首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Summary Gene lamB encodes an outer membrane protein involved in maltose and maltodextrin transport as well as phage adsorption. The active form is a trimer. We characterized 11 mutations in lamB, obtained after random insertion of a BamH1 linker and screening for stable immunodetectable mutant proteins. Six mutations resulted in the loss of the distal part of the LamB protein either by deletion (five cases) or frameshift (one case). The six corresponding proteins had all lost the ability to confer phage sensitivity and the capacity to grow on dextrins, and to yield immunnodetectable oligomers. Induction of a high level of the four longest of these proteins was toxic to the cell. Five other mutations were due to in-frame insertions. In four cases, the corresponding proteins still had the ability to yield immunodetectable oligomers, to confer phage sensitivity and the capacity to grow on dextrins and were not toxic on induction. In one case (AJC73), the mutant protein had lost the first three properties and was toxic on induction. Deletions and duplications between some of the inserts were also constructed and studied. To account for our results we present a hypothetical scheme in which trimerization would not only be needed for phage sensitivity and growth on dextrins but also for proper insertion into the outer membrane. The C-terminus of the protein, as well as other regions such as the site of mutation AJC73, would be required for the formation of stable trimers. We tentatively interpret toxicity as due to improper insertion into the outer membrane. Our results also show that it is possible to insert several amino acids (up to 11 in one case) at a number of positions in LamB without appreciably affecting its export and activities.  相似文献   

2.
3.
Trehalase activity in a yeast protoplast lysate increased 40-times upon preincubation with cAMP and ATP. The activity present without the preincubation could all be sedimentated at 8000 × g, for 10 min confirming the previously reported localization of the active trehalase (Ta) in the vacuoles. Virtually all the trehalase activity newly formed upon the preincubation, however, was found in the soluble fraction, indicating that a trehelase-zymogen (Tz) is located in the cytosol. This raises the possibility that a cAMP-dependent phosphorylation not only transforms Tz to Ta but also initiates the transfer of trehalase from the cytosol into the vacuoles.  相似文献   

4.
Washed thylakoids of pea chloroplasts, containing tightly bound polysomes, incorporate radioactive amino acids into protein when supplied with soluble factors from Escherichia coli. Polyacrylamide gel electrophoresis with lithium dodecyl sulfate, followed by autoradiography of the labeled products, showed the synthesis of a number of different polypeptides. Two of the most heavily labeled products were in the region expected for the alpha and beta subunits of coupling factor 1, at 57 and 54 kDa. Positive identification of the subunits was made using monospecific antibodies. Furthermore, the same two polypeptides made by soluble polysomes located in the chloroplast stroma were found. While the major proportion of the newly formed alpha and beta subunits made by thylakoid-bound polysomes remained with the thylakoids after protein synthesis occurred, no evidence was found of incorporation into complete, EDTA-extractable coupling factor 1.  相似文献   

5.
S A Benson  E Bremer 《Gene》1987,52(2-3):165-173
Strain Pop3299 contains the lamB::lacZ42-12 gene fusion that encodes a hybrid protein that is efficiently exported to the cellular envelope of Escherichia coli. As a result of this efficient export, this strain is killed by the inducer maltose and unable to grow on minimal media supplemented with lactose. In an attempt to isolate mutants in which export of the hybrid protein is altered, we selected Lac+ mutants of strain Pop3299 on lactose tetrazolium media. Unlike mutants previously isolated on lactose minimal media, all the mutants we obtained carried large deletions within the lamB::lacZ gene fusion. Thus, it appears that the type of selection employed affects the type of mutations obtained. We have analyzed the nucleotide sequences of representative mutants, and demonstrate a correlation between the deletion size and the export-related maltose and lactose phenotypes. In addition, we demonstrate that the deletions do not appear to arise from regions of micro-homology.  相似文献   

