首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 425 毫秒
1.
Melanocortin 1 receptor variation in the domestic dog   总被引:23,自引:0,他引:23  
The melanocortin 1 receptor (Mc1r) is encoded by the Extension locus in many different mammals, where a loss-of-function causes exclusive production of red/yellow pheomelanin, and a constitutively activating mutation causes exclusive production of black/brown eumelanin. In the domestic dog, breeds with a wild-type E allele, e.g., the Doberman, can produce either pigment type, whereas breeds with the e allele, e.g., the Golden Retriever, produce exclusively yellow pigment. However, a black coat color in the Newfoundland and similar breeds is thought to be caused by an unusual allele of Agouti, which encodes the physiologic ligand for the Mc1r. Here we report that the predicted dog Mc1r is 317 residues in length and 96% identical to the fox Mc1r. Comparison of the Doberman, Newfoundland, Black Labrador, Yellow Labrador, Flat-coated Retriever, Irish Setter, and Golden Retriever revealed six sequence variants, of which two, S90G and R306ter, partially correlated with a black/brown coat and red/yellow coat, respectively. R306ter was found in the Yellow Labrador, Golden Retriever, and Irish Setter; the latter two had identical haplotypes but differed from the Yellow Labrador at three positions other than R306ter. In a larger survey of 194 dogs and 19 breeds, R306ter and a red/yellow coat were completely concordant except for the Red Chow. These results indicate that the e allele is caused by a common Mc1r loss-of-function mutation that either reoccurred or was subject to gene conversion during recent evolutionary history, and suggest that the allelic and locus relationships for dog coat color genes may be more analogous to those found in other mammals than previously thought.  相似文献   

2.
The aim of this study was to better define the extent of linkage disequilibrium (LD) in populations of large-breed dogs and its variation by breed and chromosomal region. Understanding the extent of LD is a crucial component for successful utilization of genome-wide association studies and allows researchers to better define regions of interest and target candidate genes. Twenty-four Golden Retriever dogs, 28 Rottweiler dogs, and 24 Newfoundland dogs were genotyped for single-nucleotide polymorphism (SNP) data using a high-density SNP array. LD was calculated for all autosomes using Haploview. Decay of the squared correlation coefficient (r 2) was plotted on a per-breed and per-chromosome basis as well as in a genome-wide fashion. The point of 50 % decay of r 2 was used to estimate the difference in extent of LD between breeds. Extent of LD was significantly shorter for Newfoundland dogs based upon 50 % decay of r 2 data at a mean of 344 kb compared to Golden Retriever and Rottweiler dogs at 715 and 834 kb, respectively (P < 0.0001). Notable differences in LD by chromosome were present within each breed and not strictly related to the length of the corresponding chromosome. Extent of LD is breed and chromosome dependent. To our knowledge, this is the first report of SNP-based LD for Newfoundland dogs, the first report based on genome-wide SNPs for Rottweilers, and an almost tenfold improvement in marker density over previous genome-wide studies of LD in Golden Retrievers.  相似文献   

3.
Hybridization has played an important role in the evolutionary history of Canis species in eastern North America. Genetic evidence of coyote–dog hybridization based on mitochondrial DNA (mtDNA) is lacking compared to that based on autosomal markers. This discordance suggests dog introgression into coyotes has potentially been male biased, but this hypothesis has not been formally tested. Therefore, we investigated biparentally, maternally, and paternally inherited genetic markers in a sample of coyotes and dogs from southeastern Ontario to assess potential asymmetric dog introgression into coyotes. Analysis of autosomal microsatellite genotypes revealed minimal historical and contemporary admixture between coyotes and dogs. We observed only mutually exclusive mtDNA haplotypes in coyotes and dogs, but we observed Y‐chromosome haplotypes (Y‐haplotypes) in both historical and contemporary coyotes that were also common in dogs. Species‐specific Zfy intron sequences of Y‐haplotypes shared between coyotes and dogs confirmed their homology and indicated a putative origin from dogs. We compared Y‐haplotypes observed in coyotes, wolves, and dogs profiled in multiple studies, and observed that the Y‐haplotypes shared between coyotes and dogs were either absent or rare in North American wolves, present in eastern coyotes, but absent in western coyotes. We suggest the eastern coyote has experienced asymmetric genetic introgression from dogs, resulting from predominantly historical hybridization with male dogs and subsequent backcrossing of hybrid offspring with coyotes. We discuss the temporal and spatial dynamics of coyote–dog hybridization and the conditions that may have facilitated the introgression of dog Y‐chromosomes into coyotes. Our findings clarify the evolutionary history of the eastern coyote.  相似文献   

