首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
lamB is the structural gene for the bacteriophage lambda receptor, a multifunctional protein located in the outer membrane of Escherichia coli K-12. We present a method for deletion mapping of any lamB mutations with a recognizable pheno-type. This method involves a transducing phage constructed by in vitro recombination which can also be used for complementation, deoxyribonucleic acid sequence, and in vitro protein synthesis studies with the mutated lamB gene. Using this method, we mapped 18 lamB missense mutations which confer resistance to phage lambda h+ (wild-type host range). The main results were the following. (i) None of the 18 mutations was located in the first 4 deletion intervals out of the 11 of the genetic map. (ii) These mutations were clustered according to their phenotype as follows. (a) Class I mutations, which allow growth of lambda h and lambda hh* (one-step and two-step host range mutants of lambda, respectively), were located in three regions--three in interval V, four in interval VIII-IX, and three in interval X-XI. Only the last three mutations still allowed growth of phage K10 which also uses the lambda receptor, and two of them still allowed reversible binding of lambda h+. (b) All seven class II mutations allowed only growth of lambda hh* and mapped in interval V. These results are discussed in the frame of a genetic approach to the functional topology of the lambda receptor.  相似文献   

2.
Mutants affected in lamB, the structural gene for phage lambda receptor, are unable to utilize maltose when it is present at low concentrations (less than or equal 10 muM). During growth in a chemostat at limiting maltose concentrations, the lamB mutants tested were selected against in the presence of the wild-type strain. Transport studies demonstrate that most lamB mutants have deficient maltose transport capacities at low maltose concentrations. When antibodies against purified phage lambda receptor are added to a wild-type strain, transport of maltose at low concentrations is significantly reduced. These results strongly suggest that the phage lambda receptor molecule is involved in maltose transport.  相似文献   

3.
Gene lamB encodes the outer membrane receptor for phage lambda in Escherichia coli K12. We have determined the DNA sequence alterations of 17 lamB point mutations which result in resistance to phage lambda h+. The mutations correspond to four phenotypic classes according to the pattern of growth of three phages which use the lambda receptor: lambda h (a one-step host-range derivative of lambda h+), lambda hh* (a two-step host-range derivative of lambda h+) and K10 (another lambdoid phage). Fourteen mutations are of the missense type and correspond to Gly to Asp changes distributed as follows. One class I mutation is at position 382 of the mature lambda receptor. Seven class I* mutations, four of which at least are independent, are at position 401. Six independent class II mutations are at position 151. The three other (class III) mutations are of the nonsense type. They change codons TGG (Trp) into TAG (amber) at positions 120 (two mutations) and 351 (one mutation). Implications of these results for the topological organization of the lambda receptor as well as possible reasons for the limited number of altered sites detected are discussed.  相似文献   

4.
On Some Genetic Aspects of Phage λ Resistance in E. COLI K12   总被引:12,自引:0,他引:12  
J. P. Thirion  M. Hofnung 《Genetics》1972,71(2):207-216
Most mutations rendering E. coli K12 resistant to phage lambda, map in two genetic regions malA and malB.-The malB region contains a gene lamB specifically involved in the lambda receptor synthesis. Twenty-one independent lamB mutations studied by complementation belonged to a single cistron. This makes it very likely that lamB is monocistronic. Among the lamB mutants some are still sensitive to a host range mutant of phage lambda. Mutations mapping in a proximal gene essential for maltose metabolism inactivate gene lamB by polarity confirming that both genes are part of the same operon. Because cases of intracistronic complementation have been found, the active lamB product may be an oligomeric protein.-Previously all lambda resistant mutations in the malA region have been shown to map in the malT cistron. malT is believed to be a positive regulatory gene necessary for the induction of the "maltose operons" in the malA region and in the malB region of the E. coli K12 genetic map. No trans dominant malT mutation have been found. Therefore if they exist, they occur at a frequency of less than 10(-8), or strongly reduce the growth rate of the mutants.  相似文献   

5.
We have analyzed eight new phage-resistant missense mutations in lamB. These mutations identify five new amino acid residues essential for phage lambda adsorption. Two mutations at positions 245 and 382 affect residues which were previously identified, but lead to different amino acid changes. Three mutations at residues 163, 164, and 250 enlarge and confirm previously proposed phage receptor sites. Two different mutations at residue 259 and one at 18 alter residues previously suggested as facing the periplasmic face. The mutation at residue 18 implicates for the first time the amino-terminal region of the LamB protein in phage adsorption. The results are discussed in terms of the topology of the LamB protein.  相似文献   

