首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the MOlecular NETwork (MONET) ontology as a model to integrate data from different networks that govern cell function. To achieve this, different existing ontologies were analyzed and an integrated ontology was built in a way to make it possible to share and reuse knowledge, support interoperability between systems, and also allow the formulation of hypotheses through inferences. By studying the cell as an entity of a myriad of elements and networks of interactions, we aim to offer a means to understand the large-scale characteristics responsible for the behavior of the cell and to enable new biological insights.  相似文献   

2.
Discovery and integration of data is important in many ecological studies, especially those that concern broad-scale ecological questions. Data discovery and integration are often difficult and time consuming tasks for researchers, which is due in part to the use of informal, ambiguous, and sometimes inconsistent terms for describing data content. Ontologies offer a solution to this problem by providing consistent definitions of ecological concepts that in turn can be used to annotate, relate, and search for data sets. However, unlike in molecular biology or biomedicine, few ontology development efforts exist within ecology. Ontology development often requires considerable expertise in ontology languages and development tools, which is often a barrier for ontology creation in ecology. In this paper we describe an approach for ontology creation that allows ecologists to use common spreadsheet tools to describe different aspects of an ontology. We present conventions for creating, relating, and constraining concepts through spreadsheets, and provide software tools for converting these ontologies into equivalent OWL-DL representations. We also consider inverse translations, i.e., to convert ontologies represented using OWL-DL into our spreadsheet format. Our approach allows large lists of terms to be easily related and organized into concept hierarchies, and generally provides a more intuitive and natural interface for ontology development by ecologists.  相似文献   

3.
MOTIVATION: As the scientific curiosity in genome studies shifts toward identification of functions of the genomes in large scale, data produced about cellular processes at molecular level has been accumulating with an accelerating rate. In this regard, it is essential to be able to store, integrate, access and analyze this data effectively with the help of software tools. Clearly this requires a strong ontology that is intuitive, comprehensive and uncomplicated. RESULTS: We define an ontology for an intuitive, comprehensive and uncomplicated representation of cellular events. The ontology presented here enables integration of fragmented or incomplete pathway information via collaboration, and supports manipulation of the stored data. In addition, it facilitates concurrent modifications to the data while maintaining its validity and consistency. Furthermore, novel structures for representation of multiple levels of abstraction for pathways and homologies is provided. Lastly, our ontology supports efficient querying of large amounts of data. We have also developed a software tool named pathway analysis tool for integration and knowledge acquisition (PATIKA) providing an integrated, multi-user environment for visualizing and manipulating network of cellular events. PATIKA implements the basics of our ontology.  相似文献   

4.
We present an analysis of some considerations involved in expressing the Gene Ontology (GO) as a machine-processible ontology, reflecting principles of formal ontology. GO is a controlled vocabulary that is intended to facilitate communication between biologists by standardizing usage of terms in database annotations. Making such controlled vocabularies maximally useful in support of bioinformatics applications requires explicating in machine-processible form the implicit background information that enables human users to interpret the meaning of the vocabulary terms. In the case of GO, this process would involve rendering the meanings of GO into a formal (logical) language with the help of domain experts, and adding additional information required to support the chosen formalization. A controlled vocabulary augmented in these ways is commonly called an ontology. In this paper, we make a modest exploration to determine the ontological requirements for this extended version of GO. Using the terms within the three GO hierarchies (molecular function, biological process and cellular component), we investigate the facility with which GO concepts can be ontologized, using available tools from the philosophical and ontological engineering literature.  相似文献   

5.
MOTIVATION: Availability of the sequences of entire genomes shifts the scientific curiosity towards the identification of function of the genomes in large scale as in genome studies. In the near future, data produced about cellular processes at molecular level will accumulate with an accelerating rate as a result of proteomics studies. In this regard, it is essential to develop tools for storing, integrating, accessing, and analyzing this data effectively. RESULTS: We define an ontology for a comprehensive representation of cellular events. The ontology presented here enables integration of fragmented or incomplete pathway information and supports manipulation and incorporation of the stored data, as well as multiple levels of abstraction. Based on this ontology, we present the architecture of an integrated environment named Patika (Pathway Analysis Tool for Integration and Knowledge Acquisition). Patika is composed of a server-side, scalable, object-oriented database and client-side editors to provide an integrated, multi-user environment for visualizing and manipulating network of cellular events. This tool features automated pathway layout, functional computation support, advanced querying and a user-friendly graphical interface. We expect that Patika will be a valuable tool for rapid knowledge acquisition, microarray generated large-scale data interpretation, disease gene identification, and drug development. AVAILABILITY: A prototype of Patika is available upon request from the authors.  相似文献   