4.
We have used a paleogenetics approach to investigate the genetic landscape of coat color variation in ancient Eurasian dog and wolf populations. We amplified DNA fragments of two genes controlling coat color, Mc1r (Melanocortin 1 Receptor) and CBD103 (canine-β-defensin), in respectively 15 and 19 ancient canids (dogs and wolf morphotypes) from 14 different archeological sites, throughout Asia and Europe spanning from ca. 12 000 B.P. (end of Upper Palaeolithic) to ca. 4000 B.P. (Bronze Age). We provide evidence of a new variant (R301C) of the Melanocortin 1 receptor (Mc1r) and highlight the presence of the beta-defensin melanistic mutation (CDB103-K locus) on ancient DNA from dog-and wolf-morphotype specimens. We show that the dominant KB allele (CBD103), which causes melanism, and R301C (Mc1r), the variant that may cause light hair color, are present as early as the beginning of the Holocene, over 10 000 years ago. These results underline the genetic diversity of prehistoric dogs. This diversity may have partly stemmed not only from the wolf gene pool captured by domestication but also from mutations very likely linked to the relaxation of natural selection pressure occurring in-line with this process.  相似文献   

5.
Domestic dogs have been shown to have multiple alleles of the Agouti Signal Peptide (ASIP) in exon 4 and we wished to determine the level of polymorphism in the common wild canids of Canada, wolves and coyotes, in comparison. All Canadian coyotes and most wolves have banded hairs. The ASIP coding sequence of the wolf did not vary from the domestic dog but one variant was detected in exon 4 of coyotes that did not alter the arginine at this position. Two other differences were found in the sequence flanking exon 4 of coyotes compared with the 45 dogs and 1 wolf. The coyotes also demonstrated a relatively common polymorphism in the 3' UTR sequence that could be used for population studies. One of the ASIP alleles (R96C) in domestic dogs causes a solid black coat color in homozygotes. Although some wolves are melanistic, this phenotype does not appear to be caused by this same mutation. However, one wolf, potentially a dog-wolf hybrid or descendant thereof, was heterozygous for this allele. Likewise 2 coyotes, potentially dog-coyote or wolf-coyote hybrid descendants, were heterozygous for the several polymorphisms in and flanking exon 4. We could conclude that these were coyote-dog hybrids because both were heterozygous for 2 mutations causing fawn coat color in dogs.  相似文献   

6.
Contemporary evolution through human‐induced hybridization occurs throughout the taxonomic range. Formerly allopatric species appear especially susceptible to hybridization. Consequently, hybridization is expected to be more common in regions with recent sympatry owing to human activity than in areas of historical range overlap. Coyotes ( Canis latrans) and gray wolves ( C. lupus) are historically sympatric in western North America. Following European settlement gray wolf range contracted, whereas coyote range expanded to include eastern North America. Furthermore, wolves with New World (NW) mitochondrial DNA (mtDNA) haplotypes now extend from Manitoba to Québec in Canada and hybridize with gray wolves and coyotes. Using mtDNA and 12 microsatellite markers, we evaluated levels of wolf‐coyote hybridization in regions where coyotes were present (the Canadian Prairies, n = 109 samples) and absent historically (Québec, n = 154). Wolves with NW mtDNA extended from central Saskatchewan (51°N, 69°W) to northeastern Québec (54°N, 108°W). On the Prairies, 6.3% of coyotes and 9.2% of wolves had genetic profiles suggesting wolf‐coyote hybridization. In contrast, 12.6% of coyotes and 37.4% of wolves in Québec had profiles indicating hybrid origin. Wolves with NW and Old World ( C. lupus) mtDNA appear to form integrated populations in both regions. Our results suggest that hybridization is more frequent in historically allopatric populations. Range shifts, now expected across taxa following climate change and other human influence on the environment, might therefore promote contemporary evolution by hybridization.  相似文献   

