首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide elongation factor 3 (EF-3), which is widely present in yeasts and fungi (Eumycota), does not occur in another lower eukaryote, the unicellular protozoan Tetrahymena pyriformis, as was shown by the following findings: (a) there is no activity to satisfy the EF-3 requirement of yeast ribosomes in the post-ribosomal supernatant fraction from Tetrahymena, and (b) the Tetrahymena ribosomes displayed their full capacity for polyphenylalanine synthesis with purified EF-1 alpha and EF-2 alone from either Tetrahymena or yeast, and their activity on the Tetrahymena ribosomes was not further enhanced by the addition of yeast EF-3, in contrast to the case of the yeast ribosomes. However, as a substitute for the ribosome-activated nucleotidase activity of EF-3, Tetrahymena ribosomes were shown to harbor strong, firmly bound ATPase and GTPase activities, which probably involve the same active site. The ribosome-bound ATPase activity was inhibited by a polyclonal antibody raised against yeast EF-3 with the same inactivation profile as that of polyphenylalanine synthesis on Tetrahymena ribosomes, indicating that the ribosomal ATPase plays an essential role in the elongation process on Tetrahymena ribosomes as previously revealed in the yeast system. It was also shown that the ribosomal nucleotidase plays a pivotal role in the elongation cycle in other eukaryotes.  相似文献   

2.
The properties and role in peptide elongation of ATPase intrinsic to rat liver ribosomes were investigated. (i) Rat liver 80S ribosomes showed high ATPase and GTPase activities, whereas the GTPase activity of EF-1alpha and EF-2 was very low. mRNA, aminoacyl-tRNA, and elongation factors alone enhanced ribosomal ATPase activity and in combination stimulated it additively or synergistically. The results suggest that these translational components induce positive conformational changes of 80S ribosomes by binding to different regions of ribosomes. Translation inhibitors, tetracyclin and fusidic acid, inhibited ribosomal ATPase with or without elongational components. (ii) Two ATPase inhibitors, AMP-P(NH)P and vanadate, did not inhibit GTPase activities of EF-1alpha and EF-2 assayed as uncoupled GTPase, but they did inhibit poly(U)-dependent polyphe synthesis of 80S ribosomes. (iii) Effects of AMP-P(NH)P and ATP on poly(U)-dependent polyphe synthesis at various concentrations of GTP were examined. ATP enhanced the activity of polyphe synthesis even at high concentrations of GTP, suggesting a specific role of ATP. At low concentrations of GTP, the extent of inhibition by AMP-P(NH)P was very low, probably owing to the prevention of the reduction of the GTP concentration. (iv) Vanadate inhibited the translocation reaction by high KCl-washed polysomes. These findings together indicate that ribosomal ATPase participates in peptide translation by inducing positive conformational changes of mammalian ribosomes, in addition to its role of chasing tRNA from the E site.  相似文献   

3.
Elongation factor 3 (EF-3) is a unique and essential requirement of the fungal translational apparatus. EF-3 is a monomeric protein with a molecular mass of 116,000. EF-3 is required by yeast ribosomes for in vitro translation and for in vivo growth. The protein stimulates the binding of EF-1 alpha :GTP:aa-tRNA ternary complex to the ribosomal A-site by facilitating release of deacylated-tRNA from the E-site. The reaction requires ATP hydrolysis. EF-3 contains two ATP-binding sequence motifs (NBS). NBSI is sufficient for the intrinsic ATPase function. NBSII is essential for ribosome-stimulated activity. By limited proteolysis, EF-3 was divided into two distinct functional domains. The N-terminal domain lacking the highly charged lysine blocks failed to bind ribosomes and was inactive in the ribosome-stimulated ATPase activity. The C-terminally derived lysine-rich fragment showed strong binding to yeast ribosomes. The purported S5 homology region of EF-3 at the N-terminal end has been reported to interact with 18S ribosomal RNA. We postulate that EF-3 contacts rRNA and/or protein(s) through the C-terminal end. Removal of these residues severely weakens its interaction mediated possibly through the N-terminal domain of the protein.  相似文献   

