首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The division site in both chloroplasts and bacteria is established by the medial placement of the FtsZ ring, a process that is in part regulated by the evolutionarily conserved components of the Min system. We recently showed that mechanosensitive ion channels influence FtsZ ring assembly in both Arabidopsis thaliana chloroplasts and in Escherichia coli; in chloroplasts they do so through the same genetic pathway as the Min system. Here we describe the effect of heterologous expression of the Arabidopsis MS channel homolog MSL2 on FtsZ ring placement in E. coli. We also discuss possible molecular mechanisms by which MS channels might influence chloroplast or bacterial division.  相似文献   

2.
The division of chloroplasts (plastids) is critical for the viability of photosynthetic eukaryotes. Previously we reported on the chloroplast division apparatus, which consists of inner and outer double or triple rings (PD rings). Chloroplasts are assumed to arise from bacterial endosymbionts, while bacterial division is instigated by a bacterial cytokinesis Z-ring protein (FtsZ). Here we present immunofluorescence and electron-microscopic evidence of chloroplast division via complex machinery involving the FtsZ and PD rings in the higher plant Pelargonium zonale Ait. Prior to invagination, the FtsZ protein was attached to a ring at the stromal division site. Following formation of the FtsZ ring, the inner stromal and outer cytosolic PD rings appeared, signifying the initiation of invagination. The FtsZ ring and the PD rings were found at the leading edge of chloroplast constriction throughout division. During chloroplast division, neither the FtsZ nor the inner rings changed width, but the volume of the outer ring gradually increased. We suggest that the FtsZ ring determines the division region, after which the inner and outer PD rings are formed as a lining for the FtsZ ring. With the outer ring providing the motivating force, the FtsZ and inner PD rings ultimately decompose to their base components.  相似文献   

3.
FtsZ ring formation at the chloroplast division site in plants   总被引:15,自引:0,他引:15  
Among the events that accompanied the evolution of chloroplasts from their endosymbiotic ancestors was the host cell recruitment of the prokaryotic cell division protein FtsZ to function in chloroplast division. FtsZ, a structural homologue of tubulin, mediates cell division in bacteria by assembling into a ring at the midcell division site. In higher plants, two nuclear-encoded forms of FtsZ, FtsZ1 and FtsZ2, play essential and functionally distinct roles in chloroplast division, but whether this involves ring formation at the division site has not been determined previously. Using immunofluorescence microscopy and expression of green fluorescent protein fusion proteins in Arabidopsis thaliana, we demonstrate here that FtsZ1 and FtsZ2 localize to coaligned rings at the chloroplast midpoint. Antibodies specific for recognition of FtsZ1 or FtsZ2 proteins in Arabidopsis also recognize related polypeptides and detect midplastid rings in pea and tobacco, suggesting that midplastid ring formation by FtsZ1 and FtsZ2 is universal among flowering plants. Perturbation in the level of either protein in transgenic plants is accompanied by plastid division defects and assembly of FtsZ1 and FtsZ2 into filaments and filament networks not observed in wild-type, suggesting that previously described FtsZ-containing cytoskeletal-like networks in chloroplasts may be artifacts of FtsZ overexpression.  相似文献   

4.
FtsZ1 and FtsZ2 are phylogenetically distinct homologues of the tubulin-like bacterial cell division protein FtsZ that play major roles in the initiation and progression of plastid division in plant cells. Both proteins are components of a mid-plastid ring, the Z-ring, which functions as a contractile ring on the stromal surface of the chloroplast IEM (inner envelope membrane). FtsZ1 and FtsZ2 have been shown to interact, but their in vivo biochemical properties are largely unknown. To gain insight into the in vivo biochemical relationship between FtsZ1 and FtsZ2, in the present study we investigated their molecular levels in wild-type Arabidopsis thaliana plants and endogenous interactions in Arabidopsis and pea. Quantitative immunoblotting and morphometric analysis showed that the average total FtsZ concentration in chloroplasts of 3-week-old Arabidopsis plants is comparable with that in Escherichia coli. FtsZ levels declined as plants matured, but the molar ratio between FtsZ1 and FtsZ2 remained constant at approx. 1:2, suggesting that this stoichiometry is regulated and functionally important. Density-gradient centrifugation, native gel electrophoresis, gel filtration and co-immunoprecipitation experiments showed that a portion of the FtsZ1 and FtsZ2 in Arabidopsis and pea chloroplasts is stably associated in a complex of approximately 200-245 kDa. This complex also contains the FtsZ2-interacting protein ARC6 (accumulation and replicatioin of chloroplasts 6), an IEM protein, and analysis of density-gradient fractions suggests the presence of the FtsZ1-interacting protein ARC3. Based on the mid-plastid localization of ARC6 and ARC3 and their postulated roles in promoting and inhibiting chloroplast FtsZ polymer formation respectively, we hypothesize that the FtsZ1-FtsZ2-ARC3-ARC6 complex represents an unpolymerized IEM-associated pool of FtsZ that contributes to the dynamic regulation of Z-ring assembly and remodelling at the plastid division site in vivo.  相似文献   