7.
ABSTRACT Interactions between wolves (Canis lupus) and coyotes (C. latrans) can have significant impacts on their distribution and abundance. We compared diets of recently translocated Mexican wolves (C. l. baileyi) with diets of resident coyotes in Arizona and New Mexico, USA. We systematically collected scats during 2000 and 2001. Coyote diet was composed mostly of mammalian species, followed by vegetation and insects. Elk (Cervus elaphus) was the most common item in coyote scats. Mexican wolf diet had a higher proportion of large mammals and fewer small mammals than coyote diet; however, elk was also the most common food item in Mexican wolf scats. Our results suggest that Mexican wolf diet was more similar to coyote diet than previously reported, but coyotes had more seasonal variation. Considering results in other areas, we expect that Mexican wolves will have a negative impact on coyotes through direct mortality and possibly competition. Reintroduction of Mexican wolves may have great impacts on communities by changing relationships among other predators and their prey.  相似文献   

8.
The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human‐dominated environments. We genotyped 63 ancestry‐informative single‐nucleotide polymorphisms in 427 canids to examine the prevalence, spatial distribution and the ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf‐like, suggesting that natural selection for wolf‐like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, revealed a pattern of sex‐biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry‐informative markers.  相似文献   

9.
Interference competition with wolves Canis lupus is hypothesized to limit the distribution and abundance of coyotes Canis latrans, and the extirpation of wolves is often invoked to explain the expansion in coyote range throughout much of North America. We used spatial, seasonal and temporal heterogeneity in wolf distribution and abundance to test the hypothesis that interference competition with wolves limits the distribution and abundance of coyotes. From August 2001 to August 2004, we gathered data on cause-specific mortality and survival rates of coyotes captured at wolf-free and wolf-abundant sites in Grand Teton National Park (GTNP), Wyoming, USA, to determine whether mortality due to wolves is sufficient to reduce coyote densities. We examined whether spatial segregation limits the local distribution of coyotes by evaluating home-range overlap between resident coyotes and wolves, and by contrasting dispersal rates of transient coyotes captured in wolf-free and wolf-abundant areas. Finally, we analysed data on population densities of both species at three study areas across the Greater Yellowstone Ecosystem (GYE) to determine whether an inverse relationship exists between coyote and wolf densities. Although coyotes were the numerically dominant predator, across the GYE, densities varied spatially and temporally in accordance with wolf abundance. Mean coyote densities were 33% lower at wolf-abundant sites in GTNP, and densities declined 39% in Yellowstone National Park following wolf reintroduction. A strong negative relationship between coyote and wolf densities (beta = -3.988, P < 0.005, r(2) = 0.54, n = 16), both within and across study sites, supports the hypothesis that competition with wolves limits coyote populations. Overall mortality of coyotes resulting from wolf predation was low, but wolves were responsible for 56% of transient coyote deaths (n = 5). In addition, dispersal rates of transient coyotes captured at wolf-abundant sites were 117% higher than for transients captured in wolf-free areas. Our results support the hypothesis that coyote abundance is limited by competition with wolves, and suggest that differential effects on survival and dispersal rates of transient coyotes are important mechanisms by which wolves reduce coyote densities.  相似文献   

10.
Gray wolves (Canis lupus) and coyotes (Canis latrans) generally exhibit intraspecific territoriality manifesting in spatial segregation between adjacent packs. However, previous studies have found a high degree of interspecific spatial overlap between sympatric wolves and coyotes. Eastern wolves (Canis lycaon) are the most common wolf in and around Algonquin Provincial Park (APP), Ontario, Canada and hybridize with sympatric gray wolves and coyotes. We hypothesized that all Canis types (wolves, coyotes, and hybrids) exhibit a high degree of spatial segregation due to greater genetic, morphologic, and ecological similarities between wolves and coyotes in this hybrid system compared with western North American ecosystems. We used global positioning system telemetry and probabilistic measures of spatial overlap to investigate spatial segregation between adjacent Canis packs. Our hypothesis was supported as: (1) the probability of locating wolves, coyotes, and hybrids within home ranges ( $\bar{x}$  = 0.05) or core areas ( $\bar{x}$  < 0.01) of adjacent packs was low; and (2) the amount of shared space use was negligible. Spatial segregation did not vary substantially in relation to genotypes of adjacent packs or local environmental conditions (i.e., harvest regulations or road densities). We provide the first telemetry-based demonstration of spatial segregation between wolves and coyotes, highlighting the novel relationships between Canis types in the Ontario hybrid zone relative to areas where wolves and coyotes are reproductively isolated. Territoriality among Canis may increase the likelihood of eastern wolves joining coyote and hybrid packs, facilitate hybridization, and could play a role in limiting expansion of the genetically distinct APP eastern wolf population.  相似文献   

