首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The strychnine-sensitive glycine receptor (GlyR) is a ligand-gated chloride channel composed of ligand binding alpha- and gephyrin anchoring beta-subunits. To identify the secondary and quaternary structures of extramembraneous receptor domains, the N-terminal extracellular domain (alpha1-(1-219)) and the large intracellular TM3-4 loop (alpha1-(309-392)) of the human GlyR alpha1-subunit were individually expressed in HEK293 cells and in Escherichia coli. The extracellular domain obtained from E. coli expression was purified in its denatured form and refolding conditions were established. Circular dichroism and Fourier-transform-infrared spectroscopy suggested approximately 25% alpha-helix and approximately 48% beta-sheet for the extracellular domain, while no alpha-helices were detectable for the TM3-4 loop. Size exclusion chromatography and sucrose density centrifugation indicated that isolated glycine receptor domains assembled into multimers of distinct molecular weight. For the extracellular domain from E. coli, we found an apparent molecular weight compatible with a 15mer by gel filtration. The N-terminal domain from HEK293 cells, analyzed by sucrose gradient centrifugation, showed a bimodal distribution, suggesting oligomerization of approximately 5 and 15 subunits. Likewise, for the intracellular domain from E. coli, a single molecular mass peak of approximately 49 kDa indicated oligomerization in a defined native structure. As shown by [(3)H]strychnine binding, expression in HEK293 cells and refolding of the isolated extracellular domain reconstituted high affinity antagonist binding. Cell fractionation, alkaline extraction experiments, and immunocytochemistry showed a tight plasma membrane association of the isolated GlyR N-terminal protein. These findings indicate that distinct functional characteristics of the full-length GlyR are retained in the isolated N-terminal domain.  相似文献   

2.
3.
Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) have been identified as ligands with different effector functions of the vascular assembly and maturation-mediating receptor tyrosine kinase Tie-2. To understand the molecular interactions of the angiopoietins with their receptor, we have studied the binding of Ang-1 and Ang-2 to the Tie-2 receptor. Enzyme-linked immunosorbent assay-based competition assays and co-immunoprecipitation experiments analyzing the binding of Ang-1 and Ang-2 to truncation mutants of the extracellular domain of Tie-2 showed that the first Ig-like loop of Tie-2 in combination with the epidermal growth factor (EGF)-like repeats (amino acids 1-360) is required for angiopoietin binding. The first Ig-like domain or the EGF-like repeats alone are not capable of binding Ang-1 and Ang-2. Concomitantly, we made the surprising finding that Tie-2 exon-2 knockout mice do express a mutated Tie-2 protein that lacks 104 amino acids of the first Ig-like domain. This mutant Tie-2 receptor is functionally inactive as shown by the lack of ligand binding and receptor phosphorylation. Collectively, the data show that the first 104 amino acids of the Tie-2 receptor are essential but not sufficient for angiopoietin binding. Conversely, the first 360 amino acids (Ig-like domain plus EGF-like repeats) of the Tie-2 receptor are necessary and sufficient to bind both Ang-1 and Ang-2, which suggests that differential receptor binding is not likely to be responsible for the different functions of Ang-1 and Ang-2.  相似文献   

4.
Protein S interacts with activated protein C to play a crucial role in blood anticoagulation, and protein S deficiency is associated with increased risk of thrombosis. Despite the large volume of functional data available for this protein, no atomic resolution structure data have yet been reported. This is due at least in part to difficulties encountered when trying to produce fragments dissected from the intact protein; however, a few successful strategies have been described. In this research we have expressed a number of constructs containing protein S epidermal growth factor-like (EGF) domains 1 and 2 in Escherichia coli and Pichia pastoris. None of the proteins produced was stably folded as assayed by solution nuclear magnetic resonance spectroscopy. We therefore constructed a series of non-native protein S EGF concatemers to investigate the role of pairwise domain linkage in domain folding. Our results demonstrate that N-terminal domain linkage can either positively or negatively impact on the refolding of an adjacent domain. Furthermore, analysis of the NMR data for EGF3-4 reveals the expected interdomain NOEs that are characteristic of an extended arrangement of calcium-binding EGF domains and a similar average [(1)H]-(15)N heteronuclear NOE value for each of the two domains. These results provide the first data in support of protein S EGF3-4 adopting the same extended domain orientation as observed for the functionally distinct proteins fibrillin-1 and the low-density lipoprotein receptor. The results also have important implications for future studies, particularly when a dissection approach is used, of tandem EGF domains from protein S and other proteins.  相似文献   