6.
We present the DNA sequence alterations due to seven lamB missense mutations yielding resistance to phages lambda and K10. They reveal five different amino acid positions in the LamB protein. Three positions (245, 247 and 249) define a new region required for phage adsorption. The two other positions (148 and 152) belong to a region where mutations to phage resistance has already been detected. These two regions are hydrophilic and could belong to turns of the protein located at the surface of the cell. All the missense mutational alterations to phage resistance sequenced in the LamB protein correspond to 10 sites located in four different segments of the polypeptide chain. We discuss their location in terms of the notion of phage receptor site and of a working model for the organization of this protein in the outer membrane of Escherichia coli.  相似文献   

7.
lamB is the structural gene for the bacteriophage lambda receptor in Escherichia coli K-12. In vivo and in vitro studies of the lambda receptor from lamB missence mutants selected as resistant to phage lambda h+ showed the following. (i) Resistance was not due to a change in the amount of lambda receptor protein present in the outer membrane but rather to a change in activity. All of the mutants were still sensitive to phage lambda hh*, a two-step host range mutant of phage lambda h+. Some (10/16) were still sensitive to phage lambda h, a one-step host range mutant. (ii) Resistance occurred either by a loss of binding ability or by a block in a later irreversible step. Among the 16 mutations, 14 affected binding of lambda h+. Two (lamB106 and lamB110) affected inactivation but not binding; they represented the first genetic evidence for a role of the lambda receptor in more than one step of phage inactivation. Similarly, among the six mutations yielding resistance to lambda h, five affected binding and one (lamB109) did not. (iii) The pattern of interactions between the mutated receptors and lambda h+ and its host range mutants were very similar, although not identical, in vivo and in vitro. Defects were usually more visible in vitro than in vivo, the only exception being lamB109. (iv) The ability to use dextrins as a carbon source was not appreciably affected in the mutants. Possible working models and the relations between phage infection and dextrins transport were briefly discussed.  相似文献   

8.
Chemotaxis towards maltose is specifically defective in many strains of Escherichia coli carrying mutations affecting lamB, the gene coding for the outer membrane receptor for bacteriophage lambda. However, with one exception, the most extreme effect of lamB mutants on the maltose response as determined in the capillary assay is a shift to higher sugar concentrations and a reduction in the number of bacteria accumulated to about 25% of the wild-type level. The severity of the taxis defect is strongly correlated with reduced ability of the cells to take up the maltose present at 1 and 10 muM. Evidence presented here and in the accompanying paper indicates that the lambda receptor is involved in the transport of maltose at these concentrations. The effects of lamB mutations on maltose taxis can be explained by postulating that the high-affinity maltose transport system in which the lambda receptor participates transfers maltose from the surrounding medium across the outer membrane and into the periplasmic space. If the maltose chemoreceptor detects sugar present in the periplasmic space, and not molecules external to the outer membrane, then defective transport of low concentrations of maltose into the periplasm would result in the observed apparent reduction in the sensitivity of the maltose receptor. Thus, the lambda receptor protein would participate in maltose chemorecepton only indirectly through its role in maltose transport.  相似文献   

9.
The Escherichia coli LamB protein is located in the outer membrane. It is both a component of the maltose and maltodextrin transport system, and the receptor for phages lambda and K10. It is a trimer composed of three identical polypeptide chains, each containing 421 residues. Six independent mutants have been isolated, in which the LamB protein is altered in its interaction with one or more monoclonal antibodies specific for regions of the protein that are exposed at the cell surface. Some of the mutations also altered the binding site for phage lambda. All of the mutations were clustered in the same region of the lamB gene, corresponding to residues 333-394 in the polypeptide. This and previous results strongly suggest that a rather large segment of the LamB polypeptide, extending from residue 315 to 401, is exposed at the outer face of the outer membrane. This segment would bear the epitopes for the four available anti-LamB monoclonal antibodies that react with the cell surface, and part of the binding site for phage lambda.  相似文献   

