首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 959 毫秒
1.
Visually driven activity is not required for the establishment of ocular dominance columns, orientation columns, and long-range horizontal connections in visual cortex, although spontaneous activity appears to be necessary. The role of activity may be instructive or simply permissive; evidence for an instructive role requires inquiry into the role of the pattern of activity in shaping cortical circuits. The few experiments that have probed the role of patterned activity include the effects of artificial strabismus, artificial stimulation of the optic nerve, and rewiring visual projections from the retina to the auditory thalamus and cortex. These experiments demonstrate that patterned activity is vital for the maintenance of thalamocortical, local intracortical, and long-range horizontal connections in cortex.  相似文献   

2.
The pattern of ocular dominance columns in primary visual cortex of mammals such as cats and macaque monkeys arises during development by the activity-dependent refinement of thalamocortical connections. Manipulating visual experience in kittens by the induction of squint leads to the emergence of ocular dominance columns with a larger size and larger column-to-column spacing than in normally raised animals. The mechanism underlying this phenomenon is presently unknown. Theory suggests that experience cannot influence the spacing of columns if the development proceeds through purely Hebbian mechanisms. Here we study a developmental model in which Hebbian mechanisms are complemented by activity-dependent regulation of the total strength of afferent synapses converging onto a cortical neurone. We show that this model implies an influence of visual experience on the spacing of ocular dominance columns and provides a conceptually simple explanation for the emergence of larger sized columns in squinting animals. Assuming that during development cortical neurones become active in local groups, which we call co-activated cortical domains (CCDs), ocular dominance segregation is controlled by the size of these groups: (1) Size and spacing of ocular dominance columns are proportional to the size sigma of CCDs. (2) There is a critical size sigma* of CCDs such that ocular dominance columns form if sigmasigma*. This critical size of CCDs is determined by the correlation functions of activity patterns in the two eyes and specifies the influence of experience on ocular dominance segregation. We show that sigma* is larger with squint than with normal visual experience. Since experimental evidence indicates that the size of CCDs decreases during development, ocular dominance columns are predicted to form earlier and with a larger spacing in squinters compared to normal animals.  相似文献   

3.
Many aspects of visual cortical functional architecture, such as orientation and ocular dominance columns, are present before animals have had any visual experience, indicating that the initial formation of cortical circuitry takes place without the influence of environmental cues. For this reason, it has been proposed that spontaneous activity within the developing visual pathway carries instructive information to guide the early establishment of cortical circuits. Recently developed recording and stimulation techniques are revealing new information about the in vivo organization of this spontaneous activity and its contribution to cortical development. Multielectrode recordings in the developing lateral geniculate nucleus (LGN) of ferrets demonstrate that retinal spontaneous activity is not simply relayed to the visual cortex, but is reshaped and transformed by a variety of mechanisms including cortical feedback and endogenous oscillatory activity. The resulting patterns are consistent with many of the predictions of correlation-based models of cortical development. In addition, the introduction of artificially correlated activity into the visual pathway disrupts some but not all aspects of orientation tuning development. Thus, while these results support an instructive role of spontaneous activity in shaping cortical development, there still appears to be a number of aspects of this process that cannot be accounted for by activity alone.  相似文献   

4.
5.
One of the seminal discoveries in developmental neuroscience is that altering visual experience through monocular deprivation can alter both the physiological and the anatomical representation of the two eyes, called ocular dominance columns, in primary visual cortex. This rearrangement is restricted to a critical period that starts a few days or weeks after vision is established and ends before adulthood. In contrast to the original hypothesis proposed by Hubel and Wiesel, ocular dominance columns are already substantially formed before the onset of the critical period. Indeed, before the critical period there is a period of ocular dominance column formation during which there is robust spontaneous activity and visual experience. Recent findings raise important questions about whether activity guides ocular dominance column formation in this 'precritical period'. One developmental event that marks the passage from the precritical period to the critical period is the activation of a GABAergic circuit. How these events trigger the transition from the precritical to critical period is not known.  相似文献   