5.
The thermal unfolding of xylanase A from Streptomyces lividans, and of its isolated substrate binding and catalytic domains, was studied by differential scanning calorimetry and Fourier transform infrared and circular dichroism spectroscopy. Our calorimetric studies show that the thermal denaturation of the intact enzyme is a complex process consisting of two endothermic events centered near 57 and 64 degrees C and an exothermic event centered near 75 degrees C, all of which overlap slightly on the temperature scale. A comparison of the data obtained with the intact enzyme and isolated substrate binding and catalytic domains indicate that the lower- and higher-temperature endothermic events are attributable to the thermal unfolding of the xylan binding and catalytic domains, respectively, whereas the higher-temperature exothermic event arises from the aggregation and precipitation of the denatured catalytic domain. Moreover, the thermal unfolding of the two domains of the native enzyme are thermodynamically independent and differentially sensitive to pH. The unfolding of the substrate binding domain is a reversible two-state process and, under appropriate conditions, the refolding of this domain to its native conformation can occur. In contrast, the unfolding of the catalytic domain is a more complex process in which two subdomains unfold independently over a similar temperature range. Also, the unfolding of the catalytic domain leads to aggregation and precipitation, which effectively precludes the refolding of the protein to its native conformation. These observations are compatible with the results of our spectroscopic studies, which show that the catalytic and substrate binding domains of the enzyme are structurally dissimilar and that their native conformations are unaffected by their association in the intact enzyme. Thus, the calorimetric and spectroscopic data demonstrate that the S. lividans xylanase A consists of structurally dissimilar catalytic and substrate binding domains that, although covalently linked, undergo essentially independent thermal denaturation. These observations provide valuable new insights into the structure and thermal stability of this enzyme and should assist our efforts at engineering xylanases that are more thermally robust and otherwise better suited for industrial applications.  相似文献   

6.
Bone morphogenetic proteins (BMPs) act as growth regulators and inducers of differentiation. They transduce their signal via three different type I receptors, termed activin receptor-like kinase 2 (Alk2), Alk3, or bone morphogenetic protein receptor Ia (BMPRIa) and Alk6 or BMPRIb. Little is known about functional differences between the three type I receptors. Here, we have investigated consequences of constitutively active (ca) and dominant negative (dn) type I receptor overexpression in adult-derived hippocampal progenitor cells (AHPs). The dn receptors have a nonfunctional intracellular but functional extracellular domain. They thus trap BMPs that are endogenously produced by AHPs. We found that effects obtained by overexpression of dnAlk2 and dnAlk6 were similar, suggesting similar ligand binding patterns for these receptors. Thus, cell survival was decreased, glial fibrillary acidic protein (GFAP) expression was reduced, whereas the number of oligodendrocytes increased. No effect on neuronal differentiation was seen. Whereas the expression of Alk2 and Alk3 mRNA remained unchanged, the Alk6 mRNA was induced after impaired BMP signaling. After dnAlk3 overexpression, cell survival and astroglial differentiation increased in parallel to augmented Alk6 receptor signaling. We conclude that endogenous BMPs mediate cell survival, astroglial differentiation and the suppression of oligodendrocytic cell fate mainly via the Alk6 receptor in AHP culture.  相似文献   

