首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro evaluation of leptin fragments activity on the ob receptor.   总被引:1,自引:0,他引:1  
In an attempt to identify regions in the leptin molecule responsible for its bioactivity, we tested six related-leptin peptide fragments denoted: Ac-hLEP(23-47)-NH(2) (I), Ac-hLEP(48-71)-NH(2) (II), Ac-hLEP(72-88)-NH(2) (III), Ac-hLEP(92-115)-NH(2) (IV), Ac-[Ser(117)]-hLEP(116-140)-NH(2) (V), Ac-hLEP(141-164)-NH(2) (VI) and their correspondent disulfide bridged dimer forms. The activity of the fragments was evaluated in comparision to leptin, by their ability to interact with leptin receptor using a cytosensor microphysiometer. Our results indicated that the fragments IV and V and [D-Leu(4)]-OB(3) and its human sequence analog were recognized by leptin receptor present in HP-75 cells, in agreement with the results obtained by other workers, validating that this region of the molecule contain the functional epitope of the leptin molecule.  相似文献   

2.
alpha-Melanotropin (alpha-MSH) retains less than 1% of its original activity after a 60 min incubation with 10% rat brain homogenate. [Nle4,D-Phe7]-alpha-MSH is nonbiodegradable in rat serum (240 min incubation) and still maintains 10% of its original activity in 10% rat brain homogenate (240 min incubation). The related fragment analogue, Ac-[Nle4,D-Phe7]-alpha-MSH4-10-NH2, retains 50% of its activity after a 240 min incubation in rat brain homogenate, whereas Ac-[Nle4,D-Phe7]-alpha-MSH4-11-NH2 is totally resistant to inactivation by rat brain homogenate. Both [Nle4,D-Phe7]-fragments are resistant to degradation by rat serum, but [Nle4]-alpha-MSH, Ac-[Nle4]-alpha-MSH4-10-NH2 and Ac-[Nle4]-alpha-MSH4-11-NH2 are rapidly inactivated under both conditions. The cyclic melanotropin, [Cys4,Cys10]-alpha-MSH, is inactivated in rat brain homogenate as is the shorter Ac-[Cys4,Cys10]-alpha-MSH4-10-NH2 analogue, but neither cyclic melanotropin is inactivated upon incubation in serum from rats. Ac-[Cys4,D-Phe7,Cys10]-alpha-MSH4-10-NH2 is resistant to inactivation by either rat serum or a brain homogenate. Some of these melanotropin analogues may provide useful probes for the localization and characterization of putative melanotropin receptors in both the central nervous system and peripheral tissues.  相似文献   

3.
Ac-[Nle4, D-Phe7]-alpha-MSH4-9-NH2 and Ac-[Nle4]-alpha-MSH4-9-NH2, fragment analogs of the tridecapeptide, alpha-melanocyte stimulating hormone (alpha-MSH, alpha-melanotropin), were synthesized. The potency and prolonged activity of the analogs were compared to alpha-MSH in several melanotropin bioassays. The D-Phe-containing hexapeptide was 10 times more active than alpha-MSH in stimulating melanoma tyrosinase activity. This analog was also 10-fold more potent than alpha-MSH in the lizard skin bioassay and about 10-fold less active in the frog skin bioassay. The melanotropic activity of Ac-[Nle4, D-Phe7]-alpha-MSH4-9-NH2 was considerably prolonged compared to alpha-MSH in each of the bioassays. These results demonstrate that the structural requirements for superpotency and prolonged activity of [Nle4, D-Phe7]-substituted analogs reside within this hexapeptide sequence.  相似文献   

