首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The parameters for delivery of expression cassettes to cells of wheat morphogenic callus induced from immature embryos were optimized. Three systems (gradation, delayed, and regeneration) for in vitro selection of transgenic wheat tissue using the bar gene, providing resistance to the herbicide phosphinothricin (PPT), were compared. The efficiency of gene delivery to the cells competent for plant regeneration was assessed by comparing the number of spots transiently expressing uidA gene (encoding β-glucuronidase) per unit surface of the morphogenic calluses treated under various conditions. The selection systems in question were evaluated by comparing the transformation efficiency frequencies. The optimal parameters for wheat biolistic transformation using a particle inflow gun were determined, namely, the distance between the particle source and the target tissue (12 cm) and helium pressure during the shot (6 atm). The optimal time of callus tissue development on the medium inducing callus formation was determined (10–14 days). Comparison of the three selection variants demonstrated that the regeneration system was the most efficient for producing true transgenic plants of common wheat.  相似文献   

2.
The induction, regeneration, and biolistic sensitivities of different genotypes of common wheat (Triticum aestivum L.) have been determined in order to develop an efficient system for transformation of Russian cultivars of spring wheat. Short-term (two days) cold treatment (4 degrees C) has been demonstrated to distinctly increase the frequency of morphogenetic callus induction. The optimal phytohormonal composition of the nutrient medium ensuring an in vitro regeneration rate of the common wheat cultivar Lada as high as 90% has been determined. The optimal temporal parameters of genetic transformation of wheat plants (10-14 days of culturing after initiation of a morphogenetic callus) have been determined for two transformation methods: biolistic without precipitated DNA and transformation with the plasmid psGFP-BAR. Analysis of the transient expression of the gfp gene has confirmed that 14 days of culturing is the optimal duration.  相似文献   

3.
Hu T  Metz S  Chay C  Zhou HP  Biest N  Chen G  Cheng M  Feng X  Radionenko M  Lu F  Fry J 《Plant cell reports》2003,21(10):1010-1019
An Agrobacterium-mediated transformation system with glyphosate selection has been developed for the large-scale production of transgenic plants. The system uses 4-day precultured immature embryos as explants. A total of 30 vectors containing the 5-enol-pyruvylshikimate-3-phosphate synthase gene from Agrobacterium strain CP4 (aroA:CP4), which confers resistance to glyphosate, were introduced into wheat using this system. The aroA:CP4 gene served two roles in this study-selectable marker and gene of interest. More than 3,000 transgenic events were produced with an average transformation efficiency of 4.4%. The entire process from isolation of immature embryos to production of transgenic plantlets was 50-80 days. Transgenic events were evaluated over several generations based on genetic, agronomic and molecular criteria. Forty-six percent of the transgenic events fit a 3:1 segregation ratio. Molecular analysis confirmed that four of six lead transgenic events selected from Agrobacterium transformation contained a single insert and a single copy of the transgene. Stable expression of theAROA:CP4 gene was confirmed by ELISA through nine generations. A comparison of Agrobacterium-mediated transformation to a particle bombardment system demonstrated that the Agrobacterium system is reproducible, has a higher transformation efficiency with glyphosate selection and produces higher quality transgenic events in wheat. One of the lead events from this study, no. 33391, has been identified as a Roundup Ready wheat commercial candidate.  相似文献   

4.
Journal of Plant Biochemistry and Biotechnology - Agrobacterium-mediated in-planta transformation method allows efficient plant transformation without tissue culture. In the present study, a tissue...  相似文献   

5.
A selectable marker system for plant transformation that does not require the use of antibiotics or herbicides was developed. The selectable marker consists of the manA gene from Escherichia coli under the control of a plant promoter that encodes for phosphomannose isomerase, pmi. Only transgenic plants were able to metabolize the selection agent, mannose, into a usable source of carbon, fructose. Transgenic plants were produced efficiently after delivery by Biolistics™ of the pmi gene into maize and wheat tissues, with mean transformation frequencies of 45% for maize and 20% for wheat. Adjustment of the sucrose and mannose levels in the selection medium essentially eliminated escapes. Transgenic events can be identified as early as 2 months for wheat and 4 months for maize. A simple test, a modified chlorophenol red assay, was used for early identification of transgenic events expressing the pmi gene. Transformation frequencies for both crops exceeded those obtained with the bar and pat genes with selection on either Basta® or bialaphos.  相似文献   

