首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Given a family of related sequences, one can first determinealignments between various pairs of those sequences, then constructa simultaneous alignment of all the sequences that is determinedin a natural manner by the set of pairwise alignments. Thisapproach is sometimes effective for exposing the existence andlocations of conserved regions, which can then be aligned bymore sensitive multiple-alignment methods. This paper presentsan efficient algorithm for constructing a multiple alignmentfrom a set of pairwise alignments.  相似文献   

2.
The HSSP database of protein structure-sequence alignments.   总被引:2,自引:0,他引:2       下载免费PDF全文
HSSP is a derived database merging structural three dimensional (3-D) and sequence one dimensional(1-D) information. For each protein of known 3-D structure from the Protein Data Bank (PDB), the database has a multiple sequence alignment of all available homologues and a sequence profile characteristic of the family. The list of homologues is the result of a database search in Swissprot using a position-weighted dynamic programming method for sequence profile alignment (MaxHom). The database is updated frequently. The listed homologues are very likely to have the same 3-D structure as the PDB protein to which they have been aligned. As a result, the database is not only a database of aligned sequence families, but also a database of implied secondary and tertiary structures covering 27% of all Swissprot-stored sequences.  相似文献   

3.
The HSSP database of protein structure-sequence alignments.   总被引:4,自引:0,他引:4       下载免费PDF全文
HSSP is a derived database merging structural (3-D) and sequence (1-D) information. For each protein of known 3-D structure from the Protein Data Bank (PDB), the database has a multiple sequence alignment of all available homologues and a sequence profile characteristic of the family. The list of homologues is the result of a database search in SwissProt using a position-weighted dynamic programming method for sequence profile alignment (MaxHom). The database is updated frequently. The listed homologues are very likely to have the same 3-D structure as the PDB protein to which they have been aligned. As a result, the database is not only a database of aligned sequence families, but also a database of implied secondary and tertiary structures covering 29% of all SwissProt-stored sequences.  相似文献   

4.
The HSSP database of protein structure-sequence alignments.   总被引:3,自引:0,他引:3       下载免费PDF全文
HSSP (homology-derived structures of proteins) is a derived database merging structural (2-D and 3-D) and sequence information (1-D). For each protein of known 3D structure from the Protein Data Bank, the database has a file with all sequence homologues, properly aligned to the PDB protein. Homologues are very likely to have the same 3D structure as the PDB protein to which they have been aligned. As a result, the database is not only a database of sequence aligned sequence families, but it is also a database of implied secondary and tertiary structures.  相似文献   

5.
Accurate multiple sequence alignments of proteins are very important to several areas of computational biology and provide an understanding of phylogenetic history of domain families, their identification and classification. This article presents a new algorithm, REFINER, that refines a multiple sequence alignment by iterative realignment of its individual sequences with the predetermined conserved core (block) model of a protein family. Realignment of each sequence can correct misalignments between a given sequence and the rest of the profile and at the same time preserves the family's overall block model. Large-scale benchmarking studies showed a noticeable improvement of alignment after refinement. This can be inferred from the increased alignment score and enhanced sensitivity for database searching using the sequence profiles derived from refined alignments compared with the original alignments. A standalone version of the program is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/REFINER) and will be incorporated into the next release of the Cn3D structure/alignment viewer.  相似文献   

6.
The HSSP data base of protein structure-sequence alignments.   总被引:4,自引:1,他引:3       下载免费PDF全文
  相似文献   

7.

Background  

The quality of progressive sequence alignments strongly depends on the accuracy of the individual pairwise alignment steps since gaps that are introduced at one step cannot be removed at later aggregation steps. Adjacent insertions and deletions necessarily appear in arbitrary order in pairwise alignments and hence form an unavoidable source of errors.  相似文献   

8.
Fast and sensitive multiple sequence alignments on a microcomputer   总被引:99,自引:0,他引:99  
A strategy is described for the rapid alignment of many longnucleic acid or protein sequences on a microcomputer. The programdescribed can handle up to 100 sequences of 1200 residues each.The approach is based on progressively aligning sequences accordingto the branching order in an initial phylogenetic tree. Theresults obtained using the package appear to be as sensitiveas those from any other available method. Received on October 7, 1988; accepted on December 6, 1988  相似文献   