5.
We examined the effects of phosphate enrichment on chloroplasts of the unicellular green alga Nannochloris bacillaris Naumann. The doubling time of cells was similar in phosphate‐limited (no β‐glycerophosphate) and phosphate‐enriched (2 mM β‐glycerophosphate) media. The lengths of cells and chloroplasts were similar, regardless of phosphate concentration. The relationship between the ring formation of the prokaryote‐derived chloroplast division protein FtsZ and phosphate concentration was examined using indirect fluorescent antibody staining. The number of FtsZ rings increased as the phosphate concentration of the medium increased. Multiple FtsZ rings were formed in cells in phosphate‐enriched medium; up to six FtsZ rings per chloroplast were observed. The number of FtsZ rings increased as the chloroplast grew. The FtsZ ring located near the center of the chloroplast had the strongest fluorescence. The FtsZ ring at the relative center of all FtsZ rings was used for division. Plastid division rings did not multiply in phosphate‐enriched culture. The chloroplast DNA content was 2.3 times greater in phosphate‐enriched than in phosphate‐limited culture and decreased in cells cultured in phosphate‐enriched medium containing 5‐fluorodeoxyuridine (FdUr). In the presence of FdUr, only one FtsZ ring formed, even under phosphate enrichment. This finding suggests that excessive chloroplast DNA replication induces multiple FtsZ ring formation in phosphate‐enriched culture. We propose a multiple FtsZ ring formation model under phosphate enrichment.  相似文献   

6.
Chloroplasts have retained the bacterial FtsZ for division, whereas mitochondria lack FtsZ except in some lower eukaryotes. Instead, mitochondrial division involves a dynamin-related protein, suggesting that chloroplasts retained the bacterial division system, whereas a dynamin-based system replaced the bacterial system in mitochondria during evolution. In this study, we identified a novel plant-specific group of dynamins from the primitive red alga Cyanidioschyzon merolae. Synchronization of chloroplast division and immunoblot analyses showed that the protein (CmDnm2) associates with the chloroplast only during division. Immunocytochemical analyses showed that CmDnm2 appears in cytoplasmic patches just before chloroplast division and is recruited to the cytosolic side of the chloroplast division site to form a ring in the late stage of division. The ring constricts until division is complete, after which it disappears. These results show that a dynamin-related protein also participates in chloroplast division and that its behavior differs from that of FtsZ and plastid-dividing rings that form before constriction at the site of division. Combined with the results of a recent study of mitochondrial division in Cyanidioschyzon, our findings led us to hypothesize that when first established in lower eukaryotes, mitochondria and chloroplasts divided using a very similar system that included the FtsZ ring, the plastid-dividing/mitochondrion-dividing ring, and the dynamin ring.  相似文献   