6.
Two non-linked marker genes (gus and bar) were co-introduced by microprojectile bombardment into wheat cells. Four different DNA structures were compared with respect to ability to integrate into the wheat genome: circular or linear (l) DNA as a single- or double-stranded plasmid (ss and ds, respectively). In eight independent experiments, linearized DNA integrated in the ds or ss form with a high efficiency of up to 14% for l-ssDNA. Molecular analyses by Southern blotting showed that all DNA forms gave a similar complicated integration pattern of the bar gene. Received: 20 July 1998 / Accepted: 30 January 1999  相似文献   

7.
A new approach for transforming the cultured cells of wheat (Triticum aestivum L.cv.Ganmai 8)was developed vsing Agrobacterium tumefaciens. The features of the optimum procedure were:(a)both combined synthetic signal molecules and multiple natural extracts from susceptible plants were used to pretreat the primary vigorous Agrobacterium(PVA)cells for approximately 16h:(b)the gyratory magnetic field condition was used during cocultivation;(c)the cocultivating period and selecting condition were modified;(d)the recipient cells were at exuberant metabolism and active division while infected with Agrobacterium.Both neomycin phosphotransferase and nopaline synthase assays demonstrated the expression of NPT Ⅱ and NOS genes.located on the T-DNA segment of chimaeric plasmid pGV3850::1103neo.in transformed wheat cell colonies by adopting the techniques of dot blot ndPAGE or high voltage paper electrophoresis,Integration of the foreign genes into wheat genome was confirmed by Southerm blot hybridization.Moreover.a relatively rational method was described for the estimation of transformation frequencies from cultured cell levels.  相似文献   

8.
Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.)   总被引:7,自引:0,他引:7  
The aim of this study was to develop an improved procedure for preparation of chromosome suspensions, and to evaluate the potential of flow cytometry for chromosome sorting in wheat. Suspensions of intact chromosomes were prepared by mechanical homogenization of synchronized root tips after mild fixation with formaldehyde. Histograms of relative fluorescence intensity (flow karyotypes) obtained after the analysis of DAPI-stained chromosomes were characterized and the chromosome content of all peaks on wheat flow karyotype was determined for the first time. Only chromosome 3B could be discriminated on flow karyotypes of wheat lines with standard karyotype. Remaining chromosomes formed three composite peaks and could be sorted only as groups. Chromosome 3B could be sorted at purity >95% as determined by microscopic evaluation of sorted fractions that were labeled using C-PRINS with primers for GAA microsatellites and for Afa repeats, respectively. Chromosome 5BL/7BL could be sorted in two wheat cultivars at similar purity, indicating a potential of various wheat stocks for sorting of other chromosome types. PCR with chromosome-specific primers confirmed the identity of sorted fractions and suitability of flow-sorted chromosomes for physical mapping and for construction of small-insert DNA libraries. Sorted chromosomes were also found suitable for the preparation of high-molecular-weight DNA. On the basis of these results, it seems realistic to propose construction of large-insert chromosome-specific DNA libraries in wheat. The availability of such libraries would greatly simplify the analysis of the complex wheat genome.  相似文献   

9.
The promoter of a pollen-specific gene TaPSG719 was isolated from wheat (Triticum aestivum L.) by inverse-PCR (IPCR). Sequence analysis revealed that the promoter contains two cis-acting elements (AGAAA and GTGA) known to confer anther/pollen-specific gene expression which suggests that the promoter of TaPSG719 gene is a pollen-specific one. To ascertain the regulatory function of TaPSG719 promoter, two deleted fragments (?1,776 to ?1 bp and ?1,019 to ?1 bp) were fused to the β-glucuronidase (GUS) gene and transformed into tobacco plants. Similar GUS expression patterns were observed in all transformed plants and its activity was detected exclusively in pollen. No GUS activity in any other floral or vegetative tissue was observed. The results confirm that TaPSG719 promoter is pollen-specific and active during the middle stages of pollen development till anther matured, and it can drive pollen-specific gene expression across the species.  相似文献   

10.
The simplified AFLP method was developed and evaluated for identification and genetic diversity studies of wheat cultivars. Selective primers exploited in AFLP assay based on a single cutting enzyme PstI ((PstI)AFLP) generated total of 111 robust fragments, including 67 (60%) monomorphic and 12 (11%) cultivar-specific markers. Average similarity between 15 cultivars was 0.650, and varied from 0.293 ('Hope' vs. 'Aurora') to 0.865 ('Norman' vs. 'Hornet'). Mean similarities within groups of winter wheat cultivars with and without 1BL/1RS chromosome were 0.713 and 0.685, respectively. A higher variation was found in the group of spring wheats: 0.677. The obtained results confirm the usefulness of the proposed modification of the AFLP technique for diversity studies and identification of common wheat cultivars.  相似文献   