6.
7.
Among Tn10 insertions isolated in or near the malB region of Escherichia coli, one (zjb-729::Tn10) mapped between malK and lamB or late in malK and allowed MalT-independent expression of lamB. Tn10-dependent expression of a lamB-lacZ protein fusion was 25% of the expression of the fusion from the malK-lamB operon promoter in malTc constitutive strains. The maltoporin content of a strain carrying this Tn10 was about 20% that of a malTc malB+ strain. Transport of maltose at concentrations of below 10(-6) M was reduced about threefold. When maltoporin was present at about 50% of the level of malTc malB+ strains, maltose transport was largely restored. We conclude that maltoporin is not rate limiting for maltose transport in wild-type cells but becomes rate limiting when the ratio of maltoporin to other maltose transport components is reduced more than twofold.  相似文献   

8.
In insects, holoferritin is easily visible in the vacuolar system of tissues that filter the hemolymph and, at least in Lepidoptera, is abundant in the hemolymph. Sequences reported for insect secreted ferritins from Lepidoptera and Diptera have high sequence diversity. We examined the nature of this diversity for the first time by analyzing sequences of cDNAs encoding two ferritin subunits from one species, Calpodes ethlius (Lepidoptera, Hesperiidae). We found that insect secreted ferritin subunits are of two types with little resemblance to each other. Ferritin was isolated from iron loaded hemolymph of C. ethlius fifth instar larvae by differential centrifugation. The N-terminal amino acid sequences for the nonglycosylated subunit with Mr 24,000 (S) and the largest glycosylated subunit with Mr 31,000 (G) were determined. The N-termini of the two subunits were different and were used to construct degenerate PCR primers. The same cDNA products were amplified from cDNA libraries from the midgut which secretes holoferritin and from the fat body which secretes iron-poor apoferritin. The G subunit most closely resembles the glycosylated ferritin subunit from Manduca sexta and the S subunit resembles the Drosophila small subunit. The S and G subunits from Calpodes were dissimilar and distinct from the cytosolic ferritins of vertebrates and invertebrates. Additional sequences were obtained by 5' and 3' RACE from separate fat body and midgut RACE libraries. cDNAs encoding both subunits had a consensus iron responsive element (IRE) in a conserved cap-distal location of their 5' UTR. An integrin-binding RGD motif found in the G subunit and conserved in Manduca may facilitate iron uptake through a calreticulin (mobilferrin)/integrin pathway. Calpodes and other insect ferritins have conserved cysteine residues to which fatty acids can be linked. Dynamic acylation of ferritin may slow but not prevent its passage out of the ER.  相似文献   

9.
10.
Maltoporin trimers constitute maltodextrin-selective channels in the outer membrane of Escherichia coli. To study the organization of the maltodextrin-binding site within trimers, dominance studies were undertaken with maltoporin variants of altered binding affinity. It has been established that amino acid substitutions at three dispersed regions of the maltoporin sequence (at residues 8, 82, and 360) resulted specifically in maltodextrin-binding defects and loss of maltodextrin channel selectivity; a substitution at residue 118 increased both binding affinity and maltodextrin transport. Strains heterodiploid for lamB were constructed in which these substitutions were encoded by chromosomal and plasmid-borne genes, and the relative level of maltoporin expression from these genes was estimated. Binding assays with bacteria forming maltoporin heterotrimers were performed in order to test for complementation between binding-negative alleles, negative dominance of negative over wild-type alleles, and possible dominance of negatives over the high-affinity allele. Double mutants with mutations affecting residues 8 and 118, 82 and 118, and 118 and 360 were constructed in vitro, and the dominance properties of the mutations in cis were also tested. There was no complementation between negatives and no negative dominance in heterotrimers. The high-affinity mutation was dominant over negatives in trans but not in cis. The affinity of binding sites in heterotrimer populations was characteristic of the high-affinity allele present and uninfluenced by the negative allele. These results are consistent with the presence of three discrete binding sites in a maltoporin trimer and suggest that the selectivity filter for maltodextrins is not at the interface between the three subunits.  相似文献   