7.
Replication of chloroplasts is essential for achieving and maintaining optimal plastid numbers in plant cells. The plastid division machinery contains components of both endosymbiotic and host cell origin, but little is known about the regulation and molecular mechanisms that govern the division process. The Arabidopsis mutant arc6 is defective in plastid division, and its leaf mesophyll cells contain only one or two grossly enlarged chloroplasts. We show here that arc6 chloroplasts also exhibit abnormal localization of the key plastid division proteins FtsZ1 and FtsZ2. Whereas in wild-type plants, the FtsZ proteins assemble into a ring at the plastid division site, chloroplasts in the arc6 mutant contain numerous short, disorganized FtsZ filament fragments. We identified the mutation in arc6 and show that the ARC6 gene encodes a chloroplast-targeted DnaJ-like protein localized to the plastid envelope membrane. An ARC6-green fluorescent protein fusion protein was localized to a ring at the center of the chloroplasts and rescued the chloroplast division defect in the arc6 mutant. The ARC6 gene product is related closely to Ftn2, a prokaryotic cell division protein unique to cyanobacteria. Based on the FtsZ filament morphology observed in the arc6 mutant and in plants that overexpress ARC6, we hypothesize that ARC6 functions in the assembly and/or stabilization of the plastid-dividing FtsZ ring. We also analyzed FtsZ localization patterns in transgenic plants in which plastid division was blocked by altered expression of the division site-determining factor AtMinD. Our results indicate that MinD and ARC6 act in opposite directions: ARC6 promotes and MinD inhibits FtsZ filament formation in the chloroplast.  相似文献   

8.
Chloroplasts of the unicellular green alga Nannochloris bacillaris Naumann cultured under nutrient‐enriched conditions have multiple rings of FtsZ, a prokaryote‐derived chloroplast division protein. We previously reported that synthesis of excess chloroplast DNA and formation of multiple FtsZ rings occur simultaneously. To clarify the role of multiple FtsZ rings in chloroplast division, we investigated chloroplast DNA synthesis and ring formation in cells cultured under various culture conditions. Cells transferred from a nutrient‐enriched medium to an inorganic medium in the light showed a drop in cell division rate, a reduction in chloroplast DNA content, and changes in the shape of chloroplast nucleoids as cells divided. We then examined DNA synthesis by immunodetecting BrdU incorporated into DNA strands using the anti‐BrdU antibody. BrdU‐labeled nuclei were clearly observed in cells 48 h after transfer into the inorganic medium, while only weak punctate signals were visible in the chloroplasts. In parallel, the number of FtsZ rings decreased from 6 to only 1. When the cells were transferred from an inorganic medium to a nutrient‐enriched medium, the number of cells increased only slightly in the first 12 h after transfer; after this time, however, they started to divide more quickly and increased exponentially. Chloroplast nucleoids changed from punctate to rod‐like structures, and active chloroplast DNA synthesis and FtsZ ring formation were observed. On the basis of our results, we conclude that multiple FtsZ ring assembly and chloroplast DNA duplication under nutrient‐rich conditions facilitate chloroplast division after transfer to oligotrophic conditions without further duplication of chloroplast DNA and formation of new FtsZ rings.  相似文献   

9.
Consistent with their bacterial origin, chloroplasts and primitive mitochondria retain a FtsZ ring for division. However, chloroplasts and mitochondria have lost most of the proteins required for bacterial division other than FtsZ and certain homologues of the Min proteins, but they do contain plastid and mitochondrion dividing rings, which were recently shown to be distinct from the FtsZ ring. Moreover, recent studies have revealed that rings of the eukaryote-specific dynamin-related family of GTPases regulate the division of chloroplasts and mitochondria, and these proteins emerged early in eukaryotic evolution. These findings suggest that the division of chloroplasts and primitive mitochondria involve very similar systems, consisting of an amalgamation of rings from bacteria and eukaryotes.  相似文献   

10.

Background

Cell division in Bacillus subtilis takes place precisely at midcell, through the action of Noc, which prevents division from occurring over the nucleoids, and the Min system, which prevents cell division from taking place at the poles. Originally it was thought that the Min system acts directly on FtsZ, preventing the formation of a Z-ring and, therefore, the formation of a complete cytokinetic ring at the poles. Recently, a new component of the B. subtilis Min system was identified, MinJ, which acts as a bridge between DivIVA and MinCD.

Methodology/Principal Findings

We used fluorescence microscopy and molecular genetics to examine the molecular role of MinJ. We found that in the absence of a functional Min system, FtsA, FtsL and PBP-2B remain associated with completed division sites. Evidence is provided that MinCDJ are responsible for the failure of these proteins to localize properly, indicating that MinCDJ can act on membrane integral components of the divisome.