4.
Three elongation factors, EF-1 alpha, EF-1 beta gamma and EF-2, have been isolated from wheat germ. EF-1 alpha and EF-2 are single polypeptides with molecular weights of approximately 52,000 and 102,000, respectively. The most highly purified preparations of EF-1 beta gamma contain four polypeptides with molecular weights of approximately 48,000, 46,000 and 36,000, 34,000. EF-1 alpha supports poly(U)-directed binding of Phe-tRNA to wheat germ ribosomes and catalyzes the hydrolysis of GTP in the presence of ribosomes, poly(U), and Phe-tRNA. EF-2 catalyzes the hydrolysis of GTP in the presence of ribosomes alone and is ADP-ribosylated by diphtheria toxin to the extent of 0.95 mol of ADP-ribose/mol of EF-2. EF-1 beta gamma decreases the amount of EF-1 alpha required for polyphenylalanine synthesis about 20-fold. EF-1 beta gamma enhances the ability to EF-1 alpha to support the binding of Phe-tRNA to the ribosomes and enhances the GTPase activity of EF-1 alpha. Wheat germ EF-1 alpha, EF-1 beta gamma, and EF-2 support polyphenylalanine synthesis on rabbit reticulocyte ribosomes as well as on yeast ribosomes.  相似文献   

5.
ATPase and GTPase activities of EF-3 were similarly inhibited by various nucleotides including CTP, UTP and four dNTP's. The low specificity of EF-3 was in remarkable contrast with the high specificity of EF-1 alpha and EF-2 directed only to quanine nucleotides. The pH-activity and salt concentration-activity profiles as well as the above inhibition experiments coincidently supported that the same active site functions for ATPase and GTPase of EF-3. The stimulation of poly(Phe) synthesis was not observed with AMPPNP in place of ATP. The stimulation required ATP hydrolysis, probably catalyzed by ATPase of EF-3. Reflecting the low specificity of the ATPase, UTP, dTTP, dATP and dGTP stimulated the poly(Phe) synthesis. EF-3 appears to drive yeast elongation cycle using the energy from ATP hydrolysis by its ATPase without serving for GTP regeneration.  相似文献   

6.
The GTPase activity of purified EF-1 alpha from calf brain has been studied under various experimental conditions and compared with that of EF-Tu. EF-1 alpha displays a much higher GTPase turnover than EF-Tu in the absence of aminoacyl-tRNA (aa-tRNA) and ribosomes (intrinsic GTPase activity); this is due to the higher exchange rate between bound GDP and free GTP. Also the intrinsic GTPase of EF-1 alpha is enhanced by increasing the concentration of monovalent cations, K+ being more effective than NH+4. Differently from EF-Tu, aa-tRNA is much more active than ribosomes in stimulating the EF-1 alpha GTPase activity. However, ribosomes strongly reinforce the aa-tRNA effect. In the absence of aa-tRNA the rate-limiting step of the GTPase turnover appears to be the hydrolysis of GTP, whereas in its presence the GDP/GTP exchange reaction becomes rate-limiting, since addition of EF-1 beta enhances turnover GTPase activity. Kirromycin moderately inhibits the intrinsic GTPase of EF-1 alpha; this effect turns into stimulation when aa-tRNA is present. Addition of ribosomes abolishes any kirromycin effect. The inability of kirromycin to affect the EF-1 alpha/guanine-nucleotide interaction in the presence of ribosomes shows that, differently from EF-Tu, the EF-1 alpha X GDP/GTP exchange reaction takes place on the ribosome.  相似文献   