4.
We have prepared several alpha-melanotropin (alpha-MSH) analogues with tyrosine substituted for methionine at the 4-position and determined their melanotropic activities on the frog (Rana pipiens), lizard (Anolis carolinensis) and S-91 (Cloudman) mouse melanoma adenylate cyclase bioassays. The potencies of Ac-[Tyr4]-alpha-MSH4-10-NH2 and Ac-[Tyr4]-alpha-MSH4-11-NH2 were compared with alpha-MSH and with their corresponding methionine and norleucine substituted analogues. The Tyr-4 analogues were found to be less active than the Nle-4 analogues on both the frog and lizard assays. Ac-[Tyr4]-alpha-MSH4-10-NH2 was found to be less active than Ac-[Tyr4]-alpha-MSH4-11-NH2 on the lizard bioassay, but more active than the longer fragment on the frog skin assay. Ac-[Tyr4]-alpha-MSH4-10-NH2 exhibited extremely prolonged biological activity on frog skin, but not on lizard skin, while the melanotropic activity of Ac-[Tyr4]-alpha-MSH4-11-NH2 was rapidly reversed on both assay systems. The increased potency of Ac-[Tyr4]-alpha-MSH4-10-NH2 over Ac-[Tyr4]-alpha-MSH4-11-NH2 on frog melanocytes may be related to the fact that the shorter 4-10 analogue exhibits prolonged biological activity. Interestingly, it was found that both Tyr-4 analogues were partial agonists on the mouse melanoma adenylate cyclase bioassay, and stimulated the enzyme to only about 50% of the maximal activity of alpha-MSH. We reported previously that replacement of L-Phe-7 by its D-enantiomer in [Nle4]-alpha-MSH and its Nle-4 containing analogues resulted in peptides with increased potency and in some instances prolonged activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
The single-crystal structures of three collagen-like host-guest peptides, (Pro-Pro-Gly)(4) -Hyp-Yaa-Gly-(Pro-Pro-Gly)(4) [Yaa = Thr, Val, Ser; Hyp = (4R)-4-hydroxyproline] were analyzed at atomic resolution. These peptides adopted a 7/2-helical structure similar to that of the (Pro-Pro-Gly)(9) peptide. The stability of these triple helices showed a similar tendency to that observed in Ac-(Gly-Hyp-Yaa)(10) -NH(2) (Yaa = Thr, Val, Ser) peptides. On the basis of their detailed structures, the differences in the triple-helical stabilities of the peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence were explained in terms of van der Waals interactions and dipole-dipole interaction between the Hyp residue in the X position and the Yaa residue in the Y position involved in the Hyp(X):Yaa(Y) stacking pair. This idea also explains the inability of Ac-(Gly-Hyp-alloThr)(10) -NH(2) and Ac-(Gly-Hyp-Ala)(10) -NH(2) peptides to form triple helices. In the Hyp(X):Thr(Y), Hyp(X):Val(Y), and Hyp(X):Ser(Y) stacking pairs, the proline ring of the Hyp residues adopts an up-puckering conformation, in agreement with the residual preference of Hyp, but in disagreement with the positional preference of X in the Gly-Xaa-Yaa sequence.  相似文献   