Conclusions/Significance

Taken together, we postulate that the main function of the Min system is to prevent minicell formation adjacent to recently completed division sites by promoting the disassembly of the cytokinetic ring, thereby ensuring that cell division occurs only once per cell cycle. Thus, the role of the Min system in rod-shaped bacteria seems not to be restricted to an inhibitory function on FtsZ polymerization, but can act on different levels of the divisome.  相似文献   

11.
BACKGROUND: The continuity of chloroplasts is maintained by division of pre-existing chloroplasts. Chloroplasts originated as bacterial endosymbionts; however, the majority of bacterial division factors are absent from chloroplasts and the eukaryotic host has added several new components. For example, the ftsZ gene has been duplicated and modified, and the Min system has retained MinE and MinD but lost MinC, acquiring at least one new component ARC3. Further, the mechanism has evolved to include two members of the dynamin protein family, ARC5 and FZL, and plastid-dividing (PD) rings were most probably added by the eukaryotic host. SCOPE: Deciphering how the division of plastids is coordinated and controlled by nuclear-encoded factors is key to our understanding of this important biological process. Through a number of molecular-genetic and biochemical approaches, it is evident that FtsZ initiates plastid division where the coordinated action of MinD and MinE ensures correct FtsZ (Z)-ring placement. Although the classical FtsZ antagonist MinC does not exist in plants, ARC3 may fulfil this role. Together with other prokaryotic-derived proteins such as ARC6 and GC1 and key eukaryotic-derived proteins such as ARC5 and FZL, these proteins make up a sophisticated division machinery. The regulation of plastid division in a cellular context is largely unknown; however, recent microarray data shed light on this. Here the current understanding of the mechanism of chloroplast division in higher plants is reviewed with an emphasis on how recent findings are beginning to shape our understanding of the function and evolution of the components. CONCLUSIONS: Extrapolation from the mechanism of bacterial cell division provides valuable clues as to how the chloroplast division process is achieved in plant cells. However, it is becoming increasingly clear that the highly regulated mechanism of plastid division within the host cell has led to the evolution of features unique to the plastid division process.  相似文献   

12.
Potato virus Y (PVY) is an important plant virus and causes great losses every year. Viral infection often leads to abnormal chloroplasts. The first step of chloroplast division is the formation of FtsZ ring (Z-ring), and the placement of Z-ring is coordinated by the Min system in both bacteria and plants. In our lab, the helper-component proteinase (HC-Pro) of PVY was previously found to interact with the chloroplast division protein NtMinD through a yeast two-hybrid screening assay and a bimolecular fluorescence complementation (BiFC) assay in vivo. Here, we further investigated the biological significance of the NtMinD/HC-Pro interaction. We purified the NtMinD and HC-Pro proteins using a prokaryotic protein purification system and tested the effect of HC-Pro on the ATPase activity of NtMinD in vitro. We found that the ATPase activity of NtMinD was reduced in the presence of HC-Pro. In addition, another important chloroplast division related protein, NtMinE, was cloned from the cDNA of Nicotiana tabacum. And the NtMinD/NtMinE interaction site was mapped to the C-terminus of NtMinD, which overlaps the NtMinD/HC-Pro interaction site. Yeast three-hybrid assay demonstrated that HC-Pro competes with NtMinE for binding to NtMinD. HC-Pro was previously reported to accumulate in the chloroplasts of PVY-infected tobacco and we confirmed this result in our present work. The NtMinD/NtMinE interaction is very important in the regulation of chloroplast division. To demonstrate the influence of HC-Pro on chloroplast division, we generated HC-Pro transgenic tobacco with a transit peptide to retarget HC-Pro to the chloroplasts. The HC-Pro transgenic plants showed enlarged chloroplasts. Our present study demonstrated that the interaction between HC-Pro and NtMinD interfered with the function of NtMinD in chloroplast division, which results in enlarged chloroplasts in HC-Pro transgenic tobacco. The HC-Pro/NtMinD interaction may cause the formation of abnormal chloroplasts in PVY-infected plants.  相似文献   

13.
Chloroplasts are photosynthetic organelles derived from endosymbiotic cyanobacteria during evolution. Dramatic changes occurred during the process of the formation and evolution of chloroplasts, including the large-scale gene transfer from chloroplast to nucleus. However, there are still many essential characters remaining. For the chloroplast division machinery, FtsZ proteins, Ftn2, SulA and part of the division site positioning system—MinD and MinE are still conserved. New or at least partially new proteins, such as FtsZ family proteins FtsZ1 and ARC3, ARC6H, ARC5, PDV1, PDV2 and MCD1, were introduced for the division of chloroplasts during evolution. Some bacterial cell division proteins, such as FtsA, MreB, Ftn6, FtsW and FtsI, probably lost their function or were gradually lost. Thus, the chloroplast division machinery is a dynamically evolving structure with both conservation and innovation.  相似文献   