9.
Evaluation measures of multiple sequence alignments.   总被引:1,自引:0,他引:1  
Multiple sequence alignments (MSAs) are frequently used in the study of families of protein sequences or DNA/RNA sequences. They are a fundamental tool for the understanding of the structure, functionality and, ultimately, the evolution of proteins. A new algorithm, the Circular Sum (CS) method, is presented for formally evaluating the quality of an MSA. It is based on the use of a solution to the Traveling Salesman Problem, which identifies a circular tour through an evolutionary tree connecting the sequences in a protein family. With this approach, the calculation of an evolutionary tree and the errors that it would introduce can be avoided altogether. The algorithm gives an upper bound, the best score that can possibly be achieved by any MSA for a given set of protein sequences. Alternatively, if presented with a specific MSA, the algorithm provides a formal score for the MSA, which serves as an absolute measure of the quality of the MSA. The CS measure yields a direct connection between an MSA and the associated evolutionary tree. The measure can be used as a tool for evaluating different methods for producing MSAs. A brief example of the last application is provided. Because it weights all evolutionary events on a tree identically, but does not require the reconstruction of a tree, the CS algorithm has advantages over the frequently used sum-of-pairs measures for scoring MSAs, which weight some evolutionary events more strongly than others. Compared to other weighted sum-of-pairs measures, it has the advantage that no evolutionary tree must be constructed, because we can find a circular tour without knowing the tree.  相似文献   

10.
11.
Multiple sequence alignment (MSA) accuracy is important, but there is no widely accepted method of judging the accuracy that different alignment algorithms give. We present a simple approach to detecting two types of error, namely block shifts and the misplacement of residues within a gap. Given a MSA, subsets of very similar sequences are generated through the use of a redundancy filter, typically using a 70–90% sequence identity cut-off. Subsets thus produced are typically small and degenerate, and errors can be easily detected even by manual examination. The errors, albeit minor, are inevitably associated with gaps in the alignment, and so the procedure is particularly relevant to homology modelling of protein loop regions. The usefulness of the approach is illustrated in the context of the universal but little known [K/R]KLH motif that occurs in intracellular loop 1 of G protein coupled receptors (GPCR); other issues relevant to GPCR modelling are also discussed.  相似文献   

12.
AltAVisT: comparing alternative multiple sequence alignments   总被引:2,自引:0,他引:2  
We introduce a WWW-based tool that is able to compare two alternative multiple alignments of a given sequence set. Regions where both alignments coincide are color-coded to visualize the local agreement between the two alignments and to identify those regions that can be considered to be reliably aligned. AVAILABILITY: http://bibiserv.techfak.uni-bielefeld.de/altavist/.  相似文献   

13.

Background  

Genomic sequence data cannot be fully appreciated in isolation. Comparative genomics – the practice of comparing genomic sequences from different species – plays an increasingly important role in understanding the genotypic differences between species that result in phenotypic differences as well as in revealing patterns of evolutionary relationships. One of the major challenges in comparative genomics is producing a high-quality alignment between two or more related genomic sequences. In recent years, a number of tools have been developed for aligning large genomic sequences. Most utilize heuristic strategies to identify a series of strong sequence similarities, which are then used as anchors to align the regions between the anchor points. The resulting alignment is globally correct, but in many cases is suboptimal locally. We describe a new program, GenAlignRefine, which improves the overall quality of global multiple alignments by using a genetic algorithm to improve local regions of alignment. Regions of low quality are identified, realigned using the program T-Coffee, and then refined using a genetic algorithm. Because a better COFFEE (Consistency based Objective Function For alignmEnt Evaluation) score generally reflects greater alignment quality, the algorithm searches for an alignment that yields a better COFFEE score. To improve the intrinsic slowness of the genetic algorithm, GenAlignRefine was implemented as a parallel, cluster-based program.  相似文献   

14.
Multiple sequence alignment is a fundamental tool in a number of different domains in modern molecular biology, including functional and evolutionary studies of a protein family. Multiple alignments also play an essential role in the new integrated systems for genome annotation and analysis. Thus, the development of new multiple alignment scores and statistics is essential, in the spirit of the work dedicated to the evaluation of pairwise sequence alignments for database searching techniques. We present here norMD, a new objective scoring function for multiple sequence alignments. NorMD combines the advantages of the column-scoring techniques with the sensitivity of methods incorporating residue similarity scores. In addition, norMD incorporates ab initio sequence information, such as the number, length and similarity of the sequences to be aligned. The sensitivity and reliability of the norMD objective function is demonstrated using structural alignments in the SCOP and BAliBASE databases. The norMD scores are then applied to the multiple alignments of the complete sequences (MACS) detected by BlastP with E-value<10, for a set of 734 hypothetical proteins encoded by the Vibrio cholerae genome. Unrelated or badly aligned sequences were automatically removed from the MACS, leaving a high-quality multiple alignment which could be reliably exploited in a subsequent functional and/or structural annotation process. After removal of unreliable sequences, 176 (24 %) of the alignments contained at least one sequence with a functional annotation. 103 of these new matches were supported by significant hits to the Interpro domain and motif database.  相似文献   

