首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extent of biodegradation of petroleum by two marine bacterial isolates was found to increase when the organisms were grown in dialysis culture. This suggests that inhibitory products are formed during growth on petroleum. Fatty acids were produced by both organisms and were present in the dialyzate (dialyzable material). Fatty acids and crude oil were found to have a synergistic toxic effect. Short-chain acids were more toxic than longer-chain ones.  相似文献   

2.
A biosurfactant-producing and hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa USM-AR2, was used to assist conventional distillation. Batch cultivation in a bioreactor gave a biomass of 9.4 g L(-1) and rhamnolipid concentration of 2.4 g L(-1) achieved after 72 h. Biosurfactant activity (rhamnolipid) was detected by the orcinol assay, emulsification index and drop collapse test. Pretreatment of crude oil TK-1 and AG-2 with a culture of P. aeruginosa USM-AR2 that contains rhamnolipid was proven to facilitate the distillation process by reducing the duration without reducing the quality of petroleum distillate. It showed a potential in reducing the duration of the distillation process, with at least 2- to 3-fold decreases in distillation time. This is supported by GC-MS analysis of the distillate where there was no difference between compounds detected in distillate obtained from treated or untreated crude oil. Calorimetric tests showed the calorie value of the distillate remained the same with or without treatment. These two factors confirmed that the quality of the distillate was not compromised and the incubation process by the microbial culture did not over-degrade the oil. The rhamnolipid produced by this culture was the main factor that enhanced the distillation performance, which is related to the emulsification of hydrocarbon chains in the crude oil. This biotreatment may play an important role to improve the existing conventional refinery and distillation process. Reducing the distillation times by pretreating the crude oil with a natural biosynthetic product translates to energy and cost savings in producing petroleum products.  相似文献   

3.
Five microorganisms, three bacteria and two yeasts, capable of degrading Tapis light crude oil were isolated from oil-contaminated soil in Bangkok, Thailand. Soil enrichment culture was done by inoculating the soil in mineral salt medium with 0.5% v/v Tapis crude oil as the sole carbon source. Crude oil biodegradation was measured by gas chromatography method. Five strains of pure microorganisms with petroleum degrading ability were isolated: three were bacteria and the other two were yeasts. Candida tropicalis strains 7Y and 15Y were identified as efficient oil degraders. Strain 15Y was more efficient, it was able to reduce 87.3% of the total petroleum or 99.6% of n-alkanes within the 7-day incubation period at room temperature of 25 ± 2 °C.  相似文献   

4.
ABSTRACT

Petroleum tar produced during the processing of crude oil is one of the earth's major pollutants. The potential of certain soil bacteria in the biodegradation of petroleum tar was assessed to develop an active indigenous bacterial consortium for bioremediation of petroleum tar–polluted sites of Assam, India. In vitro enrichment cultures of five Pseudomonas spp. were found to metabolize petroleum tar. The Fourier transform infrared (FTIR) analyses of the enrichment cultures revealed the presence of the functional groups, viz., –OH, –CHO, C?O, and –COOH, which provided evidence for the biodegradation of petroleum tar. Further, gas chromatography–flame ionization detection (GC-FID) analyses revealed complete degradation of low-molecular-weight hydrocarbons, and the subsequent appearance of some additional peaks reflected the formation of intermediate metabolites during the degradation of petroleum tar. A mixed culture with 0.1% Tween 80 as a surfactant exhibited almost complete degradation in contrast to the degradation by the mixed culture without Tween 80. This confirmed the effect of a surfactant for acceleration of the biodegradation process of petroleum tar.  相似文献   

5.
Accelerated biodegradation of petroleum hydrocarbon waste   总被引:4,自引:0,他引:4  
Conventional landfarming approaches to bioremediation of refinery and other petroleum sludges are not acceptable environmentally and are banned in most North American jurisdictions. While initial bioreactor-based systems for treatment of these sludges required batch-cycle process-times of 1–3 months, an accelerated process has now been developed which can be completed in 10–12 days. In this process, up to 99% of total petroleum hydrocarbons are degraded and the sludges are converted from hazardous to non-hazardous according to the United States EPA's toxicity characteristic leachate procedure criteria. Understanding and exploiting mechanisms to improve hydrocarbon accession to the degrading microorganisms was a key development component of the process. Contrasting physiological mechanisms were observed for different component organisms of the mixed culture with respect to their associations with the hydrocarbon substrate; and the beneficial effects of using surfactants were demonstrated. The mixed culture used in the process exhibited a capacity for high-rate degradation of volatile organic carbons and the potential use of the culture as a liquid biofilter was demonstrated. The culture was also effective as an inoculant for the bioaugmentation of total petroleum hydrocarbon-contaminated soil and as a de-emulsifier of oilfield emulsions and could transform some other environmental contaminants which are not predominant components of crude oil.  相似文献   