6.
7.
Computational modeling of biological networks permits the comprehensive analysis of cells and tissues to define molecular phenotypes and novel hypotheses. Although a large number of software tools have been developed, the versatility of these tools is limited by mathematical complexities that prevent their broad adoption and effective use by molecular biologists. This study clarifies the basic aspects of molecular modeling, how to convert data into useful input, as well as the number of time points and molecular parameters that should be considered for molecular regulatory models with both explanatory and predictive potential. We illustrate the necessary experimental preconditions for converting data into a computational model of network dynamics. This model requires neither a thorough background in mathematics nor precise data on intracellular concentrations, binding affinities or reaction kinetics. Finally, we show how an interactive model of crosstalk between signal transduction pathways in primary human articular chondrocytes allows insight into processes that regulate gene expression.  相似文献   

8.
BACKGROUND: Ontologies are being developed for the life sciences to standardise the way we describe and interpret the wealth of data currently being generated. As more ontology based applications begin to emerge, tools are required that enable domain experts to contribute their knowledge to the growing pool of ontologies. There are many barriers that prevent domain experts engaging in the ontology development process and novel tools are needed to break down these barriers to engage a wider community of scientists. RESULTS: We present Populous, a tool for gathering content with which to construct an ontology. Domain experts need to add content, that is often repetitive in its form, but without having to tackle the underlying ontological representation. Populous presents users with a table based form in which columns are constrained to take values from particular ontologies. Populated tables are mapped to patterns that can then be used to automatically generate the ontology's content. These forms can be exported as spreadsheets, providing an interface that is much more familiar to many biologists. CONCLUSIONS: Populous's contribution is in the knowledge gathering stage of ontology development; it separates knowledge gathering from the conceptualisation and axiomatisation, as well as separating the user from the standard ontology authoring environments. Populous is by no means a replacement for standard ontology editing tools, but instead provides a useful platform for engaging a wider community of scientists in the mass production of ontology content.  相似文献   

9.
The increasing use of gene expression profiling offers great promise in clinical research into disease biology and its treatment. Along with the ability to measure changing expression levels in thousands of genes at once, comes the challenge of analyzing and interpreting the vast sets of data generated. Analysis tools are evolving rapidly to meet such challenges. The next step is to interpret observed changes in terms of the biological properties or relationships underlying them. One powerful approach is to make associations between the genes that are under investigation and well-known biochemical or signaling pathways, and further to assess the significance of such associations. Similarly, genes can be mapped to standardized biological categories via an ontology resource. We discuss these approaches and several web-based resources and tools designed to facilitate such analyses. This information can be used to facilitate understanding and to help design more focused experiments for validating the relevance and importance of these biological pathways and processes in human disease and therapeutics.  相似文献   

10.
MOTIVATION: Inferring the genetic interaction mechanism using Bayesian networks has recently drawn increasing attention due to its well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. RESULTS: We propose a novel method to infer genetic networks by alleviating the shortage of available mRNA expression data with prior knowledge. We call the proposed method 'modularized network learning' (MONET). Firstly, the proposed method divides a whole gene set to overlapped modules considering biological annotations and expression data together. Secondly, it infers a Bayesian network for each module, and integrates the learned subnetworks to a global network. An algorithm that measures a similarity between genes based on hierarchy, specificity and multiplicity of biological annotations is presented. The proposed method draws a global picture of inter-module relationships as well as a detailed look of intra-module interactions. We applied the proposed method to analyze Saccharomyces cerevisiae stress data, and found several hypotheses to suggest putative functions of unclassified genes. We also compared the proposed method with a whole-set-based approach and two expression-based clustering approaches.  相似文献   