15.
16.
17.
HSSP (http: //www.sander.embl-ebi.ac.uk/hssp/) is a derived database merging structure (3-D) and sequence (1-D) information. For each protein of known 3D structure from the Protein Data Bank (PDB), we provide a multiple sequence alignment of putative homologues and a sequence profile characteristic of the protein family, centered on the known structure. The list of homologues is the result of an iterative database search in SWISS-PROT using a position-weighted dynamic programming method for sequence profile alignment (MaxHom). The database is updated frequently. The listed putative homologues are very likely to have the same 3D structure as the PDB protein to which they have been aligned. As a result, the database not only provides aligned sequence families, but also implies secondary and tertiary structures covering 33% of all sequences in SWISS-PROT.  相似文献   

18.
Multiple sequence alignments (MSAs) are one of the most important sources of information in sequence analysis. Many methods have been proposed to detect, extract and visualize their most significant properties. To the same extent that site-specific methods like sequence logos successfully visualize site conservations and sequence-based methods like clustering approaches detect relationships between sequences, both types of methods fail at revealing informational elements of MSAs at the level of sequence–site interactions, i.e. finding clusters of sequences and sites responsible for their clustering, which together account for a high fraction of the overall information of the MSA. To fill this gap, we present here a method that combines the Fisher score-based embedding of sequences from a profile hidden Markov model (pHMM) with correspondence analysis. This method is capable of detecting and visualizing group-specific or conflicting signals in an MSA and allows for a detailed explorative investigation of alignments of any size tractable by pHMMs. Applications of our methods are exemplified on an alignment of the Neisseria surface antigen LP2086, where it is used to detect sites of recombinatory horizontal gene transfer and on the vitamin K epoxide reductase family to distinguish between evolutionary and functional signals.  相似文献   

19.

Background

In a computed protein multiple sequence alignment, the coreness of a column is the fraction of its substitutions that are in so-called core columns of the gold-standard reference alignment of its proteins. In benchmark suites of protein reference alignments, the core columns of the reference alignment are those that can be confidently labeled as correct, usually due to all residues in the column being sufficiently close in the spatial superposition of the known three-dimensional structures of the proteins. Typically the accuracy of a protein multiple sequence alignment that has been computed for a benchmark is only measured with respect to the core columns of the reference alignment. When computing an alignment in practice, however, a reference alignment is not known, so the coreness of its columns can only be predicted.

Results

We develop for the first time a predictor of column coreness for protein multiple sequence alignments. This allows us to predict which columns of a computed alignment are core, and hence better estimate the alignment’s accuracy. Our approach to predicting coreness is similar to nearest-neighbor classification from machine learning, except we transform nearest-neighbor distances into a coreness prediction via a regression function, and we learn an appropriate distance function through a new optimization formulation that solves a large-scale linear programming problem. We apply our coreness predictor to parameter advising, the task of choosing parameter values for an aligner’s scoring function to obtain a more accurate alignment of a specific set of sequences. We show that for this task, our predictor strongly outperforms other column-confidence estimators from the literature, and affords a substantial boost in alignment accuracy.
  相似文献   

20.

Background

Obtaining an accurate sequence alignment is fundamental for consistently analyzing biological data. Although this problem may be efficiently solved when only two sequences are considered, the exact inference of the optimal alignment easily gets computationally intractable for the multiple sequence alignment case. To cope with the high computational expenses, approximate heuristic methods have been proposed that address the problem indirectly by progressively aligning the sequences in pairs according to their relatedness. These methods however are not flexible to change the alignment of an already aligned group of sequences in the view of new data, resulting thus in compromises on the quality of the deriving alignment. In this paper we present ReformAlign, a novel meta-alignment approach that may significantly improve on the quality of the deriving alignments from popular aligners. We call ReformAlign a meta-aligner as it requires an initial alignment, for which a variety of alignment programs can be used. The main idea behind ReformAlign is quite straightforward: at first, an existing alignment is used to construct a standard profile which summarizes the initial alignment and then all sequences are individually re-aligned against the formed profile. From each sequence-profile comparison, the alignment of each sequence against the profile is recorded and the final alignment is indirectly inferred by merging all the individual sub-alignments into a unified set. The employment of ReformAlign may often result in alignments which are significantly more accurate than the starting alignments.

Results

We evaluated the effect of ReformAlign on the generated alignments from ten leading alignment methods using real data of variable size and sequence identity. The experimental results suggest that the proposed meta-aligner approach may often lead to statistically significant more accurate alignments. Furthermore, we show that ReformAlign results in more substantial improvement in cases where the starting alignment is of relatively inferior quality or when the input sequences are harder to align.

Conclusions

The proposed profile-based meta-alignment approach seems to be a promising and computationally efficient method that can be combined with practically all popular alignment methods and may lead to significant improvements in the generated alignments.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-265) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号