11.
The wheat (Triticum aestivum L.) leaf proteome   总被引:1,自引:0,他引:1  
The wheat leaf proteome was mapped and partially characterized to function as a comparative template for future wheat research. In total, 404 proteins were visualized, and 277 of these were selected for analysis based on reproducibility and relative quantity. Using a combination of protein and expressed sequence tag database searching, 142 proteins were putatively identified with an identification success rate of 51%. The identified proteins were grouped according to their functional annotations with the majority (40%) being involved in energy production, primary, or secondary metabolism. Only 8% of the protein identifications lacked ascertainable functional annotation. The 51% ratio of successful identification and the 8% unclear functional annotation rate are major improvements over most previous plant proteomic studies. This clearly indicates the advancement of the plant protein and nucleic acid sequence and annotation data available in the databases, and shows the enhanced feasibility of future wheat leaf proteome research.  相似文献   

12.
Silicon absorption by wheat (Triticum aestivum L.)   总被引:3,自引:0,他引:3  
Rafi  Malik M.  Epstein  Emanuel 《Plant and Soil》1999,211(2):223-230
Although silicon (Si) is a quantitatively major inorganic constituent of higher plants the element is not considered generally essential for them. Therefore it is not included in the formulation of any of the solution cultures widely used in plant physiological research. One consequence of this state of affairs is that the absorption and transport of Si have not been investigated nearly as much as those of the elements accorded 'essential' status. In this paper we report experiments showing that Si is rapidly absorbed by wheat (Triticum aestivum L.) plants from solution cultures initially containing Si at 0.5 mM, a concentration realistic in terms of the concentrations of the element in soil solutions. Nearly mature plants (headed out) 'preloaded' with Si absorbed it at virtually the same rate as did plants grown previously in solutions to which Si had not been added. The rate of Si absorption increased by more than an order of magnitude between the 2-leaf and the 7-8 leaf stage, with little change thereafter. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Common wheat (Triticum aestivum L., AABBDD genome) is thought to have emerged through natural hybridization between Triticum turgidum L. (AABB genome) and Aegilops tauschii Coss. (DD genome). Hybridization barriers and doubling of the trihaploid F1 hybrids’ genome (ABD) via unreduced gamete fusion had key roles in the process. However, how T. turgidum, the maternal progenitor, was involved in these mechanisms remains unknown. An artificial cross‐experiment using 46 cultivated and 31 wild T. turgidum accessions and a single Ae. tauschii tester with a very short genetic distance to the common wheat D genome was conducted. Cytological and quantitative trait locus analyses of F1 hybrid genome doubling were performed. The crossability and ability to cause hybrid inviability did not greatly differ between the cultivars and wild accessions. The ability to cause hybrid genome doubling was higher in the cultivars. Three novel T. turgidum loci for hybrid genome doubling, which influenced unreduced gamete production in F1 hybrids, were identified. Cultivated T. turgidum might have increased the probability of the emergence of common wheat through its enhanced ability to cause genome doubling in F1 hybrids with Ae. tauschii. The ability enhancement might have involved alterations at a relatively small number of loci.  相似文献   

14.
Twenty-seven bialaphos-tolerant and GUS-positive lines were produced from 2,940 callus pieces after particle bombardment of wheat microspore-derived callus. Regenerated plants were mainly of the albino type. In an attempt to avoid this problem, wheat microspores were used as target cells for particle bombardment. Pre-cultivation for a period of 3-8 days improved the frequency of GUS-expressing microspores. Helium rupture pressures between 1,100 psi and 1,800 psi, the amount of gold per bombardment (ranging from 37 µg to 300 µg) and particle size (0.6-1.0 µg) did not significantly affect transient expression. Microspore response measured as number of recovered embryos was not significantly affected by variations in helium pressure or amount of gold used, but response was significantly influenced by particle size. The highest number of GUS-expressing embryos was 3.5 embryos per 106 microspores, which was obtained after 4 days of pre-cultivation, 1,350 psi rupture pressure, 0.6+1.0 µm particles (1:1) and 150 µg gold particles per bombardment.  相似文献   

15.
Ten current European wheat varieties were transformed at efficiencies ranging from 1-17% (mean 4% across varieties) following modifications in particle bombardment and tissue culture procedures. All plants surviving phosphinothricin selection were screened for uidA and bar gene activity, and for the presence of marker gene sequences by PCR analysis. A minimum of 35% plant 'escape' frequency was achieved with selection on 4 mg l(-1) gluphosinate ammonium after shoot initiation. Mean co-transformation frequency with various genes-of-interest was 66%. The estimated number of insertions of the uidA gene in 25 lines were; 1-2 in 32%, 3-5 in 52%, and 6-8 in 16% of lines. In T(1) progenies, marker genes segregated in a Mendelian fashion in 50% of 39 lines analysed, as determined by transgene activity assays. Based on PCR analysis, it appeared that in some lines the occurrence of distorted segregation was due to poor transmission of the transgenes.  相似文献   

