首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reference condition approach, advocated by the Water Framework Directive, is the basis of most currently used multimetric indices using functional traits of fish species. The ecological status of streams is assessed by measuring the deviation of the observed trait values from the theoretical values of reference conditions in the absence of anthropogenic disturbances. While reference conditions serve as baselines for ecological assessment, they vary with natural environmental conditions. Therefore, global warming appears to be a major threat to the use of current indices for diagnosing future stream conditions, as climate change is projected to modify assemblage composition, suggesting that the functional structure of fish assemblages will also be affected. The main objectives of this study are to assess the potential effect of climate change on the trait composition of fish assemblages and the consequences for the establishment of reference conditions. The results highlight the relation between environmental, especially climatic, conditions and functional traits and project the effects of climate change on trait composition. Traits based on species intolerance are expected to be most negatively affected by the projected climatic shift. The consequences for the development of multimetric indices based on fish functional traits are discussed.  相似文献   

2.
Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES) to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture) showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform sustainable agricultural policies for the future.  相似文献   

3.
Most studies on the biological impact of climate change have focussed on incremental climate warming, rather than extreme events. Yet responses of species’ populations to climatic extremes may be one of the primary drivers of ecological change. We assess the resilience of individual populations in terms of their sensitivity to‐ and ability to recover from‐ environmental perturbation. We demonstrate the method using a model species, the ringlet butterfly Aphantopus hyperantus, and analyse the effects of an extreme drought event using data from 79 British sites over 10 yr. We find that populations crashed most severely in drier regions but, additionally, the landscape structure around sites influenced population responses. Larger and more connected patches of woodland habitat reduced population sensitivity to the drought event and also facilitated faster recovery. Having enough, sufficiently connected habitat appears essential for species’ populations to be resilient to the increased climatic variability predicted under future scenarios.  相似文献   

4.
The effect of changing climatic conditions on wild populations has been the subject of much recent research. Most attention has been on the direct effects of climate changes on species of lower trophic levels and on the negative consequences of climate change. However, a deeper understanding of how climate change affects apex predators is vital, as they are keystone species that have a disproportionate effect on ecosystems. Studying survival in an apex predator requires individual‐based data from long‐term studies and is complicated by the integration of climatic effects on lower trophic levels. Here we assess how climate affects the survival of the Common Buzzard Buteo buteo. We analysed the survival of 670 males and 669 females over the period 1989–2011, during which time our study population quadrupled. We used mark–recapture survival analysis of individual resightings of breeding adults to identify the environmental factors best explaining survival. A decrease in the North Atlantic Oscillation (NAO) index increased survival to an extent that largely explains the population increase. This might be caused by higher Common Vole Microtus arvalis survival in drier conditions and under snow cover. Buzzard survival appeared to increase more for males than for females, possibly due to the males' higher sensitivity to winter food availability resulting from their smaller body mass. However, we also found that the effect of NAO strongly depended on the area in which individuals lived, especially for females. This may have been caused by the recolonization of Eagle Owls Bubo bubo in some parts of our study area. This study suggests that climatic changes can have complex effects on species of higher trophic levels via an interaction with their prey.  相似文献   

5.
Climate change is inducing deep modifications in local communities worldwide as a consequence of individualistic species range shifts. Understanding how complex interaction networks will be reorganized under climate change represents a major challenge in the fields of ecology and biogeography. However, forecasting the potential effects of climate change on local communities, and more particularly on food‐web structure, requires the consideration of highly structuring processes, such as trophic interactions. A major breakthrough is therefore expected by combining predictive models integrating habitat selection processes, the physiological limits of marine species and their trophic interactions. In this study, we forecasted the potential impacts of climate change on the local food‐web structure of the highly threatened Gulf of Gabes ecosystem located in the south of the Mediterranean Sea. We coupled the climatic envelope and habitat models to an allometric niche food web model, hence taking into account the different processes acting at regional (climate) and local scales (habitat selection and trophic interactions). Our projections under the A2 climate change scenario showed that future food webs would be composed of smaller species with fewer links, resulting in a decrease of connectance, generality, vulnerability and mean trophic level of communities and an increase of the average path length, which may have large consequences on ecosystem functioning. The unified framework presented here, by connecting food‐web ecology, biogeography and seascape ecology, allows the exploration of spatial aspects of interspecific interactions under climate change and improves our current understanding of climate change impacts on local marine food webs.  相似文献   