7.
Two side-chain cyclic lactam analogues of the 4-11 fragment of alpha-melanocyte-stimulating hormone (alpha-MSH), Ac-[Nle4,D-Orn5,Glu8]alpha-MSH4-11-NH2 and Ac-[Nle4,D-Orn5,D-Phe7,Glu8]alpha-MSH4-11-NH2, were prepared on p-methylbenzhydrylamine resin by using a combination of N alpha-Boc and N alpha-Fmoc synthetic strategies with diphenyl phosphorazidate mediated cyclization. The melanotropin activities of these two analogues were examined and compared relative to those of alpha-MSH, Ac-[Nle4]alpha-MSH4-11-NH2, and Ac-[Nle4,D-Phe7]alpha-MSH4-11-NH2. In the frog (Rana pipiens) skin bioassay, the L-Phe7 17-membered ring cyclic analogue was slightly more potent than the linear Ac-[Nle4]alpha-MSH4-11-NH2 and exhibited prolonged melanotropic bioactivity (greater than or equal to 4 h). In this same assay, the D-Phe7 cyclic analogue was more than 100-fold less potent than the L-Phe cyclic analogue and was 10,000 times less potent than linear Ac-[Nle4,D-Phe7]alpha-MSH4-11-NH2. In the lizard skin (Anolis carolinensis) bioassay, the L-Phe7 cyclic analogue was 100-fold less potent than Ac-[Nle4]alpha-MSH4-11-NH2, while the D-Phe7 cyclic analogue was 10,000-fold less potent than both Ac-[Nle4]alpha-MSH4-11-NH2 and the D-Phe7 linear derivative Ac-[Nle4,D-Phe7]alpha-MSH4-11-NH2. The solution conformation of these two cyclic analogues in dimethyl sulfoxide-d6 was examined by 1D and 2D 500-MHz 1H NMR spectroscopy. Our analysis suggests an H bond stabilized C10 (or C13) turn for the D-Phe7 cyclic structure while the L-Phe7 analogue is more conformationally flexible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
M E Hiltz  A Catania  J M Lipton 《Peptides》1991,12(4):767-771
D-Amino acid substitutions in the anti-inflammatory/antipyretic Ac-alpha-MSH(11-13)-NH2 tripeptide of Ac-alpha-MSH(1-13)-NH2 were made and the altered peptides were injected in mice treated with picryl chloride. Ear swelling, measured 3 and 6 h after application of the irritant, was reduced by IP injections of Ac-alpha-MSH(11-13)-NH2, in confirmation of previous observations. Ac-[D-Lys11]alpha-MSH(11-13)-NH2 effected similar anti-inflammatory activity but Ac-[D-Pro12]alpha-MSH(11-13)-NH2 was inactive. Ac-[D-Val13]alpha-MSH(11-13)-NH2 and Ac-[D-Lys11,D-Val13]alpha-MSH(11-13)-NH2 generally had greater anti-inflammatory activity than the parent tripeptide molecule; the dose-response relations exhibited the bell-shaped characteristics seen previously with MSH peptides. The results indicate that the L-Pro12 is essential for the anti-inflammatory activity of Ac-alpha-MSH(11-13)-NH2 whereas the L-Lys11 is not. D-Val13 substitution increased anti-inflammatory activity approximately four-fold over Ac-alpha-MSH(11-13)-NH2. These results provide new structure-activity relationships of the anti-inflammatory Ac-alpha-MSH(11-13)-NH2 molecule. The data support the developing idea that alpha-MSH and its COOH-terminal fragments modulate host responses, perhaps by antagonizing the actions of cytokines.  相似文献   

9.
10.
11.
12.
Leptin is a cytokine that regulates food intake, energy expenditure and hematopoiesis. Based on the tridimensional structure of the human leptin molecule, six fragments have been synthesized, (Ac-Lep23–47-NH2, [LEP1]; Ac-Lep48–71-NH2, [LEP2]; Ac-Lep72–88-NH2, [LEP3]; Ac-Lep92–115-NH2, [LEP4], Ac-[Ser117]-Lep116–140-NH2, [LEP5] and Ac-Lep141–164-NH2, [LEP6]), and their effects on hematopoiesis were evaluated. The mice were treated with 1 mg/kg LEP5 for 3 days. The mature and primitive hematopoietic populations were quantified. We observed that the mature populations from the bone marrow and spleen were not affected by LEP5. However, the peptide caused at least a two-fold increase in the number of hematopoietic stem cells, the most primitive population of the bone marrow. Additionally, the number of granulocyte/macrophage colony-forming units produced by bone marrow cells in methylcellulose also increased by 40% after treatment with LEP5, and the leptin receptor was activated. These results show that the leptin fragment LEP5 is a positive modulator of the in vivo expansion of hematopoietic stem cells.  相似文献   