14.
Maple J  Vojta L  Soll J  Møller SG 《EMBO reports》2007,8(3):293-299
In plants, chloroplast division is an integral part of development, and these vital organelles arise by binary fission from pre-existing cytosolic plastids. Chloroplasts arose by endosymbiosis and although they have retained elements of the bacterial cell division machinery to execute plastid division, they have evolved to require two functionally distinct forms of the FtsZ protein and have lost elements of the Min machinery required for Z-ring placement. Here, we analyse the plastid division component accumulation and replication of chloroplasts 3 (ARC3) and show that ARC3 forms part of the stromal plastid division machinery. ARC3 interacts specifically with AtFtsZ1, acting as a Z-ring accessory protein and defining a unique function for this family of FtsZ proteins. ARC3 is involved in division site placement, suggesting that it might functionally replace MinC, representing an important advance in our understanding of the mechanism of chloroplast division and the evolution of the chloroplast division machinery.  相似文献   

15.
Plant FtsZ (filamentous temperature-sensitive Z) proteins are regarded as descendants of prokaryotic cell division proteins. We could show previously that four FtsZ isoforms of the moss Physcomitrella patens assemble into, and interact in, distinct structures inside the chloroplasts and in the cytosol. Their organisation and localisation patterns indicate an involvement in chloroplast and cell division and in the maintenance of chloroplast shape and integrity. The cellular processes of chloroplast division and maintenance of chloroplast shape were disturbed either by application of the beta-lactam antibiotic ampicillin or by a mutation that presumably affects signal transduction of the plant hormone cytokinin. When cells of these plants were analysed microscopically, there was no indication that cytosolic functions of FtsZ proteins were affected. Furthermore, FtsZ proteins continued to build three-dimensional plastoskeleton networks, even in considerably enlarged or malformed chloroplasts. On the other hand, macrochloroplast formation promoted the localisation of FtsZ proteins in filaments that emanate from the plastids and, therefore, most likely represent stromules. Annular FtsZ structures that are regarded as essential components of the division apparatus were absent from macrochloroplasts of ampicillin-treated cells. Thus, the distribution of FtsZ proteins after inhibition of chloroplast division further strengthens our hypothesis on the functions of distinct isoforms. In addition, the results provide further insight into the regulation of protein targeting and dynamics of plastoskeletal elements.  相似文献   

16.
Chloroplasts are photosynthetic organelles derived from endosymbiotic cyanobacteria during evolution.Dramatic changes occurred during the process of the formation and evolution of chloroplasts,including the large-scale gene transfer from chloroplast to nucleus.However,there are still many essential characters remaining.For the chloroplast division machinery,FtsZ proteins,Ftn2,SulA and part of the division site positioning system- MinD and MinE are still conserved.New or at least partially new proteins,such as FtsZ family proteins FtsZl and ARC3,ARC6H,ARC5,PDV1,PDV2 and MCD1,were introduced for the division of chloroplasts during evolution.Some bacterial cell division proteins,such as FtsA,MreB,Ftn6,FtsW and Ftsl,probably lost their function or were gradually lost.Thus,the chloroplast division machinery is a dynamically evolving structure with both conservation and innovation.  相似文献   

17.

Background  

In E. coli, the Min operon (MinCDE) plays a key role in determining the site of cell division. MinE oscillates from the middle to one pole or another to drive the MinCD complex to the end of the cell. The MinCD complex prevents FtsZ ring formation and the subsequent cell division at cell ends. In Arabidopsis thaliana, a homologue of MinD has been shown to be involved in the positioning of chloroplast division site.  相似文献   

