共查询到20条相似文献,搜索用时 15 毫秒
1.
VCIP135, a novel essential factor for p97/p47-mediated membrane fusion,is required for Golgi and ER assembly in vivo 总被引:8,自引:0,他引:8
Uchiyama K Jokitalo E Kano F Murata M Zhang X Canas B Newman R Rabouille C Pappin D Freemont P Kondo H 《The Journal of cell biology》2002,159(5):855-866
NSF and p97 are ATPases required for the heterotypic fusion of transport vesicles with their target membranes and the homotypic fusion of organelles. NSF uses ATP hydrolysis to dissociate NSF/SNAPs/SNAREs complexes, separating the v- and t-SNAREs, which are then primed for subsequent rounds of fusion. In contrast, p97 does not dissociate the p97/p47/SNARE complex even in the presence of ATP. Now we have identified a novel essential factor for p97/p47-mediated membrane fusion, named VCIP135 (valosin-containing protein [VCP][p97]/p47 complex-interacting protein, p135), and show that it binds to the p97/p47/syntaxin5 complex and dissociates it via p97 catalyzed ATP hydrolysis. In living cells, VCIP135 and p47 are shown to function in Golgi and ER assembly. 相似文献
2.
In mammalian cells, the inheritance of the Golgi apparatus into the daughter cells during each cycle of cell division is mediated by a disassembly and reassembly process, and this process is precisely controlled by phosphorylation and ubiquitination. VCIP135 (valosin-containing protein p97/p47 complex–interacting protein, p135), a deubiquitinating enzyme required for p97/p47-mediated postmitotic Golgi membrane fusion, is phosphorylated at multiple sites during mitosis. However, whether phosphorylation directly regulates VCIP135 deubiquitinase activity and Golgi membrane fusion in the cell cycle remains unknown. We show that, in early mitosis, phosphorylation of VCIP135 by Cdk1 at a single residue, S130, is sufficient to inactivate the enzyme and inhibit p97/p47-mediated Golgi membrane fusion. At the end of mitosis, VCIP135 S130 is dephosphorylated, which is accompanied by the recovery of its deubiquitinase activity and Golgi reassembly. Our results demonstrate that phosphorylation and ubiquitination are coordinated via VCIP135 to control Golgi membrane dynamics in the cell cycle. 相似文献
3.
Cytosolic proteins that participate in membrane traffic are assumed to be recruited from the cytosol onto specific membrane sites where they perform their function, and then released into cytosol before rebinding to catalyze another round of transport. To examine whether the ER to Golgi transport factor p115 recycles through release into a cytosolic pool, we formed heterokaryons between rat NRK and simian COS-7 cells and examined the dynamics of rat p115 transfer from the rat to the simian portion of the heterokaryon. The heterokaryons shared a common cytosolic pool, as shown by the efficient relocation of a cytosolic green fluorescent protein (GFP) from the COS-7 to the NRK part of the heterokaryon. Unexpectedly, even 24 h after cell fusion, rat p115 did not redistribute to the COS-7 part of the heterokaryon. This was not due to the inability of the rat p115 to associate with simian membranes since rat p115 expressed in COS-7 cells was efficiently targeted to and associated with simian Golgi complex. Furthermore, rat p115 associated with heterologous simian membranes after the NRK and COS-7 Golgi fused into a single chimeric structure. Our results indicate that p115 is not freely diffusible in intact cells and might remain tethered to membranes throughout its life cycle. These findings suggest that p115, and perhaps other cytosolic proteins involved in membrane traffic, recycle not by being released into cytosol, but in association with recycling membranes. 相似文献
4.
p47, a p97-binding protein, functions in Golgi membrane fusion together with p97 and VCIP135, another p97-binding protein. We have succeeded in creating p47 with a point mutation, F253S, which lacks p97-binding affinity. p47 mapping experiments revealed that p47 had two p97-binding regions and the F253S mutation occurred in the first p97-binding site. p47(F253S) could not form a complex with p97 and did not caused any cisternal regrowth in an in vitro Golgi reassembly assay. In addition, mutation corresponding to the p47 F253S mutation in p37 and ufd1 also abolished their binding ability to p97.