7.
The three-dimensional structure of a complete Hypocrea jecorina glucoamylase has been determined at 1.8 A resolution. The presented structure model includes the catalytic and starch binding domains and traces the course of the 37-residue linker segment. While the structures of other fungal and yeast glucoamylase catalytic and starch binding domains have been determined separately, this is the first intact structure that allows visualization of the juxtaposition of the starch binding domain relative to the catalytic domain. The detailed interactions we see between the catalytic and starch binding domains are confirmed in a second independent structure determination of the enzyme in a second crystal form. This second structure model exhibits an identical conformation compared to the first structure model, which suggests that the H. jecorina glucoamylase structure we report is independent of crystal lattice contact restraints and represents the three-dimensional structure found in solution. The proposed starch binding regions for the starch binding domain are aligned with the catalytic domain in the three-dimensional structure in a manner that supports the hypothesis that the starch binding domain serves to target the glucoamylase at sites where the starch granular matrix is disrupted and where the enzyme might most effectively function.  相似文献   

8.
CCR5 is a functional receptor for various inflammatory CC-chemokines, including macrophage inflammatory protein (MIP)-1alpha and RANTES (regulated on activation normal T cell expressed and secreted), and is the main coreceptor of human immunodeficiency viruses. The second extracellular loop and amino-terminal domain of CCR5 are critical for chemokine binding, whereas the transmembrane helix bundle is involved in receptor activation. Chemokine domains and residues important for CCR5 binding and/or activation have also been identified. However, the precise way by which chemokines interact with and activate CCR5 is presently unknown. In this study, we have compared the binding and functional properties of chemokine variants onto wild-type CCR5 and CCR5 point mutants. Several mutations in CCR5 extracellular domains (E172A, R168A, K191A, and D276A) strongly affected MIP-1alpha binding but had little effect on RANTES binding. However, a MIP/RANTES chimera, containing the MIP-1alpha N terminus and the RANTES core, bound to these mutants with an affinity similar to that of RANTES. Several CCR5 mutants affecting transmembrane helices 2 and 3 (L104F, L104F/F109H/F112Y, F85L/L104F) reduced the potency of MIP-1alpha by 10-100 fold with little effect on activation by RANTES. However, the MIP/RANTES chimera activated these mutants with a potency similar to that of MIP-1alpha. In contrast, LD78beta, a natural MIP-1alpha variant, which, like RANTES, contains a proline at position 2, activated these mutants as well as RANTES. Altogether, these results suggest that the core domains of MIP-1alpha and RANTES bind distinct residues in CCR5 extracellular domains, whereas the N terminus of chemokines mediates receptor activation by interacting with the transmembrane helix bundle.  相似文献   

9.
The peptidic Y1 antagonist 1229U91 and the non-peptidic antagonist J-104870 have high binding affinities for the human Y1 receptor. These Y1 antagonists show anorexigenic effects on NPY-induced feeding in rats, although they have completely different structures and molecular sizes. To identify the binding sites of these ligands, we substituted amino acid residues of the human Y1 receptor with alanine and examined the abilities of the mutant receptors to bind the radio-labeled ligands. Alanine substitutions, F98A, D104A, T125A, D200A, D205A, L215A, Q219A, L279A, F282A, F286A, W288A and H298A, in the human Y1 receptor lost their affinity for the peptide agonist PYY, but not for 1229U91 and J-104870, while L303A and F173A lost affinity for 1229U91 and J-104870, respectively. N283A retained its affinity for 1229U91, but not for PYY and J-104870. Y47A and N299A retained their affinity for J-104870, but not for PYY and 1229U91. W163A and D287A showed no affinity for any of the three ligands. Taken together, these data indicate that the binding sites of 1229U91 are widely located in the shallow region of the transmembrane (TM) domain of the receptor, especially TM1, TM6 and TM7. In contrast, J-104870 recognized the pocket formed by TM4, TM5 and TM6, based on the molecular modeling of the Y1 receptor and J-104870 complex. In conclusion, 1229U91 and J-104870 have high affinities for Y1 receptors using basically different binding sites. D287 of the common binding site in the TM6 domain could be crucial for the binding of Y1 antagonists.  相似文献   