7.
The stimulatory effect of peptide elongation factor 3 (EF-3), which is uniquely required for the yeast elongation cycle, on the step of binding of aminoacyl-tRNA (AA-tRNA) to ribosomes has been investigated in detail. Yeast EF-1 alpha apparently functions in a stoichiometric manner in the binding reaction of AA-tRNA to the ribosomes. The addition of EF-3 and ATP to this binding system strikingly stimulated the binding reaction, and the stimulated reaction proceeded catalytically with respect to both EF-1 alpha and EF-3, accompanied by ATP hydrolysis, indicating that EF-3 stimulated the AA-tRNA binding reaction by releasing EF-1 alpha from the ribosomal complex, thus recycling it. This binding stimulation by EF-3 was in many respects distinct from that by EF-1 beta gamma. The idea that EF-3 may participate in the regeneration of GTP from ATP and the formed GDP, as indicated by the findings that the addition of EF-3 along with ATP allowed the AA-tRNA binding and Phe polymerization reactions to proceed even in the presence of GDP in place of GTP, was not verified by the results of direct measurement of [32P]GTP formation from [gamma-32P]ATP and GDP under various conditions. Examination of the stability of the bound AA-tRNA disclosed the different binding states of AA-tRNA on ribosomes between in the cases of the complexes formed with EF-1 alpha alone, or factor-independently, and with EF-1 alpha and EF-3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The yeast translational elongation factor 3 (EF-3) stimulates EF-1 alpha-dependent binding of aminoacyl-tRNA by the ribosome. The requirement for EF-3 is unique to fungi; a functional analog has not been found in prokaryotes or other eukaryotes. We have isolated and characterized the structural gene, YEF3, that encodes EF-3. The YEF3 gene is present in one copy/haploid genome and is essential for vegetative growth. DNA sequence analysis revealed that the YEF3 gene contains an open reading frame of 1044 codons. The deduced amino acid sequence contains two repeats of a nucleotide-binding motif, which is similar to the nucleotide-binding consensus sequences of hydrophilic, membrane-associated ATPases. EF-3 catalyzes ATP hydrolysis in a ribosome-dependent manner. A modified assay procedure has been developed that allows measurement of the ATP hydrolytic activity of EF-3 in cell-free extracts without interference by other nucleotide hydrolyase activities. Using this modified assay, we have shown that the wild-type YEF3 gene restores heat stable EF-3 activity in a yeast strain containing a temperature-sensitive EF-3. Introduction of the YEF3 gene on a high copy number plasmid into yeast strains increases the ribosome-dependent ATPase activity. The level of EF-3 protein is also increased 3-5-fold. Elevated EF-3 protein levels did not cause a significant increase in EF-1 alpha and EF-2 protein. Yeast strains containing elevated EF-3 protein levels are more sensitive to the aminoglycoside antibiotics hygromycin and paromomycin. These drugs are known to increase translational errors. This observation suggests that EF-3 may indirectly affect translational accuracy.  相似文献   

9.
Role of yeast elongation factor 3 in the elongation cycle   总被引:7,自引:0,他引:7  
Investigation of the role of the polypeptide chain elongation factor 3 (EF-3) of yeast indicates that EF-3 participates in the elongation cycle by stimulating the function of EF-1 alpha in binding aminoacyl-tRNA (aa-tRNA) to the ribosome. In the yeast system, the binding of the ternary complex of EF-1 alpha.GTP.aa-tRNA to the ribosome is stoichiometric to the amount of EF-1 alpha. In the presence of EF-3, EF-1 alpha functions catalytically in the above mentioned reaction. The EF-3 effect is manifest in the presence of ATP, GTP, or ITP. A nonhydrolyzable analog of ATP does not replace ATP in this reaction, indicating a role of ATP hydrolysis in EF-3 function. The stimulatory effect of EF-3 is, in many respects, distinct from that of EF-1 beta. Factor 3 does not stimulate the formation of a binary complex between EF-1 alpha and GTP, nor does it stimulate the exchange of EF-1 alpha-bound GDP with free GTP. The formation of a ternary complex between EF-1 alpha.GTP.aa-tRNA is also not affected by EF-3. It appears that the only reaction of the elongation cycle that is stimulated by EF-3 is EF-1 alpha-dependent binding of aa-tRNA to the ribosome. Purified elongation factor 3, isolated from a temperature-sensitive mutant, failed to stimulate this reaction after exposure to a nonpermissive temperature. A heterologous combination of ribosomal subunits from yeast and wheat germ manifest the requirement for EF-3, dependent upon the source of the "40 S" ribosomal subunit. A combination of 40 S subunits from yeast and "60 S" from wheat germ showed the stimulatory effect of EF-3 in polyphenylalanine synthesis (Chakraburtty, K., and Kamath, A. (1988) Int. J. Biochem. 20, 581-590). However, we failed to demonstrate the effect of EF-3 in binding aa-tRNA to such a heterologous combination of the ribosomal subunits.  相似文献   