11.
  1. The parallel niche release hypothesis (PNR) indicates that reduced competition with dominant competitors results in greater density and niche breadth of subordinate competitors and which may support an adaptive advantage.
  2. We assessed support for the PNR by evaluating relationships between variation in niche breadth and intra‐ and interspecific density (an index of competition) of wolves (Canis lupus) coyotes (C. latrans), and bobcats (Lynx rufus).
  3. We estimated population density (wolf track surveys, coyote howl surveys, and bobcat hair snare surveys) and variability in space use (50% core autocorrelated kernel density home range estimators), temporal activity (hourly and overnight speed), and dietary (isotopic δ13C and δ15N) niche breadth of each species across three areas of varying wolf density in the Upper Peninsula of Michigan, USA, 2010–2019.
  4. Densities of wolves and coyotes were inversely related, and increased variability in space use, temporal activity, and dietary niche breadth of coyotes was associated with increased coyote density and decreased wolf density supporting the PNR. Variability in space use and temporal activity of wolves and dietary niche breadth of bobcats also increased with increased intraspecific density supporting the PNR.
  5. Through demonstrating decreased competition between wolves and coyotes and increased coyote niche breadth and density, our study provides multidimensional support for the PNR. Knowledge of the relationship between niche breadth and population density can inform our understanding of the role of competition in shaping the realized niche of species.
  相似文献   

12.
Conflicting interpretations of the influence of coyote hybridization on wolf recovery in the western Great Lakes (WGL) states have stemmed from disagreement over the systematics of North American wolves. Questions regarding their recovery status have resulted. We addressed these issues with phylogenetic and admixture analysis of DNA profiles of western wolves, WGL states wolves and Wisconsin coyotes developed from autosome and Y-chromosome microsatellites and mitochondrial DNA control region sequence. Hybridization was assessed by comparing the haplotypes exhibited by sympatric wolves and coyotes. Genetic variability and connectivity were also examined. These analyses support the recognition of Canis lycaon as a unique species of North American wolf present in the WGL states and found evidence of hybridization between C. lupus and C. lycaon but no evidence of recent hybridization with sympatric coyotes. The recolonized WGL states wolves are genetically similar to historical wolves from the region and should be considered restored.  相似文献   

13.
Top predators are disappearing worldwide, significantly changing ecosystems that depend on top-down regulation. Conflict with humans remains the primary roadblock for large carnivore conservation, but for the eastern wolf (Canis lycaon), disagreement over its evolutionary origins presents a significant barrier to conservation in Canada and has impeded protection for grey wolves (Canis lupus) in the USA. Here, we use 127 235 single-nucleotide polymorphisms (SNPs) identified from restriction-site associated DNA sequencing (RAD-seq) of wolves and coyotes, in combination with genomic simulations, to test hypotheses of hybrid origins of Canis types in eastern North America. A principal components analysis revealed no evidence to support eastern wolves, or any other Canis type, as the product of grey wolf × western coyote hybridization. In contrast, simulations that included eastern wolves as a distinct taxon clarified the hybrid origins of Great Lakes-boreal wolves and eastern coyotes. Our results support the eastern wolf as a distinct genomic cluster in North America and help resolve hybrid origins of Great Lakes wolves and eastern coyotes. The data provide timely information that will shed new light on the debate over wolf conservation in eastern North America.  相似文献   

14.
Interpretation of the genetic composition and taxonomic history of wolves in the western Great Lakes region (WGLR) of the United States has long been debated and has become more important to their conservation given the recent changes in their status under the Endangered Species Act. Currently, the two competing hypotheses on WGLR wolves are that they resulted from hybridization between (i) grey wolves (Canis lupus) and western coyotes (C. latrans) or (ii) between grey wolves and eastern wolves (C. lycaon). We performed a genetic analysis of sympatric wolves and coyotes from the region to assess the degree of reproductive isolation between them and to clarify the taxonomic status of WGLR wolves. Based on data from maternal, paternal and bi‐parental genetic markers, we demonstrate a clear genetic distinction between sympatric wolves and coyotes and conclude that they are reproductively isolated and that wolf–coyote hybridization in the WGLR is uncommon. The data reject the hypothesis that wolves in the WGLR derive from hybridization between grey wolves and western coyotes, and we conclude that the extant WGLR wolf population is derived from hybridization between grey wolves and eastern wolves. Grey‐eastern wolf hybrids (C. lupus × lycaon) comprise a substantial population that extends across Michigan, Wisconsin, Minnesota and western Ontario. These findings have important implications for the conservation and management of wolves in North America, specifically concerning the overestimation of grey wolf numbers in the United States and the need to address policies for hybrids.  相似文献   