10.
The Lactococcus lactis SK11 cell envelope proteinase is an extracellular, multidomain protein of nearly 2,000 residues consisting of an N-terminal serine protease domain, followed by various other domains of largely unknown function. Using a strategy of deletion mutagenesis, we have analyzed the function of several C-terminal domains of the SK11 proteinase which are absent in cell envelope proteinases of other lactic acid bacteria. The various deletion mutants were functionally expressed in L. lactis and analyzed for enzyme stability, activity, (auto)processing, and specificity toward several substrates. C-terminal deletions of first the cell envelope W (wall) and AN (anchor) domains and then the H (helix) domain leads to fully active, secreted proteinases of unaltered specificity. Gradually increasing the C-terminal deletion into the so-called B domain leads to increasing instability and autoproteolysis and progressively less proteolytic activity. However, the mutant with the largest deletion (838 residues) from the C terminus and lacking the entire B domain still retains proteolytic activity. All truncated enzymes show unaltered proteolytic specificity toward various substrates. This suggests that the main role played by these domains is providing stability or protection from autoproteolysis (B domain), spacing away from the cell (H domain), and anchoring to the cell envelope (W and AN domains). In addition, this study allowed us to more precisely map the main C-terminal autoprocessing site of the SK11 proteinase and the epitope for binding of group IV monoclonal antibodies.  相似文献   

11.
The disulfide structure of the CRIPTO/FRL-1/CRYPTIC (CFC) domain of human Cripto protein was determined by a combination of enzymatic and chemical fragmentation, followed by chromatographic separation of the fragments, and characterization by mass spectrometry and N-terminal sequencing. These studies showed that Cys115 forms a disulfide bond with Cys133, Cys128 with Cys149, and Cys131 with Cys140. Protein database searching and molecular modeling revealed that the pattern of disulfide linkages in the CFC domain of Cripto is the same as that in PARS intercerebralis major Peptide C (PMP-C), a serine protease inhibitor, and that the EGF-CFC domains of Cripto are predicted to be structurally homologous to the EGF-VWFC domains of the C-terminal extracellular portions of Jagged 1 and Jagged 2. Biochemical studies of the interactions of ALK4 with the CFC domain of Cripto by fluorescence-activated cell sorter analysis indicate that the CFC domain binds to ALK4 independent of the EGF domain. A molecular model of the CFC domain of Cripto was constructed based on the nuclear magnetic resonance structure of PMP-C. This model reveals a hydrophobic patch in the domain opposite to the presumed ALK4 binding site. This hydrophobic patch may be functionally important for the formation of intra or intermolecular complexes.  相似文献   

12.
Olson JS  Soman J  Phillips GN 《IUBMB life》2007,59(8-9):552-562
The pathways for ligand entry and exit in myoglobin have now been well established by a wide variety of experimental results, including pico- to nano- to microsecond transient absorbance measurements and time-resolved X-ray crystallographic measurements. Trp insertions have been used to block, one at a time, the three major cavities occupied by photodissociated ligands. In this work, we review the effects of the L29(B10)W mutation, which places a large indole ring in the initial 'docking site' for photodissociated ligands. Then, the effects of blocking the Xe4 site with I28W, V68W, and I107W mutations and the Xe1 cavity with L89W, L104W, and F138W mutations are described. The structures of four of these mutants are shown for the first time (Trp28, Trp68, Trp107, and Trp 138 sperm whale metMb). All available results support a 'side path' mechanism in which ligands move into and out of myoglobin by outward rotation of the HisE7 side chain, but after entry can migrate into internal cavities, including the distal Xe4 and proximal Xe1 binding sites. The distal cavities act like the pocket of a baseball glove, catching the ligand and holding it long enough for the histidine gate to close and facilitate internal coordination with the heme iron atom. The physiological role of the proximal Xe1 site is less clear because changes in the size of this cavity have minimal effects on overall O(2) binding parameters.  相似文献   

