisms underlying traits of interest in cattle, and for the development of improved genomics-based breeding tools.  相似文献   

10.

Background  

Genome-wide association studies (GWAS) based on single nucleotide polymorphisms (SNPs) revolutionized our perception of the genetic regulation of complex traits and diseases. Copy number variations (CNVs) promise to shed additional light on the genetic basis of monogenic as well as complex diseases and phenotypes. Indeed, the number of detected associations between CNVs and certain phenotypes are constantly increasing. However, while several software packages support the determination of CNVs from SNP chip data, the downstream statistical inference of CNV-phenotype associations is still subject to complicated and inefficient in-house solutions, thus strongly limiting the performance of GWAS based on CNVs.  相似文献   

11.
12.
13.
Identification of single nucleotide polymorphisms (SNPs) and mutations is important for the discovery of genetic predisposition to complex diseases. PCR resequencing is the method of choice for de novo SNP discovery. However, manual curation of putative SNPs has been a major bottleneck in the application of this method to high-throughput screening. Therefore it is critical to develop a more sensitive and accurate computational method for automated SNP detection. We developed a software tool, SNPdetector, for automated identification of SNPs and mutations in fluorescence-based resequencing reads. SNPdetector was designed to model the process of human visual inspection and has a very low false positive and false negative rate. We demonstrate the superior performance of SNPdetector in SNP and mutation analysis by comparing its results with those derived by human inspection, PolyPhred (a popular SNP detection tool), and independent genotype assays in three large-scale investigations. The first study identified and validated inter- and intra-subspecies variations in 4,650 traces of 25 inbred mouse strains that belong to either the Mus musculus species or the M. spretus species. Unexpected heterozygosity in CAST/Ei strain was observed in two out of 1,167 mouse SNPs. The second study identified 11,241 candidate SNPs in five ENCODE regions of the human genome covering 2.5 Mb of genomic sequence. Approximately 50% of the candidate SNPs were selected for experimental genotyping; the validation rate exceeded 95%. The third study detected ENU-induced mutations (at 0.04% allele frequency) in 64,896 traces of 1,236 zebra fish. Our analysis of three large and diverse test datasets demonstrated that SNPdetector is an effective tool for genome-scale research and for large-sample clinical studies. SNPdetector runs on Unix/Linux platform and is available publicly (http://lpg.nci.nih.gov).  相似文献   

14.

Background  

There is a need for software applications that provide users with a complete and extensible toolkit for chemo- and bioinformatics accessible from a single workbench. Commercial packages are expensive and closed source, hence they do not allow end users to modify algorithms and add custom functionality. Existing open source projects are more focused on providing a framework for integrating existing, separately installed bioinformatics packages, rather than providing user-friendly interfaces. No open source chemoinformatics workbench has previously been published, and no sucessful attempts have been made to integrate chemo- and bioinformatics into a single framework.  相似文献   

15.
Human individuals differ from one another at only ~0.1% of nucleotide positions, but these single nucleotide differences account for most heritable phenotypic variation. Large-scale efforts to discover and genotype human variation have been limited to common polymorphisms. However, these efforts overlook rare nucleotide changes that may contribute to phenotypic diversity and genetic disorders, including cancer. Thus, there is an increasing need for high-throughput methods to robustly detect rare nucleotide differences. Toward this end, we have adapted the mismatch discovery method known as Ecotilling for the discovery of human single nucleotide polymorphisms. To increase throughput and reduce costs, we developed a universal primer strategy and implemented algorithms for automated band detection. Ecotilling was validated by screening 90 human DNA samples for nucleotide changes in 5 gene targets and by comparing results to public resequencing data. To increase throughput for discovery of rare alleles, we pooled samples 8-fold and found Ecotilling to be efficient relative to resequencing, with a false negative rate of 5% and a false discovery rate of 4%. We identified 28 new rare alleles, including some that are predicted to damage protein function. The detection of rare damaging mutations has implications for models of human disease.  相似文献   