6.
Retinotopy and orientation columns in the monkey: A new model   总被引:2,自引:0,他引:2  
A model is presented in which orientation columns arise directly out of retinotopy. According to the model, iso-orientation lines are arrayed radially around nodal centers which correspond to cytochrome oxidase patches. The nodal centers form a square matrix superimposed upon the map of ocular dominance stripes. In the supragranular layers horizontal iso-orientation lines run down the centers of ocular dominance stripes, with vertical iso-orientation lines crossing perpendicularly. Diagonal orientations (45 degrees and 135 degrees) are represented as alternating iso-orientation zones at the centers of the interstices in the matrix (internodal centers). Preferred orientations in the infragranular layers are reversed with respect to the supragranular layers. The model is consistent with new data concerning ocularity and preferred orientation in systematic penetrations through striate cortex, and helps to explain some previously puzzling features of the relationship between ocular dominance columns, orientation columns and retinotopy.  相似文献   

7.
Eye-specific patches or stripes normally develop in the visual cortex and superior colliculus of many (but not all) mammals and are also formed, after surgically produced binocular innervation, in the optic tectum of fish and frogs. The segregation of ocular dominance patches or columns has been studied using a variety of anatomical pathway-tracing techniques, by electrophysiological recording of postsynaptic units or field potentials, and by the 2-deoxyglucose method following visual stimulation of only one eye. In the tectum of both fish and frogs and in the cortex and colliculus of mammals, eye-specific patches develop from initially diffuse, overlapping projections. Of the various mechanisms that might cause such segregation, the evidence favors an activity-dependent process that stabilizes synapses from the same eye because of their correlated activity. First, several environmental manipulations affect the segregation of afferents in visual cortex: strabismus and alternate monocular exposure apparently enhance segregation, whereas dark rearing slows the segregation process, and monocular deprivation causes the experienced eye to form larger patches at the expense of those of the deprived eye. Second, blocking activity in both eyes is effective in preventing the segregation both in the tectum of fish and frog and in the visual cortex of cat. With the eyes blocked, alternate stimulation of the optic nerves permits the segregation of ocular dominance, at least onto single cells in the cat visual cortex. These findings are discussed in terms of an activity-dependent stabilization of those synapses having correlated activity (those from neighboring ganglion cells within one eye) but not of those lacking correlated activity (those from left and right eyes). We suggest that the eye-specific patches represent a compromise between total segregation of the projections from the two eyes and the formation of a single continuous retinotopic map across the surface of the cortex or tectum.  相似文献   

8.
We have investigated the developmental changes of intrahemispheric neuronal connections of the areas 17 & 18 ocular dominance columns in monocularly deprived cats. Single cortical columns were microiontophoretically injected with horseradish peroxidase and 3D reconstruction of retrogradely labelled cells' region was done. Ocular dominance of injected columns and their coordinates in the visual field map were determined. In area 17 it was shown that for non-deprived eye the connections of columns that are driven via the crossed pathways were longer than connections of columns driven via uncrossed ones, and in both cases they were longer than connections in intact cats. The connections of deprived eye columns are significantly reduced. We have observed some changes in the spatial organization of long-range connections in area 17 for columns driven by the non-deprived eye (more rounded shape of regions of labeled cells, non-uniform distribution of cells within it). Maximal length of such connections did not exceed the length of connections in strabismic cats. We speculate that the length of cell axons providing for the horizontal connections of cortical columns has some intrinsic limit that does not depend on visual stimulation during the critical period of development.  相似文献   

9.
The development of ocular dominance columns has served as a Rosetta stone for understanding the mechanisms that guide the construction of cortical circuits. Traditionally, the emergence of ocular dominance columns was thought to be closely tied to the critical period, during which columnar architecture is highly susceptible to alterations in visual input. However, recent findings in cats, monkeys and ferrets indicate that columns develop far earlier, more rapidly and with considerably greater precision than was previously suspected. These observations indicate that the initial establishment of cortical functional architecture, and its subsequent plasticity during the critical period, are distinct developmental phases that might reflect distinct mechanisms.  相似文献   