13.
Mutations in the transmembrane glycoproteins transferrin receptor 2 (TfR2) and HFE are associated with hereditary hemochromatosis. Interactions between HFE and transferrin receptor 1 (TfR1) have been mapped to the alpha1- and alpha2-helices in HFE and to the helical domain of TfR1. Recently, TfR2 was also reported to interact with HFE in transfected mammalian cells. To test whether similar HFE residues are important for both TfR1 and TfR2 binding, a mutant form of HFE (W81AHFE) that has an approximately 5,000-fold lower affinity for TfR1 than HFE was employed. As expected, W81AHFE does not interact with TfR1. However, we found that the same mutation in HFE does not affect the TfR2/HFE interaction. This finding indicates that the TfR2/HFE and TfR1/HFE interactions are distinct. We further observed that, unlike TfR1/HFE, Tf does not compete with HFE for binding to TfR2 and that binding is independent of pH (pH 6-7.5). TfR2-TfR1 and HFE-HLA-B7 chimeras were generated to map the domains of the TfR2/HFE interaction. TfR1 and HLA-B7 were chosen because of their similar overall structures with TfR2 and HFE, respectively. We mapped the interacting domains to the putative stalk and protease-like domains of TfR2 located between residues 104 and 250 and to the alpha3 domain of HFE, both of which differ from the TfR1/HFE interacting domains. Furthermore, we found that HFE increases TfR2 levels in hepatic cells independent of holo-Tf.  相似文献   

14.
Hard RL  Liu J  Shen J  Zhou P  Pei D 《Biochemistry》2010,49(50):10737-10746
The BUZ/Znf-UBP domain is a protein module found in the cytoplasmic deacetylase HDAC6, E3 ubiquitin ligase BRAP2/IMP, and a subfamily of ubiquitin-specific proteases. Although several BUZ domains have been shown to bind ubiquitin with high affinity by recognizing its C-terminal sequence (RLRGG-COOH), it is currently unknown whether the interaction is sequence-specific or whether the BUZ domains are capable of binding to proteins other than ubiquitin. In this work, the BUZ domains of HDAC6 and Ubp-M were subjected to screening against a one-bead-one-compound (OBOC) peptide library that exhibited random peptide sequences with free C-termini. Sequence analysis of the selected binding peptides as well as alanine scanning studies revealed that the BUZ domains require a C-terminal Gly-Gly motif for binding. At the more N-terminal positions, the two BUZ domains have distinct sequence specificities, allowing them to bind to different peptides and/or proteins. A database search of the human proteome on the basis of the BUZ domain specificities identified 11 and 24 potential partner proteins for Ubp-M and HDAC6 BUZ domains, respectively. Peptides corresponding to the C-terminal sequences of four of the predicted binding partners (FBXO11, histone H4, PTOV1, and FAT10) were synthesized and tested for binding to the BUZ domains by fluorescence polarization. All four peptides bound to the HDAC6 BUZ domain with low micromolar K(D) values and less tightly to the Ubp-M BUZ domain. Finally, in vitro pull-down assays showed that the Ubp-M BUZ domain was capable of binding to the histone H3-histone H4 tetramer protein complex. Our results suggest that BUZ domains are sequence-specific protein-binding modules, with each BUZ domain potentially binding to a different subset of proteins.  相似文献   