15.
Hailer F  Leonard JA 《PloS one》2008,3(10):e3333

Background

Population densities of many species throughout the world are changing due to direct persecution as well as anthropogenic habitat modification. These changes may induce or increase the frequency of hybridization among taxa. If extensive, hybridization can threaten the genetic integrity or survival of endangered species. Three native species of the genus Canis, coyote (C. latrans), Mexican wolf (C. lupus baileyi) and red wolf (C. rufus), were historically sympatric in Texas, United States. Human impacts caused the latter two to go extinct in the wild, although they survived in captive breeding programs. Morphological data demonstrate historic reproductive isolation between all three taxa. While the red wolf population was impacted by introgressive hybridization with coyotes as it went extinct in the wild, the impact of hybridization on the Texas populations of the other species is not clear.

Methodology/ Principal Findings

We surveyed variation at maternally and paternally inherited genetic markers (mitochondrial control region sequence and Y chromosome microsatellites) in coyotes from Texas, Mexican wolves and red wolves from the captive breeding programs, and a reference population of coyotes from outside the historic red wolf range. Levels of variation and phylogenetic analyses suggest that hybridization has occasionally taken place between all three species, but that the impact on the coyote population is very small.

Conclusion/Significance

Our results demonstrate that the factors driving introgressive hybridization in sympatric Texan Canis are multiple and complex. Hybridization is not solely determined by body size or sex, and density-dependent effects do not fully explain the observed pattern either. No evidence of hybridization was identified in the Mexican wolf captive breeding program, but introgression appears to have had a greater impact on the captive red wolves.  相似文献   

16.
Interference competition occurs when two species have similar resource requirements and one species is dominant and can suppress or exclude the subordinate species. Wolves (Canis lupus) and coyotes (C. latrans) are sympatric across much of their range in North America where white‐tailed deer (Odocoileus virginianus) can be an important prey species. We assessed the extent of niche overlap between wolves and coyotes using activity, diet, and space use as evidence for interference competition during three periods related to the availability of white‐tailed deer fawns in the Upper Great Lakes region of the USA. We assessed activity overlap (Δ) with data from accelerometers onboard global positioning system (GPS) collars worn by wolves (n = 11) and coyotes (n = 13). We analyzed wolf and coyote scat to estimate dietary breadth (B) and food niche overlap (α). We used resource utilization functions (RUFs) with canid GPS location data, white‐tailed deer RUFs, ruffed grouse (Bonasa umbellus) and snowshoe hare (Lepus americanus) densities, and landscape covariates to compare population‐level space use. Wolves and coyotes exhibited considerable overlap in activity (Δ = 0.86–0.92), diet (B = 3.1–4.9; α = 0.76–1.0), and space use of active and inactive RUFs across time periods. Coyotes relied less on deer as prey compared to wolves and consumed greater amounts of smaller prey items. Coyotes exhibited greater population‐level variation in space use compared to wolves. Additionally, while active and inactive, coyotes exhibited greater selection of some land covers as compared to wolves. Our findings lend support for interference competition between wolves and coyotes with significant overlap across resource attributes examined. The mechanisms through which wolves and coyotes coexist appear to be driven largely by how coyotes, a generalist species, exploit narrow differences in resource availability and display greater population‐level plasticity in resource use.  相似文献   

17.
Prior to 1900, coyotes (Canis latrans) were restricted to the western and central regions of North America, but by the early 2000s, coyotes became ubiquitous throughout the eastern United States. Information regarding morphological and genetic structure of coyote populations in the southeastern United States is limited, and where data exist, they are rarely compared to those from other regions of North America. We assessed geographic patterns in morphology and genetics of coyotes with special consideration of coyotes in the southeastern United States. Mean body mass of coyote populations increased along a west‐to‐east gradient, with southeastern coyotes being intermediate to western and northeastern coyotes. Similarly, principal component analysis of body mass and linear body measurements suggested that southeastern coyotes were intermediate to western and northeastern coyotes in body size but exhibited shorter tails and ears from other populations. Genetic analyses indicated that southeastern coyotes represented a distinct genetic cluster that differentiated strongly from western and northeastern coyotes. We postulate that southeastern coyotes experienced lower immigration from western populations than did northeastern coyotes, and over time, genetically diverged from both western and northeastern populations. Coyotes colonizing eastern North America experienced different selective pressures than did stable populations in the core range, and we offer that the larger body size of eastern coyotes reflects an adaptation that improved dispersal capabilities of individuals in the expanding range.  相似文献   