13.
Hindbrain projections of oxytocin neurons in the parvocellular paraventricular nucleus (pPVN) are hypothesized to transmit leptin signaling from the hypothalamus to the nucleus of the solitary tract (NTS), where satiety signals from the gastrointestinal tract are received. Using immunocytochemistry, we found that an anorectic dose of leptin administered into the third ventricle (3V) increased twofold the number of pPVN oxytocin neurons that expressed Fos. Injections of fluorescent cholera toxin B into the NTS labeled a subset of pPVN oxytocin neurons that expressed Fos in response to 3V leptin. Moreover, 3V administration of an oxytocin receptor antagonist, [d-(CH2)5,Tyr(Me)2,Orn8]-vasotocin (OVT), attenuated the effect of leptin on food intake over a 0.5- to 4-h period (P < 0.05). Furthermore, to determine whether oxytocin contributes to leptin's potentiation of Fos activation within NTS neurons in response to CCK, we counted the number of Fos-positive neurons in the medial NTS (mNTS) after 3V administration of OVT before 3V leptin and intraperitoneal CCK-8 administration. OVT resulted in a significant 37% decrease (P < 0.05) in the potentiating effect of leptin on CCK activation of mNTS neuronal Fos expression. Furthermore, 4V OVT stimulated 2-h food intake by 43% (P < 0.01), whereas 3V OVT at the same dose was ineffective. These findings suggest that release of oxytocin from a descending pPVN-to-NTS pathway contributes to leptin's attenuation of food intake by a mechanism that involves the activation of pPVN oxytocin neurons by leptin, resulting in increased sensitivity of NTS neurons to satiety signals.  相似文献   

14.
The collagen triple helix is one of the most abundant protein motifs in animals. The structural motif of collagen is the triple helix formed by the repeated sequence of -Gly-Xaa-Yaa-. Previous reports showed that H-(Pro-4(R)Hyp-Gly)(10)-OH (where '4(R)Hyp' is (2S,4R)-4-hydroxyproline) forms a trimeric structure, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not form a triple helix. Compared with H-(Pro-Pro-Gly)(10)-OH, the melting temperature of H-(Pro-4(R)Hyp-Gly)(10)-OH is higher, suggesting that 4(R)Hyp in the Yaa position has a stabilizing effect. The inability of triple helix formation of H-(4(R)Hyp-Pro-Gly)(10)-OH has been explained by a stereoelectronic effect, but the details are unknown. In this study, we synthesized a peptide that contains 4(R)Hyp in both the Xaa and the Yaa positions, that is, Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) and compared it to Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2), and Ac-(Gly-4(R)Hyp-Pro)(10)-NH(2). Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) showed a polyproline II-like circular dichroic spectrum in water. The thermal transition temperatures measured by circular dichroism and differential scanning calorimetry were slightly higher than the values measured for Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2) under the same conditions. For Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), the calorimetric and the van't Hoff transition enthalpy DeltaH were significantly smaller than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). We postulate that the denatured states of the two peptides are significantly different, with Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) forming a more polyproline II-like structure instead of a random coil. Two-dimensional nuclear Overhauser effect spectroscopy suggests that the triple helical structure of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) is more flexible than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). This is confirmed by the kinetics of amide (1)H exchange with solvent deuterium of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), which is faster than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). The higher transition temperature of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), can be explained by the higher trans/cis ratio of the Gly-4(R)Hyp peptide bonds than that of the Gly-Pro bonds, and this ratio compensates for the weaker interchain hydrogen bonds.  相似文献   

15.
16.
17.
Human pancreatic growth hormone releasing factor (1-29)-amide [hpGRF (1-29)-NH2] and the following analogs: [D-Tyr-1]-hpGRF(1-29)-NH2, [D-Ala-2]-hpGRF(1-29)-NH2, [D-Asp-3]-hpGRF(1-29)-NH2, and [N-Ac-Tyr-1]-hpGRF (1-29)-NH2 were synthesized using solid phase methodology and tested for their ability to stimulate growth hormone (GH) secretion in the rat and the pig in vivo. [D-Ala-2]-hpGRF (1-29)-NH2 was approximately 50 times more potent than the parent molecule in eliciting GH secretion in the rat. The other analogs were less active, but all were more potent than the 1-29 amide in the rat. [D-Tyr-1]-hpGRF(1-29)-NH2 was 10 times more potent, [D-Asp-3]-hpGRF(1-29)-NH2 7 times more potent, and the acetylated molecule approximately 12 times more potent than hpGRF(1-29)-NH2.  相似文献   