6.
Summary Crude oil degradation was observed in water samples from three sites along the course of a polluted stream in Lagos, Nigeria. Consistent increase and decrease in the total viable counts (TVCs) of indigenous organisms occurred in the test and control experiments, respectively. Enrichments of the water samples with crude oil resulted in the isolation of nine bacteria belonging to seven genera. A mixed culture was developed from the assemblage of the nine species. The defined microbial consortium utilized a wide range of pure HCs including cycloalkane and aromatic HCs. Utilization of crude oil and petroleum cuts, i.e., kerosene and diesel resulted in an increase in TVC (till day 10) concomitant with decreases in pH and residual oil concentration. Crude oil, diesel and kerosene were degraded by 88, 85 and 78%, respectively, in 14 days. Substrate uptake studies with axenic cultures showed that growth was not sustainable on either cyclohexane or aromatics while degradation of the petroleum fractions fell below 67% in spite of extended incubation period (20 day). From the GC analysis of recovered oil, while reductions in peaks of n-alkane fractions and in biomarkers namely n-C17/pristane and n-C18/phytane ratios were observed in culture fluids of pure strains, complete removal of all the HC components of kerosene, diesel and crude oil including the isoprenoids was obtained with the consortium within 14 days.  相似文献   

7.
The biodegradation of hydrocarbon pollutants in open systems is limited by the availability of a utilizable nitrogen source. This limitation can be overcome by using uric acid. Enrichment cultures grown on crude oil-uric acid media yielded mixed and pure cultures that degraded petroleum. In a simulated open system, uric acid bound to crude oil and was available for bacterial growth and petroleum biodegradation.  相似文献   

8.
原油中氨基酸的研究   总被引:2,自引:0,他引:2  
研究了辽河、克拉玛依、胜利三个油田六个遴选的原油中氨基酸 ,表明氨基酸是它们普遍存在的成份 ,其总含量为 1 1~ 1 1 4m g/ kg。其中苯丙氨酸、缬氨酸、蛋氨酸、谷氨酸和天门冬氨酸是所研究的原油中含量较大且共有的成分  相似文献   

9.
In this study, chemical compositions of fatty oils and bioactivity of crude extracts from Holotrichia diomphalia larvae as Chinese materia medica were investigated for the first time. The chemical compositions of the fatty oils were obtained by two different methods and determined by GC/MS. In total, the petroleum ether extract produced 21 compounds (96.3%) while the supercritical fluid extract produced six compounds (99.53%) for identification. The effect of petroleum ether and other crude extracts on Pyricularia oryzae was also examined. Results indicated that ethanol and petroleum ether extracts had excellent antifungal activities. These findings demonstrated that fatty oils from H. diomphalia larvae had great potential to be used as a source for natural health products.  相似文献   

10.
Phospholipids are major components of bacterial membrane. Furthermore, the growth in vitro on xenobiotics such as n-alkanes, aromatic compounds or alkanols bring about to a bacterial membrane adaptive response. Concerning this work, we studied the membrane lipid composition of a hydrocarbon-degrading gram-positive bacterium (Corynebacterium sp.) on a soluble substrate and we detected four different phospholipid classes: phosphatidylglycerol, phosphatidylinositol, cardiolipin and acyl phosphatidylglycerol. In addition, a study of the lipid composition was performed after an in vitro culture on either pure n-alkane or crude oil. The growths on such hydrophobic substrates showed major qualitative and quantitative modifications. In the case of a growth on either heneicosane or crude oil, an increase of odd-numbered fatty acids was observed. Furthermore, the phospholipid polar head group composition was highly influenced by the crude oil addition. These modifications were, respectively, interpreted as the consequence of hydrocarbon assimilation and membrane fluidity adaptation. Finally, Corynebacterium sp. was taken back on the initial ammonium acetate substrate in order to determine its restoration abilities after a petroleum contamination.  相似文献   

11.
K Kunii  S Nakamura  C Sato  S Fukuoka 《Microbios》2001,105(412):153-161
The Gram-negative bacterium Acinetobacter species ODB-L2 produces lipopolysaccharide (LPS) in culture broth. The LPS could not be purified by conventional extraction methods using 90% phenol/water or 90% phenol/chloroform/petroleum ether mixed solvent. Extraction was achieved employing an admixture of chloroform, ethanol, and 4 M HCI solution. The LPS was purified from dissolving the crude extracts in 90% phenol and LPS sediment formed by addition of methanol. The LPS was characterized by chemical, biochemical, and physicochemical methods as rough form 3-hydroxydodecanoic acid rich LPS.  相似文献   