18.
The arc3 (accumulation and replication of chloroplast) mutant of Arabidopsis thaliana has a small number of abnormally large chloroplasts in the cell, suggesting that chloroplast division is arrested in the mutant and ARC3 has an important role in the initiation of chloroplast division. To elucidate the role of ARC3, first we identified the ARC3 gene, and determined the location of ARC3 protein during chloroplast division because the localization and spatial orientation of such division factors are vital for correct chloroplast division. Sequencing analysis showed that ARC3 was a fusion of the prokaryotic FtsZ and part of the eukaryotic phosphatidylinositol-4-phosphate 5-kinase (PIP5K) genes. The PIP5K-homologous region of ARC3 had no catalytic domain but a membrane-occupation-and-recognition-nexus (MORN) repeat motif. Immunofluorescence microscopy, Western blotting analysis and in vitro chloroplast import and protease protection assays revealed that ARC3 protein was soluble, and located on the outer surface of the chloroplast in a ring-like structure at the early stage of chloroplast division. Prokaryotes have one FtsZ as a gene for division but have no ARC3 counterparts, the chimera of FtsZ and PIP5K, suggesting that the ARC3 gene might have been generated from FtsZ as another division factor during the evolution of chloroplast by endosymbiosis.  相似文献   

19.
BACKGROUND: Chloroplast division in plant cells occurs by binary fission, yielding two daughter plastids of equal size. Previously, we reported that two Arabidopsis homologues of FtsZ, a bacterial protein that forms a cytokinetic ring during cell division, are essential for plastid division in plants, and may be involved in the formation of plastid-dividing rings on both the stromal and cytosolic surfaces of the chloroplast envelope membranes. In bacteria, positioning of the FtsZ ring at the center of the cell is mediated in part by the protein MinD. Here, we identified AtMinD1, an Arabidopsis homologue of MinD, and investigated whether positioning of the plastid-division apparatus at the plastid midpoint might involve a mechanism similar to that in bacteria. RESULTS: Sequence analysis and in vitro chloroplast import experiments indicated that AtMinD1 contains a transit peptide that targets it to the chloroplast. Transgenic Arabidopsis plants with reduced AtMinD1 expression exhibited variability in chloroplast size and number and asymmetrically constricted chloroplasts, strongly suggesting that the plastid-division machinery is misplaced. Overexpression of AtMinD1 inhibited chloroplast division. These phenotypes resemble those of bacterial mutants with altered minD expression. CONCLUSIONS: Placement of the plastid-division machinery at the organelle midpoint requires a plastid-targeted form of MinD. The results are consistent with a model whereby assembly of the division apparatus is initiated inside the chloroplast by the plastidic form of FtsZ, and suggest that positioning of the cytosolic components of the apparatus is specified by the position of the plastidic components.  相似文献   

20.
Chloroplasts have evolved from a cyanobacterial endosymbiont and their continuity has been maintained by chloroplast division, which is performed by the constriction of a ring-like division complex at the division site. It is believed that the synchronization of the endosymbiotic and host cell division events was a critical step in establishing a permanent endosymbiotic relationship, such as is commonly seen in existing algae. In the majority of algal species, chloroplasts divide once per specific period of the host cell division cycle. In order to understand both the regulation of the timing of chloroplast division in algal cells and how the system evolved, we examined the expression of chloroplast division genes and proteins in the cell cycle of algae containing chloroplasts of cyanobacterial primary endosymbiotic origin (glaucophyte, red, green, and streptophyte algae). The results show that the nucleus-encoded chloroplast division genes and proteins of both cyanobacterial and eukaryotic host origin are expressed specifically during the S phase, except for FtsZ in one graucophyte alga. In this glaucophyte alga, FtsZ is persistently expressed throughout the cell cycle, whereas the expression of the nucleus-encoded MinD and MinE as well as FtsZ ring formation are regulated by the phases of the cell cycle. In contrast to the nucleus-encoded division genes, it has been shown that the expression of chloroplast-encoded division genes is not regulated by the host cell cycle. The endosymbiotic gene transfer of minE and minD from the chloroplast to the nuclear genome occurred independently on multiple occasions in distinct lineages, whereas the expression of nucleus-encoded MIND and MINE is regulated by the cell cycle in all lineages examined in this study. These results suggest that the timing of chloroplast division in algal cell cycle is restricted by the cell cycle-regulated expression of some but not all of the chloroplast division genes. In addition, it is suggested that the regulation of each division-related gene was established shortly after the endosymbiotic gene transfer, and this event occurred multiple times independently in distinct genes and in distinct lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号