10.
A Crithidia fasciculata 83-kDa protein purified during a separate study of C. fasciculata trypanothione synthetase was shown to have ATPase activity and to belong to the hsp90 family of stress proteins. Because no ATPase activity has previously been reported for the hsp90 class, ATP utilization by C. fasciculata hsp83 was characterized: this hsp83 has an ATPase kcat of 150 min-1 and a Km of 60 microM, whereas the homologous mammalian hsp90 binds ATP but has no ATPase activity. Crithidia fasciculata hsp83 undergoes autophosphorylation on serine and threonine at a rate constant of 3.3 x 10(-3) min-1. Similar analysis was performed on recombinant Trypanosoma cruzi hsp83, and comparable ATPase parameters were obtained (kcat = 100 min-1, Km = 80 microM, kautophosphorylation = 6.3 x 10(-3) min-1). The phosphoenzyme is neither on the ATPase hydrolytic pathway nor does it affect ATPase catalytic efficiency. Both C. fasciculata and T. cruzi hsp83 show up to fivefold stimulation of ATPase activity by peptides of 6-24 amino acids.  相似文献   

11.
The effect of the protein synthesis inhibitor II from barley seeds (Hordeum sp.) on protein synthesis was studied in rabbit reticulocyte lysates. Inhibitor treatment of the lysates resulted in a rapid decrease in amino acid incorporation and an accumulation of heavy polysomes, indicating an effect of the inhibitor on polypeptide chain elongation. The protein synthesis inhibition was due to a catalytic inactivation of the large ribosomal subunit with no effect on the small subparticle. The inhibitor-treated ribosomes were fully active in participating in the EF-1-dependent binding of [14C]phenylalanyl-tRNA to poly(U)-programmed ribosomes in the presence of GTP and the binding of radioactively labelled EF-2 in the presence of GuoPP[CH2]P. Furthermore, the ribosomes were still able to catalyse peptide-bond formation. However, the EF-1- and ribosome-dependent hydrolysis of GTP was reduced by more than 40% in the presence of inhibitor-treated ribosomes, while the EF-2- and ribosome-dependent GTPase remained unaffected. This suggests that the active domains involved in the two different GTPases are non-identical. Treatment of reticulocyte lysates with the barley inhibitor resulted in a marked shift of the steady-state distribution of the ribosomal phases during the elongation cycle as determined by the ribosomal content of elongation factors. Thus, the content of EF-1 increased from 0.38 mol/mol ribosome to 0.71 mol/mol ribosome, whereas the EF-2 content dropped from 0.20 mol/mol ribosome at steady state to 0.09 mol/mol ribosome after inhibitor treatment. The data suggest that the inhibitor reduces the turnover of ribosome-bound ternary EF-1 X GTP X aminoacyl-tRNA complexes during proof-reading and binding of the cognate aminoacyl-tRNA by inhibiting the EF-1-dependent GTPase.  相似文献   