10.
The lamB protein of Escherichia coli was initially recognized as the receptor for bacteriophage lambda. It is now shown also to constitute the receptor for phage K10. The lamB protein interacts with phage K10 in vitro, but this interaction does not lead to phage inactivation. Most lambda-resistant labB mutants are also resistant to K10, and vice versa. However, a significant proportion of the mutants resistant to one of the phages is sensitive to the other. Nineteen K10-resistant lambda-sensitive mutants have been studied. Only six of them produce a lamB protein which seems totally unimpaired in its ihe same deletion interval of the lamB gene. The corresponding region of the lamB polypeptide must be specifically involved in the interaction with phage K10. An unusual pattern of K10 host range mutants has been obtained; two calsses of such mutants could be defined, growing on two distinct classes of K10-resistant lamB mutants.  相似文献   

11.
Some Escherichia coli K-12 lamB mutants, those producing reduced amounts of LamB protein (one-tenth the wild type amount), grow normally on dextrins but transport maltose when present at a concentration of 1 microM at about one-tenth the normal rate. lamB Dex- mutants were found as derivatives of these strains. These Dex- mutants are considerably impaired in the transport of maltose at low concentrations (below 10 microM), and they have a structurally altered LamB protein which is impaired in its interaction with phages lambda and K10 but still interacts with a lambda host range mutant lambda hh*. The Dex- mutants are double lamB mutants carrying one mutation, already present in the parental strains, that reduces LamB synthesis and a second that alters LamB structure. The secondary mutations, present in different independent Dex- mutants, are clustered in the same region of the lamB gene. Dex+ revertants were isolated and analyzed: when the altered LamB protein is made in wild-type amount, due to a reversion of the first mutation, the phenotype reverts to Dex+. However, these Dex+ revertants are still very significantly impaired in maltose transport at low concentrations (below 10 microM).  相似文献   

12.
Abstract We have constructed a multicopy plasmid vector (pAMH62) expressing lamB , the gene coding for the phage λ receptor protein in Escherichia coli . In this construction, the lamB structural gene was fused to the ompR promoter of E. coli . The ompR promoter was employed because: (i) it can function in other gram negative bacteria; (ii) it expresses lamB in a multicopy state at a level comparable to that of maltose-induced chromosomal lamB in E. coli . The vector pAMH62 was tested in E. coli and Salmonella typhimurium . In both cases the LamB protein was produced in similar amounts, was properly integrated to the outer membrane and was functional as phage λ receptor. Thus pAMH62 should provide a useful tool for extending the host range of phage λ and λ-derived vectors to other Gram-negative bacteria.  相似文献   

13.
Phenotypic characterization and mapping of more than 50 Mal(-) mutations located in the malB region lead one to divide the site for Mal(-)lambdas mutations (formerly called gene malB) in that region, into two adjacent genetic segments malJ and malK. malJ and malK are both involved in maltose permeation. It is suggested that (i) malK and lamB, the only known gene specifically involved in phage lambda adsorption (20), constitute an operon of polarity malK lamB. (ii) malJ and malK correspond to two different genes, and (iii) a promoter for the malK lamB operon is located between malJ and malK. Since lambda receptors and maltose permease are inducible by maltose and absent in malT mutants, it is likely that the expression of the malK lamB operon is controlled by the product of gene malT, the positive regulatory gene of the maltose system.  相似文献   

14.
In Escherichia coli K12 the product of gene lamB is an outer membrane protein involved in the transport of maltose and maltodextrins and serving as a receptor for several bacteriophages including lambda. About 30 to 40% of this protein can be recovered associated to peptidoglycan when the cells are dissolved in sodium dodecyl sulfate in the presence of 2 mM Mg2+ ions. The bound protein can then be quantitatively eluted from peptidoglycan by incubating the complex in Triton X-100 and EDTA, or sodium dodecyl sulfate and NaCl. The protein eluted in such ways is still totally active in its phage-neutralizing activity. Two other membrane proteins known to behave similarly to the lamB protein are proteins Ia and Ib. However the binding of these proteins to peptidoglycan appears tighter, in several respects, than that of the lamB protein. The lamB protein may span the outer membrane since it appears to interact with the peptidoglycan on the inner side of this membrane while it is known to be accessible to both phages and antibodies at the cell surface.  相似文献   