16.
The relative efficiencies of different protein-coding genes of the mitochondrial genome and different tree-building methods in recovering a known vertebrate phylogeny (two whale species, cow, rat, mouse, opossum, chicken, frog, and three bony fish species) was evaluated. The tree-building methods examined were the neighbor joining (NJ), minimum evolution (ME), maximum parsimony (MP), and maximum likelihood (ML), and both nucleotide sequences and deduced amino acid sequences were analyzed. Generally speaking, amino acid sequences were better than nucleotide sequences in obtaining the true tree (topology) or trees close to the true tree. However, when only first and second codon positions data were used, nucleotide sequences produced reasonably good trees. Among the 13 genes examined, Nd5 produced the true tree in all tree-building methods or algorithms for both amino acid and nucleotide sequence data. Genes Cytb and Nd4 also produced the correct tree in most tree-building algorithms when amino acid sequence data were used. By contrast, Co2, Nd1, and Nd41 showed a poor performance. In general, large genes produced better results, and when the entire set of genes was used, all tree-building methods generated the true tree. In each tree-building method, several distance measures or algorithms were used, but all these distance measures or algorithms produced essentially the same results. The ME method, in which many different topologies are examined, was no better than the NJ method, which generates a single final tree. Similarly, an ML method, in which many topologies are examined, was no better than the ML star decomposition algorithm that generates a single final tree. In ML the best substitution model chosen by using the Akaike information criterion produced no better results than simpler substitution models. These results question the utility of the currently used optimization principles in phylogenetic construction. Relatively simple methods such as the NJ and ML star decomposition algorithms seem to produce as good results as those obtained by more sophisticated methods. The efficiencies of the NJ, ME, MP, and ML methods in obtaining the correct tree were nearly the same when amino acid sequence data were used. The most important factor in constructing reliable phylogenetic trees seems to be the number of amino acids or nucleotides used.   相似文献   

17.
Even with the ubiquity of Sanger sequencing, automated assembly software are predominantly stand-alone software packages for desktop/laptop use with very few online equivalents, thus geospatially constraining sequence analysis and assembly. With increased data output worldwide, there is also a need for automated quality checks and trimming prior to large assemblies, along with automated detection of mutations. Through web servers with expanded automation and functionalities, even smartphones/phablets can be used to perform complex analysis previously limited to desktops, especially if they can upload files from cloud storage. To facilitate such online accessible sequence assembly and analysis, we created Yet Another Quick Assembly, Analysis and Trimming Tool web server for the automated assembly of multiple .ab1 and .FASTQ sequencing reads de novo with automated trimming and scanning of the assembled sequences for single nucleotide polymorphisms and insertions or deletions without installation of software, allowing it to be accessed from anywhere with Internet access and with minimal dependency on other software and web tools.  相似文献   

18.
A program for converting the different existing AMBER and GLYCAM force fields for use with commercial molecular modeling packages is presented, using the Molecular Simulations Inc. (MSI or Accelrys) software package as a case model. Called AmberFFC, the program creates AMBER and GLYCAM force field files suitable for use with the Accelrys molecular mechanics modules by transforming the amino acid, nucleotide, and monosaccharide topology databases and force field parameter files to the Accelrys file format. It is intended for any modeler who is interested in using the current AMBER and GLYCAM force fields with the Accelrys FDiscover and CDiscover programs. AmberFFC has been written entirely with the Perl programming language, making it highly flexible and portable. In order to compare the implementation of the force fields converted by AmberFFC in the Accelrys package with their corresponding execution in the AMBER software, and also to verify the efficiency of the AmberFFC program, results from single point energy calculations for 13 model molecules were obtained with the two programs. It is demonstrated that results obtained with the CDiscover and FDiscover modules compare well to those found using Sander_classic, thus showing that AmberFFC is a highly efficient program. Some energy differences between the AMBER and Accelrys software have been observed, and their origin has been characterized and discussed.  相似文献   

19.

Background  

There has been an explosion in the number of single nucleotide polymorphisms (SNPs) within public databases. In this study we focused on non-synonymous protein coding single nucleotide polymorphisms (nsSNPs), some associated with disease and others which are thought to be neutral. We describe the distribution of both types of nsSNPs using structural and sequence based features and assess the relative value of these attributes as predictors of function using machine learning methods. We also address the common problem of balance within machine learning methods and show the effect of imbalance on nsSNP function prediction. We show that nsSNP function prediction can be significantly improved by 100% undersampling of the majority class. The learnt rules were then applied to make predictions of function on all nsSNPs within Ensembl.  相似文献   

20.
The high-throughput needs in electron tomography and in single particle analysis have driven the parallel implementation of several reconstruction algorithms and software packages on computing clusters. Here, we report on the implementation of popular reconstruction algorithms as weighted backprojection, simultaneous iterative reconstruction technique (SIRT) and simultaneous algebraic reconstruction technique (SART) on common graphics processors (GPUs). The speed gain achieved on the GPUs is in the order of sixty (60x) to eighty (80x) times, compared to the performance of a single central processing unit (CPU), which is comparable to the acceleration achieved on a medium-range computing cluster. This acceleration of the reconstruction is caused by the highly specialized architecture of the GPU. Further, we show that the quality of the reconstruction on the GPU is comparable to the CPU. We present detailed flow-chart diagrams of the implementation. The reconstruction software does not require special hardware apart from the commercially available graphics cards and could be easily integrated in software packages like SPIDER, XMIPP, TOM-Package and others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号