15.
The Lactococcus lactis SK11 cell envelope proteinase is an extracellular, multidomain protein of nearly 2,000 residues consisting of an N-terminal serine protease domain, followed by various other domains of largely unknown function. Using a strategy of deletion mutagenesis, we have analyzed the function of several C-terminal domains of the SK11 proteinase which are absent in cell envelope proteinases of other lactic acid bacteria. The various deletion mutants were functionally expressed in L. lactis and analyzed for enzyme stability, activity, (auto)processing, and specificity toward several substrates. C-terminal deletions of first the cell envelope W (wall) and AN (anchor) domains and then the H (helix) domain leads to fully active, secreted proteinases of unaltered specificity. Gradually increasing the C-terminal deletion into the so-called B domain leads to increasing instability and autoproteolysis and progressively less proteolytic activity. However, the mutant with the largest deletion (838 residues) from the C terminus and lacking the entire B domain still retains proteolytic activity. All truncated enzymes show unaltered proteolytic specificity toward various substrates. This suggests that the main role played by these domains is providing stability or protection from autoproteolysis (B domain), spacing away from the cell (H domain), and anchoring to the cell envelope (W and AN domains). In addition, this study allowed us to more precisely map the main C-terminal autoprocessing site of the SK11 proteinase and the epitope for binding of group IV monoclonal antibodies.  相似文献   

16.
17.
The amino-terminal domains N1 and N2 of the gene-3-protein of phage fd form a bilobal structural and functional entity that protrudes from the phage tip. Domain N2 initiates the infection of Escherichia coli by binding to the F pilus. This binding results in the dissociation of the two domains and allows N1 to interact with the TolA receptor at the cell surface. The refolding of the N1-N2 fragment begins with the folding of domain N1, which takes a few milliseconds, followed by the folding of domain N2, which is complete within five minutes. The subsequent domain assembly is unusually slow and shows a time-constant of 6200 s at 25 degrees C. We found that the rate of this reaction is controlled by the trans to cis isomerization of the Gln212-Pro213 bond in the hinge subdomain of N2, a region that provides many interactions between N1 and N2 in the gene-3-protein. The substitution of Pro213 by Gly accelerated domain association 30-fold and revealed that the folding of the two individual domains and their assembly are indeed sequential steps in the refolding of the gene-3-protein. In the course of infection, the domains must separate to expose the binding site for TolA on domain N1. The kinetic block of domain reassembly caused by Pro213 isomerization could ensure that after the initial binding of N2 to the F pilus the open state persists until N1 and TolA are close enough for their mutual interaction. Pro213 isomerization might thus serve as a slow conformational switch in the function of the gene-3-protein.  相似文献   

18.
Cycloinulooligosaccharide fructanotransferase (CFTase) converts inulin into cyclooligosaccharides of beta-(2-->1)-linked D-fructofuranose by catalyzing an intramolecular transfructosylation reaction. The CFTase gene was cloned and characterized from Bacillus macerans CFC1. The CFTase gene encoded a polypeptide of 1,333 amino acids with a calculated Mr of 149,563. Western blot and zymography analyses revealed that the CFTase with a molecular mass of 150 kDa (CFT150) was processed (between Ser389 and Phe390 residue) to form a 107-kDa protein (CFT107) in the B. macerans CFC1 cells. The processed CFT107 was similar in its mass to the previously purified CFTase from B. macerans CFC1. The CFT107 enzyme was produced by B. macerans CFC1 but was not detected from the recombinant Escherichia coli cells, indicating that the processing event occurred in a host-specific manner. The two CFTases (CFT150 and CFT107) exhibited the same enzymatic properties, such as influences of pH and temperature on the enzyme activity, the intermolecular transfructosylation ability, and the ability of hydrolysis of cycloinulooligosaccharides produced by the cyclization reaction. However, the thermal stability of CFT107 was slightly higher than that of CFT150. The most striking difference between the two enzymes was observed in their Km values; the value for CFT150 (1.56 mM) was threefold lower than that for CFT107 (4.76 mM). Thus, the specificity constant (kcat/Km) of CFT150 was about fourfold higher than that of CFT107. These results indicated that the N-terminal 358-residue region of CFT150 played a role in increasing the enzyme's binding affinity to the inulin substrate.  相似文献   