6.
Because of the unique conditions that exist around the Antarctic continent, Southern Ocean (SO) ecosystems are very susceptible to the growing impact of global climate change and other anthropogenic influences. Consequently, there is an urgent need to understand how SO marine life will cope with expected future changes in the environment. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity to environmental shifts, making it difficult to predict overall community or ecosystem responses. This emphasizes the need for an improved understanding of the Antarctic benthic ecosystem response to global climate change using a multitaxon approach with consideration of different levels of biological organization. Here, we provide a synthesis of the ability of five important Antarctic benthic taxa (Foraminifera, Nematoda, Amphipoda, Isopoda, and Echinoidea) to cope with changes in the environment (temperature, pH, ice cover, ice scouring, food quantity, and quality) that are linked to climatic changes. Responses from individual to the taxon-specific community level to these drivers will vary with taxon but will include local species extinctions, invasions of warmer-water species, shifts in diversity, dominance, and trophic group composition, all with likely consequences for ecosystem functioning. Limitations in our current knowledge and understanding of climate change effects on the different levels are discussed.  相似文献   

7.
Climate change poses critical challenges for population persistence in natural communities, for agriculture and environmental sustainability, and for food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and whether adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in‐depth understanding of these eco‐evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting‐edge omics toolkits, novel ecological strategies, newly developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems.  相似文献   

8.
Understanding the effects of extreme climatic events on species and their interactions is of paramount importance for predicting and mitigating the impacts of climate change on communities and ecosystems. However, the joint effects of extreme climatic events and species interactions on the behaviour and phenotype of organisms remain poorly understood, leaving a substantial gap in our knowledge on the impacts of climatic change on ecological communities. Using an aphid–ladybeetle system, we experimentally investigated the effects of predators and heat shocks on prey body size, microhabitat use, and transgenerational phenotypic plasticity (i.e., the asexual production of winged offspring by unwinged mothers). We found that (i) aphids were smaller in the presence of predators but larger when exposed to frequent heat shocks; (ii) frequent heat shocks shifted aphid distribution towards the plant's apex, but the presence of predators had the opposite effect and dampened the heat‐shock effects; and (iii) aphids responded to predators by producing winged offspring, but heat shocks strongly inhibited this transgenerational response to predation. Overall, our experimental results show that heat shocks inhibit phenotypic and behavioural responses to predation (and vice versa) and that such changes may alter trophic interactions, and have important consequences on the dynamics and stability of ecological communities. We conclude that the effects of extreme climatic events on the phenotype and behaviour of interacting species should be considered to understand the effects of climate change on species interactions and communities.  相似文献   

9.
Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site’s future climate, can facilitate conservation of diversity at multiple scales in the face of climate change.  相似文献   

10.
Spatial responses of species to past climate change depend on both intrinsic traits (climatic niche breadth, dispersal rates) and the scale of climatic fluctuations across the landscape. New capabilities in generating and analysing population genomic data, along with spatial modelling, have unleashed our capacity to infer how past climate changes have shaped populations, and by extension, complex communities. Combining these approaches, we uncover lineage diversity across four codistributed lizards from the Australian Monsoonal Tropics and explore how varying climatic tolerances interact with regional climate history to generate common vs. disparate responses to late Pleistocene change. We find more divergent spatial structuring and temporal demographic responses in the drier Kimberley region compared to the more mesic and consistently suitable Top End. We hypothesize that, in general, the effects of species’ traits on sensitivity to climate fluctuation will be more evident in climatically marginal regions. If true, this points to the need in climatically marginal areas to craft more species‐(or trait)‐specific strategies for persistence under future climate change.  相似文献   