12.
An altered form of the elongation factor 3 (EF-3) has been purified to near homogeneity from a thermolabile yeast mutant ts 13-06. The isolation procedure involved chromatography on DEAE-Sephadex, CM-Sepharose, and hydroxylapatite columns. The final purification of this protein was obtained by affinity chromatography on an ATP-Sepharose column. Because of the extreme lability of the mutant protein, the yield was very poor. Silver stain analysis of the sodium dodecyl sulfate electrophoretograms indicated that the affinity-purified protein was better than 90% pure. From the studies of the physical and biochemical properties, the following characteristics of the purified wild type and the mutant protein have been established. The two proteins were indistinguishable by their molecular weight, amino acid composition, and isoelectric point. Purified mutant EF-3 was rapidly inactivated between 37 and 39 degrees C. Under this condition, wild type EF-3 was completely stable. Ribosome-dependent GTPase and ATPase activities of the mutant EF-3 were heat sensitive; GTPase activity was more labile than the ATPase activity. Mutant EF-3, after exposure to a nonpermissive temperature, failed to stimulate binding of the ternary complex of EF-1 X GTP X aminoacyl-tRNA to ribosome. The wild type protein was fully active under this condition. Other biochemical and physical properties of these two proteins are under current investigation.  相似文献   

13.
During the translocation of the nascent peptide chain from the ribosomal aminoacyl-site to the peptidyl-site, GTP is hydrolyzed by a mechanism dependent on both ribosomes and the elongation factor EF-2. For insight into the mechanism of GTP hydrolysis, we studied the ability of the GTP analogue 5′-p-fluorosulfonylbenzoylguanosine (FSO2BzGuo) to act as an affinity label of the guanine-specific site. Pre-incubation of EF-2 with FSO2BzGuo at increasing concentrations progressively inactivated the EF-2 and ribosome-dependent GTPase activity. Up to 0.5 mM FSO2BzGuo, the inactivation of the GTPase activity was stoichiometrically correlated with the covalent binding of [3H]FSO2BzGuo. Thus, one molecule of covalently bound FSO2BzGuo completely inactivated the GTPase activity of EF-2. Ribosomes or 60-S ribosomal subunits pre-incubated with FSO2BzGuo were not inactivated, consistent with the idea that the GTP hydrolysis involved in the ribosomal translocation takes place on EF-2.  相似文献   

14.
(1) Escherichia coli 70S ribosomes showed intrinsic ATPase and GTPase activities, although they were much lower than those of rat liver ribosomes. The latter activity was higher than the former one. (2) The ATPase activity was inhibited by GTP and GMP-P(NH)P, and the GTPase activity was inhibited by ATP and AMP-P(NH)P, indicating a close relationship between the two enzymes. (3) Elongation components alone or in combination enhanced the ATPase activity, indicating the possible correlation of ribosomal ATPase with elongational components. (4) Vanadate at the concentrations that did not inhibit the GTPase activities of EF-Tu and EF-G, depressed the poly(U)-dependent polyphe synthesis, suggesting that ribosomal ATPase (GTPase) participates in peptide elongation by inducing positive conformational changes of ribosomes required for the attachment of elongational components.  相似文献   

15.
The yeast Pdr5p transporter is a 160 kDa protein that effluxes a large variety of xenobiotic compounds. In this study, we characterize its ATPase activity and demonstrate that it has biochemical features reminiscent of those of other ATP-binding cassette multidrug transporters: a relatively high Km for ATP (1.9 mM), inhibition by orthovanadate, and the ability to specifically bind an azidoATP analogue at the nucleotide-binding domains. Pdr5p-specific ATPase activity shows complete, concentration-dependent inhibition by clotrimazole, which is also known to be a potent transport substrate. Our results indicate, however, that this inhibition is noncompetitive and caused by the interaction of clotrimazole with the transporter at a site that is distinct from the ATP-binding domains. Curiously, Pdr5p-mediated transport of clotrimazole continues at intracellular concentrations of substrate that should eliminate all ATPase activity. Significantly, however, we observed that the Pdr5p has GTPase and UTPase activities that are relatively resistant to clotrimazole. Furthermore, the Km(GTPase) roughly matches the intracellular concentrations of the nucleotide reported for yeast. Using purified plasma membrane vesicles, we demonstrate that Pdr5p can use GTP to fuel substrate transport. We propose that Pdr5p increases its multidrug transport substrate specificity by using more than one nucleotide as an energy source.  相似文献   

