首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease.  相似文献   

2.
3.
The rise of multiply antibiotic resistant bacteria has led to searches for novel antimicrobial therapies to treat infections. Photodynamic therapy (PDT) is a potential candidate; it uses the combination of a photosensitizer with visible light to produce reactive oxygen species that lead to cell death. We used PDT mediated by meso-mono-phenyl-tri(N-methyl-4-pyridyl)-porphyrin (PTMPP) to treat burn wounds in mice with established Staphylococcus aureus infections The third degree burn wounds were infected with bioluminescent S. aureus. PDT was applied after one day of bacterial growth by adding a 25% DMSO/500 microM PTMPP solution to the wound followed by illumination with red light and periodic imaging of the mice using a sensitive camera to detect the bioluminescence. More than 98% of the bacteria were eradicated after a light dose of 210 J cm(-2) in the presence of PTMPP. However, bacterial re-growth was observed. Light alone or PDT both delayed the wound healing. These data suggest that PDT has the potential to rapidly reduce the bacterial load in infected burns. The treatment needs to be optimized to reduce wound damage and prevent recurrence.  相似文献   

4.
Aim: This article investigated the lethal effect and morphological changes on Staphylococcus aureus strains ATCC 25923 and ATCC 6538P produced by chitosan‐Ag (I) films as observed by electron microscopy. Methods and Results: The antimicrobial activity of films against staphylococci was determined using the broth dilution method and agar diffusion test. Killing curves, transmission and scanning electron microscopy (TEM and SEM) techniques were employed to evaluate the bacterial death and morphological changes in bacterial cells after exposure to chitosan‐Ag (I) films. Films affected the cell structure of Staph. aureus, causing elongation of cells, disaggregation of grape‐like cluster, contraction of bacterial cytoplasm, thickening of cell wall, increase in cell wall roughness, cell disruption with loss of intracellular material, filamentation and bacteriolysis, as seen in the micrographs following 3, 6, 12 and 16 h of incubation. Conclusions: Obtained images clearly show that chitosan‐Ag (I) films have a notable antistaphylococcal activity. Significance and Impact of the Study: Information from this study can be employed in guiding future strategies to improve the design of materials for the food industry packaging.  相似文献   

5.
Cell death induced by oxidative insult targeted to mitochondrial interior of A431 cells was investigated. For stimulated production of ROS in the inner space of mitochondria, safranin-mediated photodynamic treatment (PDT) was employed. Another photosensitizer, mTHPC, which diffusely localizes to cellular membranes, was used for comparison. Cell response to the oxidative insult in mitochondrial interior was different from the response to the photodamage produced in cellular membranes. Autophagy and apoptotic features of cell death in response to mTHPC-PDT was observed in a wide range of PDT doses. Cell response to the oxidative stress in mitochondrial interior was dose-dependent. Damage up to CD50 did not reveal hallmarks of dead cells. At intermediate damage (CD50), cells manifested enhanced autophagy and reduced population of S-phase, but not apoptosis. Severe damage (beyond CD70) induced apoptosis following release of cytochrome c and caspase activation, in addition to autophagy and cell cycle arrest.  相似文献   

6.
The aim of this study was to assess the efficacy of quantitative ultrasound imaging in characterizing cancer cell death caused by enhanced radiation treatments. This investigation focused on developing this ultrasound modality as an imaging-based non-invasive method that can be used to monitor therapeutic ultrasound and radiation effects. High-frequency (25 MHz) ultrasound was used to image tumor responses caused by ultrasound-stimulated microbubbles in combination with radiation. Human prostate xenografts grown in severe combined immunodeficiency (SCID) mice were treated using 8, 80, or 1000 µL/kg of microbubbles stimulated with ultrasound at 250, 570, or 750 kPa, and exposed to 0, 2, or 8 Gy of radiation. Tumors were imaged prior to treatment and 24 hours after treatment. Spectral analysis of images acquired from treated tumors revealed overall increases in ultrasound backscatter intensity and the spectral intercept parameter. The increase in backscatter intensity compared to the control ranged from 1.9±1.6 dB for the clinical imaging dose of microbubbles (8 µL/kg, 250 kPa, 2 Gy) to 7.0±4.1 dB for the most extreme treatment condition (1000 µL/kg, 750 kPa, 8 Gy). In parallel, in situ end-labelling (ISEL) staining, ceramide, and cyclophilin A staining demonstrated increases in cell death due to DNA fragmentation, ceramide-mediated apoptosis, and release of cyclophilin A as a result of cell membrane permeabilization, respectively. Quantitative ultrasound results indicated changes that paralleled increases in cell death observed from histology analyses supporting its use for non-invasive monitoring of cancer treatment outcomes.  相似文献   