11.
The biosphere is changing rapidly due to human endeavour. Because ecological communities underlie networks of interacting species, changes that directly affect some species can have indirect effects on others. Accurate tools to predict these direct and indirect effects are therefore required to guide conservation strategies. However, most extinction-risk studies only consider the direct effects of global change—such as predicting which species will breach their thermal limits under different warming scenarios—with predictions of trophic cascades and co-extinction risks remaining mostly speculative. To predict the potential indirect effects of primary extinctions, data describing community interactions and network modelling can estimate how extinctions cascade through communities. While theoretical studies have demonstrated the usefulness of models in predicting how communities react to threats like climate change, few have applied such methods to real-world communities. This gap partly reflects challenges in constructing trophic network models of real-world food webs, highlighting the need to develop approaches for quantifying co-extinction risk more accurately. We propose a framework for constructing ecological network models representing real-world food webs in terrestrial ecosystems and subjecting these models to co-extinction scenarios triggered by probable future environmental perturbations. Adopting our framework will improve estimates of how environmental perturbations affect whole ecological communities. Identifying species at risk of co-extinction (or those that might trigger co-extinctions) will also guide conservation interventions aiming to reduce the probability of co-extinction cascades and additional species losses.  相似文献   

12.
Climate change is inducing deep modifications in species geographic ranges worldwide. However, the consequences of such changes on community structure are still poorly understood, particularly the impacts on food‐web properties. Here, we propose a new framework, coupling species distribution and trophic models, to predict climate change impacts on food‐web structure across the Mediterranean Sea. Sea surface temperature was used to determine the fish climate niches and their future distributions. Body size was used to infer trophic interactions between fish species. Our projections reveal that 54 fish species of 256 endemic and native species included in our analysis would disappear by 2080–2099 from the Mediterranean continental shelf. The number of feeding links between fish species would decrease on 73.4% of the continental shelf. However, the connectance of the overall fish web would increase on average, from 0.26 to 0.29, mainly due to a differential loss rate of feeding links and species richness. This result masks a systematic decrease in predator generality, estimated here as the number of prey species, from 30.0 to 25.4. Therefore, our study highlights large‐scale impacts of climate change on marine food‐web structure with potential deep consequences on ecosystem functioning. However, these impacts will likely be highly heterogeneous in space, challenging our current understanding of climate change impact on local marine ecosystems.  相似文献   

13.
Synergistic Effects of Climate and Fishing in a Marine Ecosystem   总被引:1,自引:0,他引:1  
Current climate change and overfishing are affecting the productivity and structure of marine ecosystems. This situation is unprecedented for the marine biosphere and it is essential to understand the mechanisms and pathways by which ecosystems respond. We report that climate change and overfishing are likely to be responsible for a rapid restructuring of a highly productive marine ecosystem with effects throughout the pelagos and the benthos. In the mid-1980s, climate change, consequent modifications in the North Sea plankton, and fishing, all reduced North Sea cod recruitment. In this region, production of many benthic species respond positively and immediately to temperature. Analysis of a long-term, spatially extensive biological (plankton and cod) and physical (sea surface temperature) dataset suggests that synchronous changes in cod numbers and sea temperature have established an extensive trophic cascade favoring lower trophic level groups over economic fisheries. A proliferation of jellyfish that we detect may signal the climax of these changes. This modified North Sea ecology may provide a clear indication of the synergistic consequences of coincident climate change and overfishing. The extent of the ecosystem restructuring that has occurred in the North Sea suggests we are unlikely to reverse current climate and human-induced effects through ecosystem resource management in the short term. Rather, we should understand and adapt to new ecological regimes. This implies that fisheries management policies will have to be fully integrated with the ecological consequences of climate change to prevent a similar collapse in an exploited marine ecosystem elsewhere. Author Contributions  RRK conceived the project and GB analysed the data. RRK, GB and JAL co-wrote the paper.  相似文献   