10.
A thermodynamic theory has previously been introduced for explaining the formation of ocular dominance columns in the visual cortex. This paper extends the theory to account for the variation in patterns of ocular dominance columns as a phase transition phenomenon. For this purpose, an "Order parameter" is calculated by Monte Carlo simulation. On a phase diagram representing a two-dimensional parameter space, the conditions in which abnormal ocular dominance columns arise are visualized, and several visual deprivation experiments are successfully explained.  相似文献   

11.
We derive an activity-based developmental model of ocular dominance column formation in primary visual cortex that takes into account cortical growth. The resulting evolution equation for the densities of feedforward afferents from the two eyes exhibits a sequence of pattern forming instabilities as the size of the cortex increases. We use linear stability analysis to investigate the nature of the transitions between successive patterns in the sequence. We show that these transitions involve the splitting of existing ocular dominance (OD) columns, such that the mean width of an OD column is approximately preserved during the course of development. This is consistent with recent experimental observations of postnatal growth in cat.  相似文献   

12.
The size of a pair of cortical ocular dominance columns determines a basic anatomical module of V-1 which Hubel and Wiesel have termed the hypercolumn. Does this correspond to a basic functional, or psychophysically measurable, module as well? This is the basic question addressed in the present paper. Since the ocular dominance column architecture is presumed to be related to stereo vision, it is natural to assume that hypercolumn size should provide a modular basis for basic phenomena of stereopsis. In previous work, we have suggested that local nonlinear filtering via the cepstral transform, operating on a local window of cortical tissue scaled by hypercolumn size, provides such a modular model of stereopsis. In the present paper, we review this model and then discuss a number of issues related to the biological plausibility and implementation of this algorithm. Then, we present the main result of this paper: we have analyzed a number of experiments related to stereo fusion limits (Panum's area) and to disparity gradient and disparity scaling, and demonstrate that there is a simple unifying explanation for these phenomena in terms of a constant cortical module whose size is determined by a pair of ocular dominance columns. As a corollary, Panum's area must increase according to (inverse) cortical magnification factor. We show that this is supported by all existing experimental data.  相似文献   

13.
Coverage and the design of striate cortex   总被引:2,自引:0,他引:2  
Hubel and Wiesel (1977) suggested that ocular dominance and orientation columns in the macaque monkey striate cortex might be bands of uniform width that intersected orthogonally. They pointed out that if this were the case, there would be an equal allocation of cells of different orientation preference to each eye and to each point in visual space. However, orientation and ocular dominance columns have a more complex structural organization than is implied by this model: for example, iso-orientation domains do not intersect ocular dominance stripes at right angles and the two columnar systems have different periodicities. This raises the question as to how well the striate cortex manages to allocate equal numbers of neurons of different orientation preference to each eye and to each region of visual space, a factor referred to here as coverage. This paper defines a measure of uniformity of coverage, c, and investigates its dependence on several different parameters of columnar organisation. Calculations were done first using a simplified one-dimensional model of orientation and ocular dominance columns and were then repeated using more realistic two-dimensional models, generated with the algorithms described in the preceding paper (Swindale 1991). Factors investigated include the relative periodicities of the two columnar systems, the size of the cortical point image, the width of orientation tuning curves, whether columns are spatially anisotropic or not, and the role of the structural relationships between columns described by Blasdel and Salama (1986). The results demonstrate that coverage is most uniform when orientation hypercolumns are about half the size of ocular dominance hypercolumns. Coverage is most uneven when the hypercolumns are the same size, unless they are related in the way described by Blasdel and Salama, in which case coverage gets only slightly worse as the size ratio (ori/od) increases above 0.5. The minimum diameter of cortical point image that ensures reasonably uniform coverage is about twice the size of an ocular dominance hypercolumn i.e. about 1.5–2.0 mm.  相似文献   

14.
Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden “ignition” of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of “inattentional blindness,” in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness.  相似文献   