Structured summary
MINT-7987189, MINT-7987207, MINT-7987303: p47 (uniprotkb:O35987) binds (MI:0407) to p97 (uniprotkb:Q01853) by pull down (MI:0096)MINT-7987226: p97 (uniprotkb:P46462) binds (MI:0407) to p47 (uniprotkb:O35987) by pull down (MI:0096)MINT-7987348: p97 (uniprotkb:P46462) physically interacts (MI:0915) with Ufd1 (uniprotkb:P70362) by pull down (MI:0096)MINT-7987264: p97 (uniprotkb:P46462) and p47 (uniprotkb:O35987) bind (MI:0407) by competition binding (MI:0405)MINT-7987326: p97 (uniprotkb:P46462) binds (MI:0407) to p37 (uniprotkb:Q0KL01) by pull down (MI:0096) 相似文献5.
Yayoi Kaneko Kyohei Shimoda Rafael Ayala Yukina Goto Silvia Panico Xiaodong Zhang Hisao Kondo 《The EMBO journal》2021,40(9)
p97ATPase‐mediated membrane fusion is required for the biogenesis of the Golgi complex. p97 and its cofactor p47 function in soluble N‐ethylmaleimide‐sensitive factor (NSF) attachment protein receptor (SNARE) priming, but the tethering complex for p97/p47‐mediated membrane fusion remains unknown. In this study, we identified formiminotransferase cyclodeaminase (FTCD) as a novel p47‐binding protein. FTCD mainly localizes to the Golgi complex and binds to either p47 or p97 via its association with their polyglutamate motifs. FTCD functions in p97/p47‐mediated Golgi reassembly at mitosis in vivo and in vitro via its binding to p47 and to p97. We also showed that FTCD, p47, and p97 form a big FTCD‐p97/p47‐FTCD tethering complex. In vivo tethering assay revealed that FTCD that was designed to localize to mitochondria caused mitochondria aggregation at mitosis by forming a complex with endogenous p97 and p47, which support a role for FTCD in tethering biological membranes in cooperation with the p97/p47 complex. Therefore, FTCD is thought to act as a tethering factor by forming the FTCD‐p97/p47‐FTCD complex in p97/p47‐mediated Golgi membrane fusion. 相似文献
6.
Yuan X Simpson P McKeown C Kondo H Uchiyama K Wallis R Dreveny I Keetch C Zhang X Robinson C Freemont P Matthews S 《The EMBO journal》2004,23(7):1463-1473
p47 is a major adaptor molecule of the cytosolic AAA ATPase p97. The principal role of the p97-p47 complex is in regulation of membrane fusion events. Mono-ubiquitin recognition by p47 has also been shown to be crucial in the p97-p47-mediated Golgi membrane fusion events. Here, we describe the high-resolution solution structures of the N-terminal UBA domain and the central domain (SEP) from p47. The p47 UBA domain has the characteristic three-helix bundle fold and forms a highly stable complex with ubiquitin. We report the interaction surfaces of the two proteins and present a structure for the p47 UBA-ubiquitin complex. The p47 SEP domain adopts a novel fold with a betabetabetaalphaalphabeta secondary structure arrangement, where beta4 pairs in a parallel fashion to beta1. Based on biophysical studies, we demonstrate a clear propensity for the self-association of p47. Furthermore, p97 N binding abolishes p47 self-association, revealing the potential interaction surfaces for recognition of other domains within p97 or the substrate. 相似文献
7.
Subclass-specific localization and trafficking of Arabidopsis p24 proteins in the ER-Golgi interface
We describe a comprehensive analysis of the subcellular localization and in vivo trafficking of Arabidopsis p24 proteins. In Arabidopsis, there are 11 p24 proteins, which fall into only δ and β subfamilies. Interestingly, the δ subfamily of p24 proteins in Arabidopsis is elaborated spectacularly in evolution, which can be grouped into two subclasses: p24δ1 and p24δ2. We found that, although all p24δ proteins possess classic COPII/COPI binding motifs in their cytosolic C-termini, p24δ1 proteins are localized to the endoplasmic reticulum (ER), p24δ2 proteins are localized to both ER and Golgi. Two p24β proteins reside largely in Golgi. Similar to Atp24 (termed p24δ1c in this study), p24δ2d also cycles between the ER and Golgi. Interestingly, coexpression with p24β1 could retain p24δ2d, but not p24δ1d in Golgi. We revealed that the lumenal coiled-coil domain of p24δ2d is required for its steady-state localization in Golgi, probably through its interaction with p24β1. In p24β1, there is no classic COPII or COPI binding motif in its C-terminus. However, the protein also cycles between the ER and Golgi. We found that a conserved RV motif located at the extreme end of the C-terminus of p24β1 plays an important role in its Golgi target. 相似文献
8.