7.
INTRODUCTION: Quantitative ultrasound parameters based on form factor models were investigated as potential biomarkers of cell death in breast tumor (MDA-231) xenografts treated with chemotherapy. METHODS: Ultrasound backscatter radiofrequency data were acquired from MDA-231 breast cancer tumor–bearing mice (n = 20) before and after the administration of chemotherapy drugs at two ultrasound frequencies: 7 MHz and 20 MHz. Radiofrequency spectral analysis involved estimating the backscatter coefficient from regions of interest in the center of the tumor, to which form factor models were fitted, resulting in estimates of average scatterer diameter and average acoustic concentration (AAC). RESULTS: The ∆AAC parameter extracted from the spherical Gaussian model was found to be the most effective cell death biomarker (at the lower frequency range, r2 = 0.40). At both frequencies, AAC in the treated tumors increased significantly (P = .026 and .035 at low and high frequencies, respectively) 24 hours after treatment compared with control tumors. Furthermore, stepwise multiple linear regression analysis of the low-frequency data revealed that a multiparameter quantitative ultrasound model was strongly correlated to cell death determined histologically posttreatment (r2 = 0.74). CONCLUSION: The Gaussian form factor model–based scattering parameters can potentially be used to track the extent of cell death at clinically relevant frequencies (7 MHz). The 20-MHz results agreed with previous findings in which parameters related to the backscatter intensity (i.e., AAC) increased with cell death. The findings suggested that, in addition to the backscatter coefficient parameter ∆AAC, biological features including tumor heterogeneity and initial tumor volume were important factors in the prediction of cell death response.  相似文献   

8.
Transglutaminase 2 (TG2) is a versatile protein that is implicated in significant biological processes, including cell death and degenerative diseases. A possible role of TG2 in the apoptotic death of cancer cells induced by photodynamic therapy (PDT) was suggested recently; however, the mechanism by which TG2 regulates apoptotic responses to PDT remains to be elucidated. In this study, we investigated the key signaling pathways stimulated during apoptotic cell death following PDT and whether inhibition of TG2 activation using pharmacological approaches and siRNAs affects the signaling pathways. PDT caused the release of both cytochrome c and apoptosis-inducing factor (AIF) by damaging mitochondria, which resulted in caspase-dependent and caspase-independent apoptotic cell death, respectively. Released AIF translocated to the nucleus and, synergistically with the caspase-dependent pathway, led to apoptotic cell death. Both the caspase cascade and the activation of AIF following PDT were mediated by TG2 activation. In addition, PDT-activated calpain was responsible for the sequential events of Bax translocation, the collapse of ΔΨ(m), caspase-3 activation, and AIF translocation, all of which were provoked by TG2 activation. Together, these results demonstrate that PDT with a chlorin-based photosensitizer targets TG2 by activating calpain-induced Bax translocation, which induces apoptotic cell death through both caspase-dependent and AIF-mediated pathways. Moreover, these results indicate that TG2 may be a possible therapeutic target for PDT treatment of cancer.  相似文献   