15.
16.
A Davidson  P Yau  H Murialdo    M Gold 《Journal of bacteriology》1991,173(16):5086-5096
The terminase enzyme of bacteriophage lambda is a hetero-oligomeric protein which catalyzes the site-specific endonucleolytic cleavage of lambda DNA and its packaging into phage proheads; it is composed of the products of the lambda Nul and A genes. We have developed a simple method to select mutations in the terminase genes carried on a high-copy-number plasmid, based on the ability of wild-type terminase to kill recA strains of Escherichia coli. Sixty-three different spontaneous mutations and 13 linker insertion mutations were isolated by this method and analyzed. Extracts of cells transformed by mutant plasmids displayed variable degrees of reduction in the activity of one or both terminase subunits as assayed by in vitro lambda DNA packaging. A method of genetically mapping plasmid-borne mutations in the A gene by measuring their ability to rescue various lambda Aam phages showed that the A mutations were fairly evenly distributed across the gene. Mutant A genes were also subcloned into overproducing plasmid constructs, and it was determined that more than half of them directed the synthesis of normal amounts of full-length A protein. Three of the A gene mutants displayed dramatically reduced in vitro packaging activity only when immature (uncut) lambda DNA was used as the substrate; therefore, these mutations may lie in the endonuclease domain of terminase. Interestingly, the putative endonuclease mutations mapped in two distinct locations in the A gene separated by a least 400 bp.  相似文献   

17.
Holin proteins are phage-induced integral membrane proteins which regulate the access of lytic enzymes to host cell peptidoglycan at the time of release of progeny viruses by host cell lysis. We describe the identification of the membrane-containing phage PRD1 holin gene (gene XXXV). The PRD1 holin protein (P35, 12.8 kDa) acts similarly to its functional counterpart from phage lambda (gene S), and the defect in PRD1 gene XXXV can be corrected by the presence of gene S of lambda. Several nonsense, missense, and insertion mutations in PRD1 gene XXXV were analyzed. These studies support the overall conclusion that the charged amino acids at the protein C terminus are involved in the timing of host cell lysis.  相似文献   

18.
The prlC gene of E. coli was originally identified as an allele, prlC1, which suppresses certain signal sequence mutations in the genes for several exported proteins. We have isolated six new alleles of prlC that also confer this phenotype. These mutations can be placed into three classes based on the degree to which they suppress the lamB signal sequence deletion, lamBs78. Genetic mapping reveals that the physical location of the mutations in prlC correlates with the strength of the suppression, suggesting that different regions of the gene can be altered to yield a suppressor phenotype. We also describe an in vivo cloning procedure using lambda placMu9H. The procedure relies on transposition and illegitimate recombination to generate a specialized transducing phage that carries prlC1. This method should be applicable to any gene for which there is a mutant phenotype.  相似文献   

19.
Affinity chromatography was used as a positive genetic selection technique for the isolation of cells exhibiting high levels of surface receptor expression. Starting from a large population of Escherichia coli with no maltodextrin receptor due to a deletion of malT, the positive regulator gene required for receptor synthesis, cells were chromatographically enriched that could bind to starch-Sepharose, an immobilized ligand of the receptor. One such isolate showed over 25% of wild-type-induced levels of receptor in the absence of malT and levels higher than that of the wild type in a malT+ background. In contrast to wild-type cells, receptor expression in the isolate was insensitive to control by cAMP. The maltodextrin receptor synthesized by the mutant was identical to wild-type protein in terms of ligand affinity and electrophoretic mobility and was dependent on lamB, the structural gene for the receptor. The directed evolution of this novel form of lamB expression was dependent on at least two mutations in the isolate.  相似文献   

20.
A simple technique for the isolation of deletion mutants of phage lambda.   总被引:5,自引:0,他引:5  
We describe a simple technique for isolating deletion mutants of phage lambda and use it to dissect a cloned fragment of foreign DNA. The technique is based on our previous finding that the normally essential product of lambda head gene D is dispensible for phage growth if the DNA content of the phage is less than 82% that of lambda wild-type (Sternberg and Weisberg, 1977). A significant fraction of the few phage that form plaques when a D amber mutant is plated on a nonsuppressing host contains deletions that reduce the phage chromosome size to less than 82% that of wild-type. It is possible to isolate deletions ranging in size from less than 1.5 kb to 14 kb (3 to 27% of wild-type lambda), and the size range can be restricted by an appropriate choice of the DNA content of the starting phage. This method, unlike the older EDTA or heat resistance methods, permits the scoring of deletions because of the absence of phenotypic variants. We investigated the effect of several host and phage mutations on deletion frequency and type and have determined that a host polA mutation increases the frequency of deletions about 30-50-fold without changing the type of deletions. A host mutD mutation or thymine deprivation increases deletion frequency about 10-fold. In contrast, a host ligts mutation has no effect on the frequency of deletions. We have also determined that the size of the smallest lambda chromosome packageable in a plaque-forming phage particle is 72-73% that of lambda wild-type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号