The localization and phosphorylation of p47 are important for Golgi disassembly-assembly during the cell cycle 总被引:5,自引:0,他引:5
Uchiyama K Jokitalo E Lindman M Jackman M Kano F Murata M Zhang X Kondo H 《The Journal of cell biology》2003,161(6):1067-1079
In mammalian cells, the Golgi apparatus is disassembled at the onset of mitosis and reassembled at the end of mitosis. This disassembly-reassembly is generally believed to be essential for the equal partitioning of Golgi into two daughter cells. For Golgi disassembly, membrane fusion, which is mediated by NSF and p97, needs to be blocked. For the NSF pathway, the tethering of p115-GM130 is disrupted by the mitotic phosphorylation of GM130, resulting in the inhibition of NSF-mediated fusion. In contrast, the p97/p47 pathway does not require p115-GM130 tethering, and its mitotic inhibitory mechanism has been unclear. Now, we have found that p47, which mainly localizes to the nucleus during interphase, is phosphorylated on Serine-140 by Cdc2 at mitosis. The phosphorylated p47 does not bind to Golgi membranes. An in vitro assay shows that this phosphorylation is required for Golgi disassembly. Microinjection of p47(S140A), which is unable to be phosphorylated, allows the cell to keep Golgi stacks during mitosis and has no effect on the equal partitioning of Golgi into two daughter cells, suggesting that Golgi fragmentation-dispersion may not be obligatory for equal partitioning even in mammalian cells. 相似文献
9.
Langhans M Marcote MJ Pimpl P Virgili-López G Robinson DG Aniento F 《Traffic (Copenhagen, Denmark)》2008,9(5):770-785
p24 proteins constitute a family of putative cargo receptors that traffic in the early secretory pathway. p24 proteins can be divided into four subfamilies (p23, p24, p25 and p26) by sequence homology. In contrast to mammals and yeast, most plant p24 proteins contain in their cytosolic C-terminus both a dilysine motif in the −3, −4 position and a diaromatic motif in the −7, −8 position. We have previously shown that the cytosolic tail of Arabidopsis p24 proteins has the ability to interact with ARF1 and coatomer (through the dilysine motif) and with COPII subunits (through the diaromatic motif). Here, we establish the localization and trafficking properties of an Arabidopsis thaliana p24 protein ( At p24) and have investigated the contribution of the sorting motifs in its cytosolic tail to its in vivo localization. At p24-red fluorescent protein localizes exclusively to the endoplasmic reticulum (ER), in contrast with the localization of p24 proteins in other eukaryotes, and the dilysine motif is necessary and sufficient for ER localization. In contrast, At p24 mutants lacking the dilysine motif are transported along the secretory pathway to the prevacuolar compartment and the vacuole, although a significant fraction is also found at the plasma membrane. Finally, we have found that ER export of At p24 is COPII dependent, while its ER localization requires COPI function, presumably for efficient Golgi to ER recycling. 相似文献
10.