11.
12.
Sulfonylurea receptors (SURs) associate with Kir6.x subunits to form tetradimeric KATP channel complexes. SUR1 and SUR2 confer differential channel sensitivities to nucleotides and pharmacological agents, and are expressed in specific, but overlapping, tissues. This raises the question of whether these different SUR subtypes can assemble in the same channel complex and generate channels with hybrid properties. To test this, we engineered dimeric constructs of wild type or N160D mutant Kir6.2 fused to SUR1 or SUR2A. Dimeric fusions formed functional, ATP-sensitive, channels. Coexpression of weakly rectifying SUR1-Kir6.2 (WTF-1) with strongly rectifying SUR1-Kir6.2[N160D] (NDF-1) in COSm6 cells results in mixed subunit complexes that exhibit unique rectification properties. Coexpression of NDF-1 and SUR2A-Kir6.2 (WTF-2) results in similar complex rectification, reflecting the presence of SUR1- and SUR2A-containing dimers in the same channel. The data demonstrate clearly that SUR1 and SUR2A subunits associate randomly, and suggest that heteromeric channels will occur in native tissues.  相似文献   

13.
The outer membrane protein LambB from Escherichia coli has been crystallized from detergent-containing solutions. Several different crystal habits can be obtained under the same ionic and precipitant conditions by altering the detergent head group composition of the protein-detergent mixed micelle or by adding polar organic compounds. Two crystal forms have been partially characterized as P1 and C2221, the former diffracting to beyond 4 A resolution and the latter to 6 A. The detergents used were beta-octyl glucoside, octyl tetraoxyethylene, and octyl polyoxyethylene (polydisperse) either alone or as mixtures. In some experiments, the addition of small nonionic amphiphiles having n-butyl alkyl tails significantly influenced crystallization. The experiments suggest that the detergent region of the mixed micelle plays a critical role in crystal formation. Using the methods developed here for LamB and also for matrix porin (Garavito, R. M., Jenkins, J. A., Jansonius, J. N., Karlsson, R., and Rosenbusch, J. P. (1983) J. Mol. Biol. 164, 313-327), an additional protein from the outer membrane, OmpA, has been obtained as a microcrystalline preparation.  相似文献   

14.
15.
Summary We have determined the sequence of the lamB gene from Klebsiella pneumoniae. It encodes the precursor to the LamB protein, a 429 amino acid polypeptide with maltoporin function. Comparison with the Escherichia coli LamB protein reveals a high degree of homology, with 325 residues strictly identical. The N-terminal third of the protein is the most conserved part of the molecule (1 change in the signal sequence, and 13 changes up to residue 146 of the mature protein). Differences between the two mature proteins are clustered mainly in six regions comprising residues 145–167, 173–187, 197–226, 237–300, 311–329, and 367–387 (K. pneumoniae LamB sequence). The most important changes were found in regions predicted by the two-dimensional model of LamB folding to form loops on the cell surface. In vivo maltose and maltodextrin transport properties of E. coli K 12 and K. pneumoniae strains were identical. However, none of the E. coli K12 LamB-specific phages was able to plaque onto K. pneumoniae. Native K. pneumoniae LamB protein forms highly stable trimers. The protein could be purified by affinity chromatography on starch-Sepharose as efficiently as the E. coli K12 LamB protein, indicating a conservation of the binding site for dextrins. However, none of the monoclonal antibodies directed against native E. coli K12 LamB protein recognized native purified K. pneumoniae LamB protein. These data indicate that most of the variability occurs within exposed regions of the protein and provide additional support for the proposed model of LamB folding. The fact that the N-terminal third of the protein is highly conserved is in agreement with the idea that it is part of, or constitutes, the pore domain located within the transmembranous channel and that it is not accessible from the cell surface.  相似文献   

16.
The 200,000-dalton neurofilament subunit (P200) and the 160,000-dalton (P160) and 78,000-dalton (P78) neurofilament subunits were partially purified from bovine brain. Intact neurofilaments were prepared by high- speed and sucrose-zone centrifugation. The crude neurofilament was solubilized in 8 M urea solution containing pyridine, formic acid, and 2-mercaptoethanol. The solubilized neurofilament was purified by carboxymethyl (CM) cellulose column and hydroxylapatite column chromatography. The P200 was purified as separate from P160 and P78, but the P160 and P78 subunits were copurified on CM cellulose, hydroxylapatite, Bio-Gel A150m, and Sephadex G-150 column chromatography. Electron microscopy of these purified neurofilament subunits revealed the P200 subunit as a globular structure, and the P160 and P78 subunits as a rod-shaped structure extending up to 120 nm with a 8- to 12-nm width. In the presence of 200 mM KCl, 15 mM MgCl2, and 1 mM ATP, the purified subunits assembled into long filaments. Under the assembly condition, P160 and P78 subunits elongated up to 500 nm, but the longer filament formation required the presence of P200 subunits. The filaments formed in vitro were of two types: long straight filaments and intertwined knobby-type filaments. From these results, we have suggested that P160 and P78 form the neurofilament backbone structure and P200 facilitates the assembly of the backbone units into longer filaments.  相似文献   