18.
The highly potent cyclic analogue of alpha-MSH, Ac-[Cys4,Cys10]-alpha-MSH4-13-NH2, was structurally modified in position 4. Four analogues were prepared and their biological activities in the in vitro frog and lizard skin bioassays were determined. It was shown that removing the terminal acetylamino group to give [Mpa4,Cys10]-alpha-MSH4-13-NH2 resulted in little change in the biological activity, but a change in the stereochemistry of cysteine in position 4 to give Ac-[D-Cys4,Cys10[-alpha-MSH4-a3-NH2 led to a small decrease of activity in both bioassays. Decreasing the size of the intramolecular ring by removing one methylene group to give [Maa2,Cys10]-alpha-MSH4-13-NH2, resulted in an analogue with lower activities in both assays (about 3 times in the lizard and 500 times in the frog), and increasing the size of the righ by methylene group to give Ac-[Hcy4,Cys10]-alpha-MSH4-13-NH2 led to much lower activities in the lizard system and similar effects were seen upon decreasing the ring size in the frog skin assay.  相似文献   

19.
Hydroxylation of proline residues in the Yaa position of the Gly-Xaa-Yaa repeated sequence to 4(R)-hydroxyproline is essential for the formation of the collagen triple helix. A small number of 3(S)-hydroxyproline residues are present in most collagens in the Xaa position. Neither the structural nor a biological role is known for 3(S)-hydroxyproline. To characterize the structural role of 3(S)-hydroxyproline, the peptide Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 was synthesized and analyzed by circular dichroism spectroscopy, analytical ultracentrifugation, and 1H nuclear magnetic resonance spectroscopy. At 4 degrees C in water the circular dichroism spectrum indicates that this peptide was in a polyproline-II-like secondary structure with a positive peak at 225 nm similar to Ac-(Gly-Pro-4(R)Hyp)10-NH2. The positive peak at 225 nm almost linearly decreases with increasing temperature to 95 degrees C without an obvious transition. Although the peptide Ac-(Gly-Pro-4(R)Hyp)10-NH2 forms a trimer at 10 degrees C, sedimentation equilibrium experiments indicate that Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 is a monomer in water at 7 degrees C. To study the role of 3(S)-hydroxyproline in the Yaa position, we synthesized Ac-(Gly-Pro-3(S)Hyp)10-NH2. This peptide also does not form a triple helix in water. 1H Nuclear magnetic resonance spectroscopy data (including line widths and nuclear Overhauser effects) are entirely consistent, with neither Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 nor Ac-(Gly-Pro-3(S)Hyp)10-NH2 forming a triple helix in water. Therefore 3(S)-hydroxyproline destabilizes the collagen triple helix in either position. In contrast, when 3(S)-hydroxyproline is inserted as a guest in the highly stable -Gly-Pro-4(R)Hyperepeated host sequence, Ac-(Gly-Pro-4(R)Hyp)3-Gly-3(S)Hyp-4(R)Hyp-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms as stable a trimer (Tm=49.6 degrees C) as Ac-(Gly-Pro-4(R)Hyp)8-Gly-Gly-NH2 (Tm=48.9 degrees C). Given that Ac-(Gly-Pro-4(R)Hyp)3-Gly-4(R)Hyp-Pro-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms a triple helix nearly as stable as the above two peptides (Tm=45.0 degrees C) and the knowledge that Ac-(Gly-4(R)Hyp-Pro)10-NH2 does not form a triple helix, we conclude that the host environment dominates the structure of host-guest peptides and that these peptides are not necessarily accurate predictors of triple helical stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号