12.
小桐子提取物除草活性的生物测定   总被引:2,自引:1,他引:2  
为全面了解小桐子(Jatropha curcas L. )提取物的除草活性,以萝卜(Raphanus sativus L. )、苋(Amaranthus tricolor L. )、苏丹草[Sorghum sudanense (Piper) Stapf]和黑麦草(Lolium perenne L. )为实验材料,对小桐子果壳和枝叶的水、乙醇(体积分数95%)、正丁醇、乙酸乙酯、氯仿和石油醚粗提物的除草活性进行了生物测定,并从中筛选出抑制作用最强的水粗提物进行进一步的活性组分分离及其除草活性的生物测定.测定结果显示,小桐子果壳和枝叶的6种溶剂提取物(10 g·L~(-1))对供试的4种植物幼苗的根长和茎高均有不同程度的抑制作用,其中水粗提物和乙醇(体积分数95%)粗提物的抑制作用较强,且水粗提物对供试的4种植物幼苗的根长和茎高的抑制作用均在75%以上,显著高于其他溶剂粗提物(P<0.05);石油醚粗提物的抑制作用最小,均在10%以下.小桐子果壳和枝叶水粗提物的石油醚、氯仿、乙酸乙酯、正丁醇和水萃取物(10 g·L~(-1))对萝卜和苏丹草幼苗的根长和茎高均有不同程度的抑制作用,其中水、正丁醇和乙酸乙酯萃取物的抑制作用显著高于氯仿和石油醚萃取物,抑制率均在70%以上;水萃取物的抑制作用最强,抑制率均在80%以上;石油醚萃取物的抑制作用最小,抑制率均在10%以下.研究结果表明,小桐子果壳和枝叶的水粗提物具有一定的除草活性,其有效成分为极性较大的组分.  相似文献   

13.
The pollution of soil and the subsurface environment by crude oil spill and petroleum products spill is a major concern around the world. The aim of this research was to investigate the ability of fungi isolated from Tehran oil refinery area in removing crude oil and to evaluate their enzymatic activities. Plant root samples were collected from the polluted and control areas, and rhizospheral fungi were isolated and determined using the laboratory methods and taxonomic keys. Seven fungal species were isolated and then cultured in potato dextrose agar (PDA) media containing 0–15% (v/v) crude oil. Oil removal was determined after a one-month growth of fungal colonies and then compared with the control media. The results showed that the studied fungi were able to remove crude oil from the media. The highest removal efficiency was observed in Aspergillus sp. Total protein content and enzymatic activity (of peroxidase and catalase) increased with increasing crude oil pollution. The highest enzymatic activity was evaluated in Aspergillus sp. growing in media containing 15% petroleum and the lowest activity was found in non-polluted groups. Results showed that there is a direct correlation between oil-removing potency and enzymatic activity. Aspergillus sp. showed the highest enzyme activity and also the highest petroleum removal efficiency.  相似文献   

14.
The rapidly growing biodiesel industry has created a scenario, where it is both important and challenging to deal with the enormous amount of crude glycerol generated as an inherent by-product. With every 100 gallons of biodiesel produced, 5-10 gallons of the crude glycerol is left behind containing several impurities which makes its disposal difficult. The objective of the present investigation was to evaluate the impact of biodiesel-derived crude glycerol upon microbial growth and production of 1,3-propanediol by Citrobacter freundii. Five different grades of crude glycerol (obtained from biodiesel preparation using jatropha, soybean, sunflower, rice bran and linseed oils) were used. Crude glycerol caused significant inhibition of microbial growth and subsequently 1,3-propanediol production as compared to pure glycerol. Therefore, a process was developed for the treatment of crude glycerol using solvents before fermentation wherein four different non-polar solvents were examined yielding different grades of pretreated glycerol. Subsequently, the potential toxic effects of pretreated glycerol on the growth and 1,3-propanediol production by C. freundii was evaluated. In case of petroleum ether-treated crude glycerol obtained from jatropha & linseed and hexane-treated crude glycerol obtained from rice bran, the yields obtained were comparable to the pure glycerol. Similarly, soybean-derived glycerol gave comparable results after treatment with either hexane or petroleum ether.  相似文献   

15.
记述了南海北部湾盆地涠西南凹陷涠洲油田流沙港组下部储油层所储原油中萃取出的孢子花粉化石28属58种及藻类化石2属3种。通过对比孢子花粉及藻类化石的油源,确定了含油区的油源岩;并根据各类孢型母体植物的古生态特征探讨了油源岩的形成环境。结果表明,中始新统至下渐新统流沙港组暗色泥质岩是北部湾盆地的主力油源岩,中上渐新统涠洲组暗色泥质岩也是该区的油源岩;该区油源岩形成于亚热带温暖潮湿气候下的湖泊沉积环境。  相似文献   