17.
The course of the assembly of ribosomal subunits in yeast   总被引:17,自引:0,他引:17  
The course of the assembly of the various ribosomal proteins of yeast into ribosomal particles has been studied by following the incorporation of radioactive individual protein species in cytoplasmic ribosomal particles after pulse-labelling of yeast protoplasts with tritiated amino acids. The pool of ribosomal proteins is small relative to the rate of ribosomal protein synthesis, and, therefore, does not affect essentially the appearance of labelled ribosomal proteins on the ribosomal particles. From the labelling kinetics of individual protein species it can be concluded that a number of ribosomal proteins of the 60 S subunit (L6, L7, L8, L9, L11, L15, L16, L23, L24, L30, L32, L36, L40, L41, L42, L44 and L45) associate with the ribonucleoprotein particles at a relatively late stage of the ribosomal maturation process. The same was found to be true for a number of proteins of the 40 S ribosomal subunit (S10, S27, S31, S32, S33 and S34). Several members (L7, L9, L24 and L30) of the late associating group of 60-S subunit proteins were found to be absent from a nuclear 66 S precursor ribosomal fraction. These results indicate that incorporation of these proteins into the ribosomal particles takes place in the cytoplasm at a late stage of the ribosomal maturation process.  相似文献   

18.
In order to identify sequences involved in the localization of LamB, an outer membrane protein from E coli K12, mutagenesis by linker insertion has been performed on a lamB gene copy carried on a plasmid devised for this purpose. An analysis of the first set of 16 clones constructed by this technique shows that, in these clones, the lamB protein is altered either by frameshift mutations leading to abnormal COOH terminal (usually premature termination) or by in-phase deletions or small insertions. Except for two in-phase linker insertions, which only slightly changed the behavior of the protein, the modified proteins are either toxic to cell growth or unstable. In all cases examined so far, the modified proteins were in the outer membrane. We suggest that toxicity is due to incorrect folding, which leads to disruption of the outer membrane. The nature of the genetic alterations leads to the hypothesis that the first 183 amino acids of the LamB mature protein contain, together with the signal sequence, all the instructions needed for proper localization.  相似文献   

19.
The manipulation of organisms using combinations of gene knockout, RNAi and drug interaction experiments can be used to reveal regulatory interactions between genes. Several algorithms have been proposed that try to reconstruct the underlying regulatory networks from gene expression data sets arising from such experiments. Often these approaches assume that each gene has approximately the same number of interactions within the network, and the methods rely on prior knowledge, or the investigator's best guess, of the average network connectivity. Recent evidence points to scale-free properties in biological networks, however, where network connectivity follows a power-law distribution. For scale-free networks, the average number of regulatory interactions per gene does not satisfactorily characterise the network. With this in mind, a new reverse engineering approach is introduced that does not require prior knowledge of network connectivity and its performance is compared with other published algorithms using simulated gene expression data with biologically relevant network structures. Because this new approach does not make any assumptions about the distribution of network connections, it is suitable for application to scale-free networks.  相似文献   

20.
Ferritin is an iron storage protein found in most living organisms as a natural assembled macromolecule. For studying the functional ability of the ferritin assembly, human H- and L-ferritins were expressed and purified from Pichia pastoris strain GS115. The recombinant H- and L-ferritins showed a globular form with transmission electron microscopy. The rate of iron uptake for H-ferritin was significantly faster than that for the L-ferritin in vitro. By gel permeation chromatography analysis, recombinant ferritins were confirmed as multimeric subunits with high molecular weight and it was indicated that assembled subunits were able to store iron in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号