16.
The effect of the protein synthesis inhibitor II from barley seeds (Hordeum sp.) on protein synthesis was studied in rabbit reticulocyte lysates. Inhibitor treatment of the lysates resulted in a rapid decrease in amino acid incorporation and an accumulation of heavy polysomes, indicating an effect of the inhibitor on polypeptide chain elongation. The protein synthesis inhibition was due to a catalytic inactivation of the large ribosomal subunit with no effect on the small subparticle. The inhibitor-treated ribosomes were fully active in participating in the EF-1-dependent binding of [14C]phenylalanyl-tRNA to poly(U)-programmed ribosomes in the presence of GTP and the binding of radioactively labelled EF-2 in the presence of GuoPP[CH2]P. Furthermore, the ribosomes were still able to catalyse peptide-bond formation. However, the EF-1- and ribosome-dependent hydrolysis of GTP was reduced by more than 40% in the presence of inhibitor-treated ribosomes, while the EF-2- and ribosome-dependent GTPase remained unaffected. This suggests that the active domains involved in the two different GTPases are non-identical. Treatment of reticulocyte lysates with the barley inhibitor resulted in a marked shift of the steady-state distribution of the ribosomal phases during the elongation cycle as determined by the ribosomal content of elongation factors. Thus, the content of EF-1 increased from 0.38 mol/mol ribosome to 0.71 mol/mol ribosome, whereas the EF-2 content dropped from 0.20 mol/mol ribosome at steady state to 0.09 mol/mol ribosome after inhibitor treatment. The data suggest that the inhibitor reduces the turnover of ribosome-bound ternary EF-1 · GTP · aminoacyl-tRNA complexes during proof-reading and binding of the cognate aminoacyl-tRNA by inhibiting the EF-1-dependent GTPase.  相似文献   

17.
The binding stability of the different nucleotide-dependent and -independent interactions between elongation factor 2 (EF-2) and 80S ribosomes, as well as 60S subunits, was studied and correlated to the kinetics of the EF-2- and ribosome-dependent hydrolysis of GTP. Empty reconstituted 80S ribosomes were found to contain two subpopulations of ribosomes, with approximately 80% capable of binding EF-2.GuoPP[CH2]P with high affinity (Kd less than 10(-9) M) and the rest only capable of binding the factor-nucleotide complex with low affinity (Kd = 3.7 x 10(-7) M). The activity of the EF-2- and 80S-ribosome dependent GTPase did not respond linearly to increasing factor concentrations. At low EF-2/ribosome ratios the number of GTP molecules hydrolyzed/factor molecule was considerably lower than at higher ratios. The low response coincided with the formation of the high-affinity complex. At increasing EF-2/ribosome ratios, the ribosomes capable of forming the high-affinity complex was saturated with EF-2, thus allowing formation of the low-affinity ribosome.EF-2 complex. Simultaneously, the GTPase activity/factor molecule increased, indicating that the low-affinity complex was responsible for activating the GTP hydrolysis. The large ribosomal subunits constituted a homogeneous population that interacted with EF-2 in a low-affinity (Kd = 1.3 x 10(-6) M) GTPase active complex, suggesting that the ribosomal domain responsible for activating the GTPase was located on the 60S subunit. Ricin treatment converted the 80S particles to the type of conformation only capable of interacting with EF-2 in a low-affinity complex. The structural alteration was accompanied by a dramatic increase in the EF-2-dependent GTPase activity. Surprisingly, ricin had no effect on the factor-catalyzed GTP hydrolysis in the presence of 60S subunits alone.  相似文献   