16.
Chloroplast transformation in wheat was achieved by bombardment of scutella from immature embryos and immature inflorescences, respectively. A wheat chloroplast site-specific expression vector, pBAGNRK, was constructed by placing an expression cassette containing neomycin phosphotransferase II (nptII) and green fluorescent protein (gfp) as selection and reporter genes, respectively, in the intergenic spacer between atpB and rbcL of wheat chloroplast genome. Integration of gfp gene in the plastome was identified by polymerase chain reaction (PCR) analysis and Southern blotting using gfp gene as a probe. Expression of GFP protein was examined by western blot. Three positive transformants were obtained and the Southern blot of partial fragment of atpB and rbcL (targeting site) probes verified that one of them was homoplasmic. Stable expression of GFP fluorescence was confirmed by confocal microscopy in the leaf tissues from T(1) progeny seedlings. PCR analysis of gfp gene also confirmed the inheritance of transgene in the T(1) progeny. These results strengthen the feasibility of wheat chloroplast transformation and also give a novel method for the introduction of important agronomic traits in wheat through chloroplast transformation.  相似文献   

17.
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus.  相似文献   

18.
The continuous increase in global population prompts increased wheat production. Future wheat (Triticum aestivum L.) breeding will heavily rely on dissecting molecular and genetic bases of wheat yield and related traits which is possible through the discovery of quantitative trait loci (QTLs) in constructed populations, such as recombinant inbred lines (RILs). Here, we present an evaluation of 92 RILs in a bi-parental RIL mapping population (the International Triticeae Mapping Initiative Mapping Population [ITMI/MP]) using newly generated phenotypic data in 3-year experiments (2015), older phenotypic data (1997–2009), and newly created single nucleotide polymorphism (SNP) marker data based on 92 of the original RILs to search for novel and stable QTLs. Our analyses of more than 15 unique traits observed in multiple experiments included analyses of 46 traits in three environments in the USA, 69 traits in eight environments in Germany, 149 traits in 10 environments in Russia, and 28 traits in four environments in India (292 traits in 25 environments) with 7584 SNPs (292 × 7584 = 2 214 528 data points). A total of 874 QTLs were detected with limit of detection (LOD) scores of 2.01–3.0 and 432 QTLs were detected with LOD > 3.0. Moreover, 769 QTLs could be assigned to 183 clusters based on the common markers and relative proximity of related QTLs, indicating gene-rich regions throughout the A, B, and D genomes of common wheat. This upgraded genotype–phenotype information of ITMI/MP can assist breeders and geneticists who can make crosses with suitable RILs to improve or investigate traits of interest.  相似文献   

19.
We have developed a method for the accelerated production of fertile transgenic wheat (Triticum aestivum L.) that yields rooted plants ready for transfer to soil in 8–9 weeks (56–66 days) after the initiation of cultures. This was made possible by improvements in the procedures used for culture, bombardment, and selection. Cultured immature embryos were given a 4–6 h pre-and 16 h post-bombardment osmotic treatment. The most consistent and satisfactory results were obtained with 30 g of gold particles/bombardment. No clear correlation was found between the frequencies of transient expression and stable transformation. The highest rates of regeneration and transformation were obtained when callus formation after bombardment was limited to two weeks in the dark, with or without selection, followed by selection during regeneration under light. Selection with bialaphos, and not phosphinothricin, yielded more vigorously growing transformed plantlets. The elongation of dark green plantlets in the presence of 4–5 mg/l bialaphos was found to be reliable for identifying transformed plants. Eighty independent transgenic wheat lines were produced in this study. Under optimum conditions, 32 transformed wheat plants were obtained from 2100 immature embryos in 56–66 days, making it possible to obtain R3 homozygous plants in less than a year.  相似文献   

20.
Microspores were isolated from wheat (Triticum aestivum L.) spikes of various genotypes following an effective pretreatment that induced microspore embryogenesis. The isolated microspores were cultured with or without live ovaries, and with or without medium pre-conditioned by ovaries for varying periods of time. Live ovaries alone increased androgenic embryoid yields up to 4.5-fold over the control for microspores isolated from responsive genotypes. While live ovary co-culture alone was not effective for microspores isolated from recalcitrant genotypes, the addition of medium preconditioned by ovaries to microspore cultures increased embryoid yield by more than 100-fold. Without ovary-conditioned medium, no embryoids could be obtained from some recalcitrant genotypes. Ovary-conditioned medium apparently functions to increase embryoid yields by providing essential substance(s) for elaboration of the embryogenic program already triggered during pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号