16.
固定化脂肪酶催化毛油合成生物柴油   总被引:5,自引:0,他引:5  
本研究开发了一种用石油醚提取毛油的工艺,研究了以提取的毛油和甲醇为原料,用固定化Candida sp.99-125脂肪酶催化合成脂肪酸甲酯(FAMEs)的可行性。同时考察了磷脂对固定化酶活性、反应起始速率、固定化酶使用批次的影响以及毛油和精炼油对固定化酶使用批次等的影响。研究结果表明,用磷脂质量分数为1%的石油醚悬液浸泡过的脂肪酶比仅用石油醚浸泡过的脂肪酶初始转酯化速率显著下降。当大豆油中无磷脂时,15min时FAMEs的产率为26.2%;磷脂质量分数为5%时,FAMEs降为12.4%。当大豆油中磷脂质量分数小于1%时,固定化酶使用10个批次,FAMEs产率无明显变化。固定化脂肪酶催化石油醚浸提得到的大豆和小桐子毛油,经过10个批次反应FAMEs产率都保持在70%以上,该固定化酶直接催化毛油生产生物柴油具有良好的工业化前景。  相似文献   

17.
银杏叶粗提物对小菜蛾的拒避和生长发育抑制作用   总被引:14,自引:1,他引:13  
银杏叶不同溶剂的粗提物对小菜蛾幼虫均有较强的拒食作用。其中在选择性取食时,乙醚提取物对小菜蛾幼虫的拒食中浓度(AFC50)最低,即拒食作用最强,其次分别为石油醚和乙醇提取物,氯仿提取物的拒食作用最低;在非选择性条件时,乙醚提取物的拒食作用最强,其次分别为乙醇和石油醚提取物,氯仿提取物的拒食作用最低。各抽取物对小菜蛾幼虫的生长发育具有明显的抑制作用,取食各提取物处理的叶片对小菜蛾幼虫的体重增加显低于对照,但各提取物之间差异明显。各提取物对小菜蛾成虫产卵的拒避作用均不明显。  相似文献   

18.
《农业工程》2021,41(5):416-423
The use of microorganisms for remediation and restoration of hydrocarbons contaminated soils is an effective and economic solution. The current study aims to find out efficient telluric filamentous fungi to degrade petroleum hydrocarbons pollutants. Six fungal strains were isolated from used engine (UE) oil contaminated soil. Fungi were screened for their ability to degrade crude oil, diesel and UE oil using 2.6-dichlorophenol indophenol (DCPIP). Two isolates were selected, identified and registered at NCBI as Aspergillus ustus HM3.aaa and Purpureocillium lilacinum HM4.aaa. Fungi were tested for their tolerance to different concentration of petroleum oils using radial growth diameter assay. Hydrocarbons removal percentage was evaluated gravimetrically. The degradation kinetic of crude oil was studied at a time interval of 10 days. A.ustus was the most tolerant fungi to high concentration of petroleum oils in solid medium. Quantitative analysis showed that crude oil was the most degraded oil by both isolate; P. lilacinium and A. ustus removed 44.55% and 30.43% of crude oil, respectively. The two fungi were able to degrade, respectively, 27.66 and 21.27% of diesel and 14.39 and 16.00% of UE oil. As compared to the controls, these fungi accumulated high biomass in liquid medium with all petroleum oils. Likewise, crude oil removal rate constant (K) and half-lives (t1/2) were 0.02 day−1, 34.66 day and 0.015 day−1, 46.21 day for P. lilacinium and A. ustus, respectively. The selected fungi appear interesting for petroleum oils biodegradation and their application for soil bioremediation require scale-up studies.  相似文献   

19.
Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.  相似文献   

20.
This work reports on the immobilization and performance of a hydrocarbon-degrading microorganism on polyurethane foam (PUF) in the bioremediation of petroleum hydrocarbons. The ability of four different microorganisms to immobilize on PUF and to degrade various petroleum products (Arabian light crude (ALC), Al-Shaheen crude (ASC), diesel and oil slops) was assessed by measuring the n-alkane fraction remaining in the petroleum products over time. A Rhodococcus sp. (designated as F92) had the highest number of immobilized viable cells (10(9) cells per cm3 PUF) and a maximum attachment efficiency of 90% on PUF of a density of 14 kg/m3. Scanning electron microscopy showed the presence of extracellular structures that could play an important role in the immobilization of F92 on PUF. Analysis by GC-MS revealed that both free and immobilized F92 cells were able to degrade approximately 90% of the total n-alkanes in the petroleum products tested within 1 week at 30 degrees C. Rhodococcus sp. F92 was efficiently immobilized onto PUF and the immobilized cells were able to degrade a variety of petroleum products such as ALC, ASC, diesel and oil slops. The results suggest the potential of using PUF-immobilized Rhodococcus sp. F92 to bioremediate petroleum hydrocarbons in an open marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号