18.
Mitochondrial DNA (mtDNA) genotypes of gray wolves and coyotes from localities throughout North America were determined using restriction fragment length polymorphisms. Of the 13 genotypes found among the wolves, 7 are clearly of coyote origin, indicating that genetic transfer of coyote mtDNA into wolf populations has occurred through hybridization. The transfer of mtDNA appears unidirectional from coyotes into wolves because no coyotes sampled have a wolf-derived mtDNA genotype. Wolves possessing coyote-derived genotypes are confined to a contiguous geographic region in Minnesota, Ontario, and Quebec, and the frequency of coyote-type mtDNA in these wolf populations is high (>50%). The ecological history of the hybrid zone suggests that hybridization is taking place in regions where coyotes have only recently become abundant following conversion of forests to farmlands. Dispersing male wolves unable to find conspecific mates may be pairing with female coyotes in deforested areas bordering wolf territories. Our results demonstrate that closely related species of mobile terrestrial vertebrates have the potential for extensive genetic exchange when ecological conditions change suddenly.  相似文献   

19.
In 2010, Romaine lettuce grown in southern Arizona was implicated in a multi-state outbreak of Escherichia coli O145:H28 infections. This was the first known Shiga toxin-producing E. coli (STEC) outbreak traced to the southwest desert leafy green vegetable production region along the United States-Mexico border. Limited information exists on sources of STEC and other enteric zoonotic pathogens in domestic and wild animals in this region. According to local vegetable growers, unleashed or stray domestic dogs and free-roaming coyotes are a significant problem due to intrusions into their crop fields. During the 2010–2011 leafy greens growing season, we conducted a prevalence survey of STEC and Salmonella presence in stray dog and coyote feces. Fresh fecal samples from impounded dogs and coyotes from lands near produce fields were collected and cultured using extended enrichment and serogroup-specific immunomagnetic separation (IMS) followed by serotyping, pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility testing. A total of 461 fecal samples were analyzed including 358 domestic dog and 103 coyote fecals. STEC was not detected, but atypical enteropathogenic E. coli (aEPEC) strains comprising 14 different serotypes were isolated from 13 (3.6%) dog and 5 (4.9%) coyote samples. Salmonella was cultured from 33 (9.2%) dog and 33 (32%) coyote samples comprising 29 serovars with 58% from dogs belonging to Senftenberg or Typhimurium. PFGE analysis revealed 17 aEPEC and 27 Salmonella distinct pulsotypes. Four (22.2%) of 18 aEPEC and 4 (6.1%) of 66 Salmonella isolates were resistant to two or more antibiotic classes. Our findings suggest that stray dogs and coyotes in the desert southwest may not be significant sources of STEC, but are potential reservoirs of other pathogenic E. coli and Salmonella. These results underscore the importance of good agriculture practices relating to mitigation of microbial risks from animal fecal deposits in the produce production area.  相似文献   

20.
Eastern North American wolves have long been recognized as morphologically distinct from both coyotes and gray wolves. This has led to questions regarding their origins and taxonomic status. Eastern wolves are mainly viewed as: (1) a smaller subspecies of gray wolf (Canis lupus lycaon), potentially the result of historical hybridization between gray wolves (C. lupus) and red wolves (C. rufus), (2) a hybrid, the result of gray wolf (C. lupus) and coyote (C. latrans) interbreeding, or (3) a distinct species, C. lycaon, closely related to the red wolf (C. rufus). Although debate persists, recent molecular studies suggest that the eastern wolf is not a gray wolf subspecies, nor the result of gray wolf/coyote hybridization. Eastern wolves were more likely a distinct species, C. lycaon, prior to the eastward spread of coyotes in the late 1800s. However, contemporary interbreeding exits between C. lycaon to both C. lupus and C. latrans over much of its present range complicating its present taxonomic characterization. While hybridization may be reducing the taxonomic distinctiveness of C. lycaon, it should not necessarily be viewed as negative influence. Hybridization may be enhancing the adaptive potential of eastern wolves, allowing them to more effectively exploit available resources in rapidly changing environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号