Otter-Nilsson M Hendriks R Pecheur-Huet EI Hoekstra D Nilsson T 《The EMBO journal》1999,18(8):2074-2083
Much recent work has focussed on the role of membrane-bound components in fusion. We show here that p97 and NSF are sufficient to mediate rapid membrane fusion. Fractionation of cytosol revealed that p97 and its co-factor, p47, constitutes the major fusion activity. This was confirmed by depleting p97 from the cytosol, which resulted in an 80% decrease in fusion. Using purified protein, p97 or NSF was found to be sufficient to mediate rapid fusion in an ATP-dependent manner. A regulatory role was observed for their corresponding co-factors, p47 and alpha-SNAP. When present at a molar ratio half of that of the ATPase, both co-factors increased fusion activity significantly. Intriguingly, at this ratio the ATPase activity of the complex measured in solution was at its lowest, suggesting that the co-factor stabilizes the ATP state. The fusion event involved mixing of both leaflets of the opposing membranes and contents of liposomes. We conclude from these data that p97, NSF and perhaps other related ATPases catalyse rapid and complete fusion between lipid bilayers on opposing membranes. This highlights a new role for p97 and NSF and prompts a re-evaluation of current fusion models. 相似文献
11.
Many endoplasmic reticulum (ER) proteins are known to be localized to the ER by a mechanism called retrieval, which returns the molecules that are exported from the ER to the Golgi apparatus back to the ER. Signals are required to be recognized by this retrieval system. In the work on yeast Saccharomyces cerevisiae, we have demonstrated that transmembrane domains of a subset of ER membrane proteins including Sec12p, Sec71p and Sec63p contain novel ER retrieval signals. For the retrieval of these proteins, a Golgi membrane protein, Rer1p, is essential (Sato et al., Mol. Biol. Cell 6 (1995) 1459–1477; Proc. Natl. Acad. Sci. USA 94 (1997) 9693–9698). To address the role of Rer1p in higher eukaryotes, we searched for homologues of yeast RER1 from Arabidopsis thaliana. We identified three cDNAs encoding Arabidopsis counterparts of Rer1p with an amino acid sequence identity of 39–46% to yeast Rer1p and named AtRER1A, AtRER1B, and AtRER1C1. AtRer1Ap and AtRer1Bp are homologous to each other (85% identity), whereas AtRer1C1p is less similar to AtRer1Ap and AtRer1Bp (about 50%). Genomic DNA gel blot analysis indicates that there are several other AtRER1-related genes, implying that Arabidopsis RER1 constitutes a large gene family. The expression of these three AtRER1 genes is ubiquitous in various tissues but is significantly higher in roots, floral buds and a suspension culture in which secretory activity is probably high. All the three AtRER1 cDNAs complement the yeast rer1 mutant and remedy the defect of Sec12p mislocalization. However, the degree of complementation differs among the three with that of AtRER1C1 being the lowest, again suggesting a divergent role of AtRer1C1p. 相似文献
12.
Chen S Wang J Muthusamy BP Liu K Zare S Andersen RJ Graham TR 《Traffic (Copenhagen, Denmark)》2006,7(11):1503-1517
Drs2p, a P-type adenosine triphosphatase required for a phosphatidylserine (PS) flippase activity in the yeast trans Golgi network (TGN), was first implicated in protein trafficking by a screen for mutations synthetically lethal with arf1 (swa). Here, we show that SWA4 is allelic to CDC50, encoding a membrane protein previously shown to chaperone Drs2p from the endoplasmic reticulum to the Golgi complex. We find that cdc50Delta exhibits the same clathrin-deficient phenotypes as drs2Delta, including delayed transport of carboxypeptidase Y to the vacuole, mislocalization of resident TGN enzymes and the accumulation of aberrant membrane structures. These trafficking defects precede appearance of cell polarity defects in cdc50Delta, suggesting that the latter are a secondary consequence of disrupting Golgi function. Involvement of Drs2p-Cdc50p in PS translocation suggests a role in restricting PS to the cytosolic leaflet of the Golgi and plasma membrane. Annexin V binding and papuamide B hypersensitivity indicate that drs2Delta or cdc50Delta causes a loss of plasma membrane PS asymmetry. However, clathrin and other endocytosis null mutants also exhibit a comparable loss of PS asymmetry, and studies with drs2-ts and clathrin (chc1-ts) conditional mutants suggest that loss of plasma membrane asymmetry is a secondary consequence of disrupting protein trafficking. 相似文献
13.