18.
The mechanism of protein synthesis inhibition by the toxic lectins, abrin and ricin, has been studied in crude and in purified cell-free systems from rabbit reticulocytes and Krebs II ascites cells. In crude systems abrin and ricin strongly inhibited protein synthesis from added aminoacyl-tRNA, demonstrating that the toxins act at some point after the charging of tRNA. Supernatant factors and polysomes washed free of elongation factors were treated separately with the toxins and then neutralizing amounts of anti-toxins were added. Recombination experiments between toxin-treated ribosomes and untreated supernatant factors and vice versa showed that the toxin-treated ribosomes had lost most of their ability to support polyphenylalanine synthesis, whereas treatment of the supernatant factors with the toxins did not inhibit polypeptide synthesis. Recombination experiments between toxin-treated isolated 40-S subunits and untreated 60-S subunits and vice versa showed that only when the 60-S subunits had been treated with the toxins was protein synthesis inhibited in the reconstituted system. The incorporation of [3H]puromycin into nascent peptide chains was unaffected by the toxins, indicating that the peptidyl transferase is not inhibited. Both the EF-1-catalyzed and the EF-2-catalyzed ability of the ribosomes to hydrolyze [gamma-32P]GTP was inhibited by abrin and ricin. An 8-S complex released from the 60-S subunit by EDTA treatment possessed both GTPase and ATPase activity, while the particle remaining after the EDTA treatment had lost most of its GTPase activity. Both enzyme activities of the 8-S complex were inhibited by abrin and ricin. The present data indicate that there is a common site on the 60-S subunits for EF-1- and EF-2- stimulated GTPase activity and they suggest that abrin and ricin inhibit protein synthesis by modifying this site.  相似文献   

19.
The unique yeast translational factor EF-3 participates in the elongation cycle by stimulating the function of EF-1 alpha in binding aminoacyl-tRNA to the ribosome. We have isolated the structural gene encoding EF-3 from the yeast Saccharomyces cerevisiae. The YEF3 gene is found in one copy per haploid genome and is essential for vegetative growth. DNA sequence analysis reveals that the YEF3 gene contains an open reading frame of 1044 codons. The deduced amino acid sequence has two repeats of a nucleotide-binding motif. Each of these repeats shows similarity to the nucleotide-binding motif of hydrophilic, membrane-associated ATPases including human multidrug resistant protein MDR. Factor 3 manifests ribosome-dependent ATP hydrolysis. Introduction of the YEF3 gene on a high copy number plasmid into yeast strains increases the ribosome-dependent ATPase activity and EF-3 protein levels by 3-5-fold. Yeast strains containing elevated EF-3 protein levels also exhibit increased sensitivity to the aminoglycoside antibiotics hygromycin and paromomycin. These drugs are known to increase translational errors. These observations suggest that EF-3 may affect translational accuracy.  相似文献   

20.
人尿激酶粗品经苯甲脒亲和柱纯化和Protein-PahSP柱分离后,得到两种分子量的尿激酶(UK),即高分子量尿激酶(HUK)和低分子量尿激酶(LUK).采用考马斯亮蓝法测定蛋白质浓度,纤维蛋白平板法测定活力,测得HUK比活为2.9×105IU/mg蛋白,LUK为3.5×105IU/mg蛋白,活力回收为70%以上.经SDS-PAGE鉴定,HUK和LUK均是单一条带,分子量分别为54kD和33kD.HUK和LUK水解显色底物S2444的动力学常数,分别测得HUK的Km为64μmol/L,Kcat为15s-1,LUK的Km为49μmol/L,kcat为13s-1,LUK的催化效率(Kcat/Km)稍高于HUK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号