15.
16.
Theory of ocular dominance column formation   总被引:3,自引:0,他引:3  
A general theory previously proposed by the author which describes synaptic stabilization on the basis of three basic assumptions is employed for the understanding of ocular dominance column formation. A reduced mathematical model is constructed based on the thermodynamics in the Ising spin variables representing the afferent synaptic connection distribution. The results of Monte Carlo simulations on the segregation of ipsilateral and contralateral synaptic terminals in the input layer of the primary visual cortex suggest the existence of phase transition phenomena. Three types of ocular dominance column patterns — stripe, blob, and uniform — are visualized according to the values of the correlation strength and the degree of imbalance in activity between the left and right retinas. The theory presented here successfully explains how ocular dominance columns are developed.  相似文献   

17.
 Recent experimental data indicate that both neurotrophic factors (NTFs) and intracortical inhibitory circuitry are implicated in the development and plasticity of ocular dominance columns. We extend a neurotrophic model of developmental synaptic plasticity, which previously failed to account correctly for the differences between monocular deprivation and binocular deprivation, and show that the inclusion of lateral cortical inhibition is indeed necessary in understanding the effects of visual deprivation in the model. In particular, we argue that monocular deprivation causes a differential shift in the balance between inhibition and excitation in cortical columns, down-regulating NTFs in deprived-eye columns and up-regulating NTFs in undeprived-eye columns; during binocular deprivation, however, no such shift occurs. We thus postulate that the response to visual deprivation is at the level of the cortical circuit, while the mechanisms of afferent segregation are at the molecular or cellular level. Such a dissociation is supported by recent experimental work challenging the assumption that columnar organisation develops in an activity-dependent, competitive fashion. Our extended model also questions recent attempts to distinguish between heterosynaptic and homosynaptic models of synaptic plasticity. Received: 17 April 2001 / Accepted in revised form: 7 November 2001  相似文献   

18.
Del Rio T  Feller MB 《Neuron》2006,52(2):221-222
Does spontaneous retinal activity prior to vision play a role in the establishment of visual maps? In this issue of Neuron, two separate papers by Huberman et al. and Hooks and Chen demonstrate a role for early spontaneous retinal activity in the establishment of ocular dominance columns and synaptic refinement at retinogeniculate synapses.  相似文献   

19.
Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections.  相似文献   

20.
The existence of patchy regions in primate striate cortex in which orientation selectivity is reduced, and which lie in the centers of ocular dominance stripes is well established (Hubel and Livingstone 1981). Analysis of functional maps obtained with voltage sensitive dyes (Blasdel and Salama 1986) has suggested that regions where the spatial rate of change of orientation preference is high, tend to be aligned either along the centers of ocular dominance stripes, or to intersect stripe borders at right angles. In this paper I present results from a developmental model which show that a tendency for orientation selectivity to develop more slowly in the centers of ocular dominance stripes would lead to the observed relationships between the layout of ocular dominance and the map of orientation gradient. This occurs despite the fact that there is no direct connection between the measures of preferred orientation (from which the gradient map is derived) and orientation selectivity (which is independent of preferred orientation). I also show that in both the monkey and the model, orientation singularities have an irregular distribution, but tend to be concentrated in the centers of the ocular dominance stripes. The average density of singularities is about 3/ 2, where is the period of the orientation columns. The results are based on an elaboration of previous models (Swindale 1980, 1982) which show how, given initially disordered starting conditions, lateral interactions that are short-range excitatory and long-range inhibitory can lead to the development of patterns of orientation or ocular dominance that resemble those found in monkey striate cortex. To explain the coordinated development of the two kinds of column, it is proposed that there is an additional tendency in development for the rate of increase in orientation selectivity to be reduced in the centers of emerging ocular dominance stripes. This might come about if a single factor modulates plasticity in each cell, or column of cells. Thus plasticity may be turned off first in regions in the centers of ocular dominance stripes where relatively extreme and therefore stable ocular dominance values are achieved early in development. Consequently it will be hard for cells in these columns to modify other properties such as orientation preference or selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号