11.
We describe an ontology for cell types that covers the prokaryotic, fungal, animal and plant worlds. It includes over 680 cell types. These cell types are classified under several generic categories and are organized as a directed acyclic graph. The ontology is available in the formats adopted by the Open Biological Ontologies umbrella and is designed to be used in the context of model organism genome and other biological databases. The ontology is freely available at and can be viewed using standard ontology visualization tools such as OBO-Edit and COBrA.  相似文献   

12.
We describe an ontology for cell types that covers the prokaryotic, fungal, animal and plant worlds. It includes over 680 cell types. These cell types are classified under several generic categories and are organized as a directed acyclic graph. The ontology is available in the formats adopted by the Open Biological Ontologies umbrella and is designed to be used in the context of model organism genome and other biological databases. The ontology is freely available at http://obo.sourceforge.net/ and can be viewed using standard ontology visualization tools such as OBO-Edit and COBrA.  相似文献   

13.

Background

Ontology-based enrichment analysis aids in the interpretation and understanding of large-scale biological data. Ontologies are hierarchies of biologically relevant groupings. Using ontology annotations, which link ontology classes to biological entities, enrichment analysis methods assess whether there is a significant over or under representation of entities for ontology classes. While many tools exist that run enrichment analysis for protein sets annotated with the Gene Ontology, there are only a few that can be used for small molecules enrichment analysis.

Results

We describe BiNChE, an enrichment analysis tool for small molecules based on the ChEBI Ontology. BiNChE displays an interactive graph that can be exported as a high-resolution image or in network formats. The tool provides plain, weighted and fragment analysis based on either the ChEBI Role Ontology or the ChEBI Structural Ontology.

Conclusions

BiNChE aids in the exploration of large sets of small molecules produced within Metabolomics or other Systems Biology research contexts. The open-source tool provides easy and highly interactive web access to enrichment analysis with the ChEBI ontology tool and is additionally available as a standalone library.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0486-3) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
16.
17.
18.
MOTIVATION: A clear understanding of functions in biology is a key component in accurate modelling of molecular, cellular and organismal biology. Using the existing biomedical ontologies it has been impossible to capture the complexity of the community's knowledge about biological functions. RESULTS: We present here a top-level ontological framework for representing knowledge about biological functions. This framework lends greater accuracy, power and expressiveness to biomedical ontologies by providing a means to capture existing functional knowledge in a more formal manner. An initial major application of the ontology of functions is the provision of a principled way in which to curate functional knowledge and annotations in biomedical ontologies. Further potential applications include the facilitation of ontology interoperability and automated reasoning. A major advantage of the proposed implementation is that it is an extension to existing biomedical ontologies, and can be applied without substantial changes to these domain ontologies. AVAILABILITY: The Ontology of Functions (OF) can be downloaded in OWL format from http://onto.eva.mpg.de/. Additionally, a UML profile and supplementary information and guides for using the OF can be accessed from the same website.  相似文献   

19.
The GENIA ontology is a taxonomy that was developed as a result of manual annotation of a subset of MEDLINE, the GENIA corpus. Both the ontology and corpus have been used as a benchmark to test and develop biological information extraction tools. Recent work shows, however, that there is a demand for a more comprehensive ontology that would go along with the corpus. We propose a complete OWL ontology built on top of the GENIA ontology utilizing the GENIA corpus. The proposed ontology includes elements such as the original taxonomy of categories, biological entities as individuals, relations between individuals using verbs and verb nominalizations as object properties, and links to the UMLS Metathesaurus concepts. AVAILABILITY: http://www.ece.ualberta.ca/~rrak/ontology/xGENIA/  相似文献   

20.

Background  

Biomedical ontologies are being widely used to annotate biological data in a computer-accessible, consistent and well-defined manner. However, due to their size and complexity, annotating data with appropriate terms from an ontology is often challenging for experts and non-experts alike, because there exist few tools that allow one to quickly find relevant ontology terms to easily populate a web form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号