14.
Humans have hunted wildlife in Central Africa for millennia. Today, however, many species are being rapidly extirpated and sanctuaries for wildlife are dwindling. Almost all Central Africa''s forests are now accessible to hunters. Drastic declines of large mammals have been caused in the past 20 years by the commercial trade for meat or ivory. We review a growing body of empirical data which shows that trophic webs are significantly disrupted in the region, with knock-on effects for other ecological functions, including seed dispersal and forest regeneration. Plausible scenarios for land-use change indicate that increasing extraction pressure on Central African forests is likely to usher in new worker populations and to intensify the hunting impacts and trophic cascade disruption already in progress, unless serious efforts are made for hunting regulation. The profound ecological changes initiated by hunting will not mitigate and may even exacerbate the predicted effects of climate change for the region. We hypothesize that, in the near future, the trophic changes brought about by hunting will have a larger and more rapid impact on Central African rainforest structure and function than the direct impacts of climate change on the vegetation. Immediate hunting regulation is vital for the survival of the Central African rainforest ecosystem.  相似文献   

15.
Climate change may alter phenology within populations with cascading consequences for community interactions and on-going evolutionary processes. Here, we measured the response to climate warming in two sympatric, recently diverged (~170 years) populations of Rhagoletis pomonella flies specialized on different host fruits (hawthorn and apple) and their parasitoid wasp communities. We tested whether warmer temperatures affect dormancy regulation and its consequences for synchrony across trophic levels and temporal isolation between divergent populations. Under warmer temperatures, both fly populations developed earlier. However, warming significantly increased the proportion of maladaptive pre-winter development in apple, but not hawthorn, flies. Parasitoid phenology was less affected, potentially generating ecological asynchrony. Observed shifts in fly phenology under warming may decrease temporal isolation, potentially limiting on-going divergence. Our findings of complex sensitivity of life-history timing to changing temperatures predict that coming decades may see multifaceted ecological and evolutionary changes in temporal specialist communities.  相似文献   

16.
Forecasting impacts of future climate change is an important challenge to biologists, both for understanding the consequences of different emissions trajectories and for developing adaptation measures that will minimize biodiversity loss. Existing variation provides a window into the effects of climate on species and ecosystems, but in many places does not encompass the levels or timeframes of forcing expected under directional climatic change. Experiments help us to fill in these uncertainties, simulating directional shifts to examine outcomes of new levels and sustained changes in conditions. Here, we explore the translation between short‐term responses to climate variability and longer‐term trajectories that emerge under directional climatic change. In a decade‐long experiment, we compare effects of short‐term and long‐term forcings across three trophic levels in grassland plots subjected to natural and experimental variation in precipitation. For some biological responses (plant productivity), responses to long‐term extension of the rainy season were consistent with short‐term responses, while for others (plant species richness, abundance of invertebrate herbivores and predators), there was pronounced divergence of long‐term trajectories from short‐term responses. These differences between biological responses mean that sustained directional changes in climate can restructure ecological relationships characterizing a system. Importantly, a positive relationship between plant diversity and productivity turned negative under one scenario of climate change, with a similar change in the relationship between plant productivity and consumer biomass. Inferences from experiments such as this form an important part of wider efforts to understand the complexities of climate change responses.  相似文献   