During telophase, Golgi cisternae are regenerated and stacked from a heterogeneous population of tubulovesicular clusters. A cell-free system that reconstructs these events has revealed that cisternal regrowth requires interplay between soluble factors and soluble N-ethylmaleimide (NEM)-sensitive fusion protein (NSF) attachment protein receptors (SNAREs) via two intersecting pathways controlled by the ATPases, p97 and NSF. Golgi reassembly stacking protein 65 (GRASP65), an NEM-sensitive membrane-bound component, is required for the stacking process. NSF-mediated cisternal regrowth requires a vesicle tethering protein, p115, which we now show operates through its two Golgi receptors, GM130 and giantin. p97-mediated cisternal regrowth is p115-independent, but we now demonstrate a role for p115, in conjunction with its receptors, in stacking p97 generated cisternae. Temporal analysis suggests that p115 plays a transient role in stacking that may be upstream of GRASP65-mediated stacking. These results implicate p115 and its receptors in the initial alignment and docking of single cisternae that may be an important prerequisite for stack formation. 相似文献
14.
Otte S Belden WJ Heidtman M Liu J Jensen ON Barlowe C 《The Journal of cell biology》2001,152(3):503-518
Proteins contained on purified COPII vesicles were analyzed by matrix-assisted laser desorption ionization mass spectrometry combined with database searching. We identified four known vesicle proteins (Erv14p, Bet1p, Emp24p, and Erv25p) and an additional nine species (Yip3p, Rer1p, Erp1p, Erp2p, Erv29p, Yif1p, Erv41p, Erv46p, and Emp47p) that had not been localized to ER vesicles. Using antibodies, we demonstrate that these proteins are selectively and efficiently packaged into COPII vesicles. Three of the newly identified vesicle proteins (Erv29p, Erv41p, and Erv46p) represent uncharacterized integral membrane proteins that are conserved across species. Erv41p and Erv46p were further characterized. These proteins colocalized to ER and Golgi membranes and exist in a detergent-soluble complex that was isolated by immunoprecipitation. Yeast strains lacking Erv41p and/or Erv46p are viable but display cold sensitivity. The expression levels of Erv41p and Erv46p are interdependent such that Erv46p was reduced in an erv41Delta strain, and Erv41p was not detected in an erv46Delta strain. When the erv41Delta or ev46Delta alleles were combined with other mutations in the early secretory pathway, altered growth phenotypes were observed in some of the double mutant strains. A cell-free assay that reproduces transport between the ER and Golgi indicates that deletion of the Erv41p-Erv46p complex influences the membrane fusion stage of transport. 相似文献
15.
ER、bcl-2和p53在鸡与鹌鹑属间杂交种早期胚胎中的mRNA表达 总被引:4,自引:0,他引:4
通过人工授精获得鸡(♂10只)与鹌鹑(♀100只)属间杂交种蛋并同机入孵, 采用Wpkci引物和多重PCR鉴定66~120 h的鸡(♂)与鹌鹑(♀)属间杂交种活胚的性别后, 选取不同时间点雌、雄胚胎共300枚, 以b-actin为内标, 通过RT-PCR分别测定雌激素受体(ER)和细胞凋亡因子(bcl-2、p53)的mRNA相对丰度; 探讨ER、bcl-2和p53对杂交种早期胚胎发育及性别分化的影响。结果表明: (1) 杂交种胚胎ER mRNA 表达在66~84 h期间雌性极显著高于雄性(P<0.01), 由此推测杂交种的性分化时间大致在胚胎发育的66~84 h范围内; (2) bcl-2和p53 的mRNA表达在杂交胚胎发育过程中具有明显的时序性, 说明bcl-2和p53基因对早期杂交胚的发育具有重要的影响。 相似文献
16.
Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115 下载免费PDF全文
Shorter J Beard MB Seemann J Dirac-Svejstrup AB Warren G 《The Journal of cell biology》2002,157(1):45-62
p115 tethers coat protein (COP)I vesicles to Golgi membranes. The acidic COOH-terminal domain of p115 links the Golgins, Giantin on COPI vesicles, to GM130 on Golgi membranes. We now show that a SNARE motif-related domain within p115 stimulates the specific assembly of endogenous Golgi SNAREpins containing the t-SNARE, syntaxin 5. p115 catalyzes the construction of a cognate GOS-28-syntaxin-5 (v-/t-SNARE) complex by first linking the SNAREs to promote their direct interaction. These events are essential for NSF-catalyzed reassembly of postmitotic Golgi vesicles and tubules into mature cisternae. Staging experiments reveal that the linking of Golgins precedes SNAREpin assembly. Thus, p115 coordinates sequential tethering and docking of COPI vesicles by first using long tethers (Golgins) and then short tethers (SNAREs). 相似文献
17.