19.
Hsp70蛋白自身磷酸化对其分子伴侣功能的影响   总被引:1,自引:0,他引:1  
近年对分子伴侣蛋白Hsp70作用机制的研究发现,其ATP功能区域X光晶体结构有一个新的钙离子结合区域,这个新的功能区域与Hsp70分子的ADP结合、ATP水解及合成有关.有报道认为Hsp70蛋白的NDP激酶样作用,通过形成酸不稳定性自身磷酸化中间体催化γ 磷酸基团在ATP和ADP间传递,组氨酸H89与这个新的区域有密切关系,有可能与Hsp70蛋白形成自身磷酸化中间体有关.本研究运用基因定位诱导突变技术,将89位组氨酸以丝氨酸替代(H89S),通过比较Hsp70野生型及突变型蛋白的自身磷酸化过程的改变,及其对Hsp70蛋白体外荧光素酶活性影响的不同,初步探讨Hsp70作用机制.结果发现,突变的H89S蛋白自身磷酸化过程及体外变性荧光素酶重折叠受到抑制.野生型蛋白未受到影响,野生型Hsp70可以形成酸不稳定的自身磷酸化中间体,产生CDP依赖性解磷酸反应,而H89S突变型蛋白不能形成这种反应.89位组氨酸点突变能显著降低ATP酶交换反应及体外变性荧光素酶重折叠水平,但它的自身磷酸化可能并非唯一必需的介导位点或只是一个选择性的功能侧链.  相似文献   

20.
Src homology 2 (SH2) domains are found in a variety of signaling proteins and bind phosphotyrosine-containing peptide sequences. To explore the binding properties of the SH2 domain of the Src protein kinase, we used immobilized phosphopeptides to bind purified glutathione S-transferase-Src SH2 fusion proteins. With this assay, as well as a free-peptide competition assay, we have estimated the affinities of the Src SH2 domain for various phosphopeptides relative to a Src SH2-phosphopeptide interaction whose Kd has been determined previously (YEEI-P; Kd = 4 nM). Two Src-derived phosphopeptides, one containing the regulatory C-terminal Tyr-527 and another containing the autophosphorylation site Tyr-416, bind the Src SH2 domain in a specific though low-affinity manner (with about 10(4)-lower affinity than the YEEI-P peptide). A platelet-derived growth factor receptor (PDGF-R) phosphopeptide containing Tyr-857 does not bind appreciably to the Src SH2 domain, suggesting it is not the PDGF-R binding site for Src as previously reported. However, another PDGF-R-derived phosphopeptide containing Tyr-751 does bind the Src SH2 domain (with an affinity approximately 2 orders of magnitude lower than that of YEEI-P). All of the phosphopeptides which bind to the Src SH2 domain contain a glutamic acid at position -3 or -4 with respect to phosphotyrosine; changing this residue to alanine greatly diminishes binding. We have also tested Src SH2 mutants for their binding properties and have interpreted our results in light of the recent crystal structure solution for the Src SH2 domain. Mutations in various conserved and nonconserved residues (R155A, R155K, N198E, H201R, and H201L) cause slight reductions in binding, while two mutations cause severe reductions. The W148E mutant domain, which alters the invariant tryptophan that marks the N-terminal border of the SH2 domain, binds poorly to phosphopeptides. Inclusion of the SH3 domain in the fusion protein partially restores the binding by the W148E mutant. A change in the invariant arginine that coordinates twice with phosphotyrosine in the peptide (R175L) results in a nearly complete loss of binding. The R175L mutant does display high affinity for the PDGF-R peptide containing Tyr-751, via an interaction that is at least partly phosphotyrosine independent. We have used this interaction to show that the R175L mutation also disrupts the intramolecular interaction between the Src SH2 domain and the phosphorylated C terminus within the context of the entire Src protein; thus, the binding properties observed for mutant domains in an in vitro assay appear to mimic those that occur in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号