17.
Aim It has been qualitatively understood for a long time that climate change will have widely varying effects on human well‐being in different regions of the world. The spatial complexities underlying our relationship to climate and the geographical disparities in human demographic change have, however, precluded the development of global indices of the predicted regional impacts of climate change on humans. Humans will be most negatively affected by climate change in regions where populations are strongly dependent on climate and favourable climatic conditions decline. Here we use the relationship between the distribution of human population density and climate as a basis to develop the first global index of predicted impacts of climate change on human populations. Location Global. Methods We use spatially explicit models of the present relationship between human population density and climate along with forecasted climate change to predict climate vulnerabilities over the coming decades. We then globally represent regional disparities in human population dynamics estimated with our ecological niche model and with a demographic forecast and contrast these disparities with CO2 emissions data to quantitatively evaluate the notion of moral hazard in climate change policies. Results Strongly negative impacts of climate change are predicted in Central America, central South America, the Arabian Peninsula, Southeast Asia and much of Africa. Importantly, the regions of greatest vulnerability are generally distant from the high‐latitude regions where the magnitude of climate change will be greatest. Furthermore, populations contributing the most to greenhouse gas emissions on a per capita basis are unlikely to experience the worst impacts of climate change, satisfying the conditions for a moral hazard in climate change policies. Main conclusions Regionalized analysis of relationships between distribution of human population density and climate provides a novel framework for developing global indices of human vulnerability to climate change. The predicted consequences of climate change on human populations are correlated with the factors causing climate change at the regional level, providing quantitative support for many qualitative statements found in international climate change assessments.  相似文献   

18.
Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and catches based on bioclimate envelope models are available, but to date they have not considered interspecific interactions. We address this by combining the species‐based Dynamic Bioclimate Envelope Model (DBEM) with a size‐based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species' size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions. Goodness‐of‐fit of biomass data from fish stock assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. Future analyses using ecologically explicit models and data will improve understanding of the effects of inter‐specific interactions on responses to climate change, and better inform managers about plausible ecological and fishery consequences of a changing environment.  相似文献   

19.
Biological communities are shaped by complex interactions between organisms and their environment as well as interactions with other species. Humans are rapidly changing the marine environment through increasing greenhouse gas emissions, resulting in ocean warming and acidification. The first response by animals to environmental change is predominantly through modification of their behaviour, which in turn affects species interactions and ecological processes. Yet, many climate change studies ignore animal behaviour. Furthermore, our current knowledge of how global change alters animal behaviour is mostly restricted to single species, life phases and stressors, leading to an incomplete view of how coinciding climate stressors can affect the ecological interactions that structure biological communities. Here, we first review studies on the effects of warming and acidification on the behaviour of marine animals. We demonstrate how pervasive the effects of global change are on a wide range of critical behaviours that determine the persistence of species and their success in ecological communities. We then evaluate several approaches to studying the ecological effects of warming and acidification, and identify knowledge gaps that need to be filled, to better understand how global change will affect marine populations and communities through altered animal behaviours. Our review provides a synthesis of the far‐reaching consequences that behavioural changes could have for marine ecosystems in a rapidly changing environment. Without considering the pervasive effects of climate change on animal behaviour we will limit our ability to forecast the impacts of ocean change and provide insights that can aid management strategies.  相似文献   

20.
Aim  To predict how the bioclimatic envelope of the broad-headed snake (BHS) ( Hoplocephalus bungaroides ) may be redistributed under future climate warming scenarios.
Location  South-eastern New South Wales, Australia.
Methods  We used 159 independent locations for the species and 35 climatic variables to model the bioclimatic envelope for the BHS using two modelling approaches – B ioclim and M axent . Predictions were made under current climatic conditions and we also predicted the species distribution under low and high climate change scenarios for 2030 and 2070.
Results  Broad-headed snakes currently encompass their entire bioclimatic envelope. Both modelling approaches predict that suitable climate space for BHS will be lost to varying degrees under both climate warming scenarios, and under the worst case, only 14% of known snake populations may persist.
Main conclusions  Areas of higher elevation within the current range will be most important for persistence of this species because they will remain relatively moist and cool even under climate change and will match the current climate envelope. Conservation efforts should focus on areas where suitable climate space may persist under climate warming scenarios. Long-term monitoring programs should be established both in these areas and where populations are predicted to become extirpated, so that we can accurately determine changes in the distribution of this species throughout its range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号