Sohda M Misumi Y Yoshimura S Nakamura N Fusano T Ogata S Sakisaka S Ikehara Y 《Traffic (Copenhagen, Denmark)》2007,8(3):270-284
The vesicle-tethering protein p115 functions in endoplasmic reticulum-Golgi trafficking. We explored the function of homologous region 2 (HR2) of the p115 head domain that is highly homologous with the yeast counterpart, Uso1p. By expression of p115 mutants in p115 knockdown (KD) cells, we found that deletion of HR2 caused an irregular assembly of the Golgi, which consisted of a cluster of mini-stacked Golgi fragments, and gathered around microtubule-organizing center in a microtubule-dependent manner. Protein interaction analyses revealed that p115 HR2 interacted with Cog2, a subunit of the conserved oligomeric Golgi (COG) complex that is known another putative cis-Golgi vesicle-tethering factor. The interaction between p115 and Cog2 was found to be essential for Golgi ribbon reformation after the disruption of the ribbon by p115 KD or brefeldin A treatment and recovery by re-expression of p115 or drug wash out, respectively. The interaction occurred only in interphase cells and not in mitotic cells. These results strongly suggested that p115 plays an important role in the biogenesis and maintenance of the Golgi by interacting with the COG complex on the cis-Golgi in vesicular trafficking. 相似文献
18.
19.
Brian Caffrey Xing Zhu Alison Berezuk Katharine Tuttle Sagar Chittori Sriram Subramaniam 《The Journal of biological chemistry》2021,297(4)
The human AAA+ ATPase p97, also known as valosin-containing protein, a potential target for cancer therapeutics, plays a vital role in the clearing of misfolded proteins. p97 dysfunction is also known to play a crucial role in several neurodegenerative disorders, such as MultiSystem Proteinopathy 1 (MSP-1) and Familial Amyotrophic Lateral Sclerosis (ALS). However, the structural basis of its role in such diseases remains elusive. Here, we present cryo-EM structural analyses of four disease mutants p97R155H, p97R191Q, p97A232E, p97D592N, as well as p97E470D, implicated in resistance to the drug CB-5083, a potent p97 inhibitor. Our cryo-EM structures demonstrate that these mutations affect nucleotide-driven allosteric activation across the three principal p97 domains (N, D1, and D2) by predominantly interfering with either (1) the coupling between the D1 and N-terminal domains (p97R155H and p97R191Q), (2) the interprotomer interactions (p97A232E), or (3) the coupling between D1 and D2 nucleotide domains (p97D592N, p97E470D). We also show that binding of the competitive inhibitor, CB-5083, to the D2 domain prevents conformational changes similar to those seen for mutations that affect coupling between the D1 and D2 domains. Our studies enable tracing of the path of allosteric activation across p97 and establish a common mechanistic link between active site inhibition and defects in allosteric activation by disease-causing mutations and have potential implications for the design of novel allosteric compounds that can modulate p97 function. 相似文献
20.
Montel V Gardrat F Azanza JL Raymond J 《Biochemistry and molecular biology international》1999,47(3):465-472
Whether hsp90 acts in an ATP-dependent or independent way is of crucial importance for understanding the molecular mechanism of this chaperone and, to day, the involvement of ATP hydrolysis in hsp90 function is still a controversial subject. ATPase activities may be detected in partially purified hsp90's preparations from rabbit muscle. We demonstrate that the major contaminant associated with hsp90 is the p97 fusion protein and that these oligomeric structures are copurifying together with the 20S proteasome and its PA28 activator. Improving the purification procedure permits to separate hsp90 and p97 to homogeneity. Then, our attempts failed to detect any significant ATPase activity in the hsp90 fraction. Thus, p97 would be principally responsible for the ATPase activity detected in partially purified hsp90 preparations from rabbit muscle. 相似文献