9.
Cell death following photodynamic therapy (PDT) with the photosensitizer Pc 4 involves the intrinsic pathway of apoptosis. To evaluate the importance of Bax in apoptosis after PDT, we compared the PDT responses of Bax-proficient (Bax+/−) and Bax knock-out (BaxKO) HCT116 human colon cancer cells. PDT induced a slow apoptotic process in HCT Bax+/− cells following a long delay in the activation of Bax and release of cytochrome c from mitochondria. Although cytochrome c was not released from mitochondria following PDT in BaxKO cells, an alternative mechanism of caspase-dependent apoptosis with extensive chromatin and DNA degradation was found in these cells. This alternative process was less efficient and slower than the normal apoptotic process observed in Bax+/− cells. Early events upon PDT, such as the loss of mitochondrial membrane potential, photodamage to Bcl-2, and activation of p38 MAP kinase, were observed in both HCT116 cell lines. In spite of differences in the efficiency and mode of apoptosis induced by PDT in the Bax+/− and BaxKO cells, they were found to be equally sensitive to killing by PDT, as determined by loss of clonogenicity. Thus, for Pc 4-PDT, the commitment to cell death occurs prior to and independent of Bax activation, but the process of cellular disassembly differs in Bax-expressing vs. non-expressing cells.  相似文献   

10.
Bcl‐2 family proteins are critical for the regulation of apoptosis, with the pro‐apoptotic members Bax essential for the release of cytochrome c from mitochondria in many instances. However, we found that Bax was activated after mitochondrial depolarization and the completion of cytochrome c release induced by photodynamic therapy (PDT) with the photosensitizer Photofrin in human lung adenocarcinoma cells (ASTC‐a‐1). Besides, knockdown of Bax expression by gene silencing had no effect on mitochondrial depolarization and cytochrome c release, indicating that Bax makes no contribution to mitochondrial outer membrane permeabilization (MOMP) following PDT. Further study revealed that Bax knockdown only slowed down the speed of cell death induced by PDT, indicating that Bax is not essential for PDT‐induced apoptosis. The fact that Bax knockdown totally inhibited the mitochondrial accumulation of dynamin‐related protein (Drp1) and Drp1 knockdown attenuated cell apoptosis suggest that Bax can promote PDT‐induced apoptosis through promoting Drp1 activation. Besides, Drp1 knockdown also failed to inhibit PDT‐induced cell death finally, indicating that Bax‐mediated Drp1's mitochondrial translocation is not essential for PDT‐induced cell apoptosis. On the other hand, we found that protein kinase Cδ (PKCδ), Bim L and glycogen synthase kinase 3β (GSK3β) were activated upon PDT treatment and might contribute to the activation of Bax under the condition. Taken together, Bax activation is not essential for MOMP but essential for Drp1‐mediated mitochondrial fission during the apoptosis caused by Photofrin‐PDT. J. Cell. Physiol. 226: 530–541, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Garg AD  Bose M  Ahmed MI  Bonass WA  Wood SR 《PloS one》2012,7(4):e34475
Photodynamic Therapy (PDT) involves the administration of a tumor localizing photosensitizing agent, which upon activation with light of an appropriate wavelength leads to the destruction of the tumor cells. The aim of the present study was to determine the efficacy of erythrosine as a photosensitizer for the PDT of oral malignancies. The drug uptake kinetics of erythrosine in malignant (H357) and pre-malignant (DOK) oral epithelial cells and their susceptibility to erythrosine-based PDT was studied along with the determination of the subcellular localization of erythrosine. This was followed by initial investigations into the mechanism of cell killing induced following PDT involving both high and low concentrations of erythrosine. The results showed that at 37 °C the uptake of erythrosine by both DOK and H357 cells increased in an erythrosine dose dependent manner. However, the percentage of cell killing observed following PDT differed between the 2 cell lines; a maximum of ~80% of DOK cell killing was achieved as compared to ~60% killing for H357 cells. Both the DOK and H357 cell types exhibited predominantly mitochondrial accumulation of erythrosine, but the mitochondrial trans-membrane potential (ΔΨ(m)) studies showed that the H357 cells were far more resistant to the changes in ΔΨ(m) when compared to the DOK cells and this might be a factor in the apparent relative resistance of the H357 cells to PDT. Finally, cell death morphology and caspase activity analysis studies demonstrated the occurrence of extensive necrosis with high dose PDT in DOK cells, whereas apoptosis was observed at lower doses of PDT for both cell lines. For H357 cells, high dose PDT produced both apoptotic as well as necrotic responses. This is the first instance of erythrosine-based PDT's usage for cancer cell killing.  相似文献   

12.

Background

Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid.

Methodology/Principal Findings

We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death.

Conclusions/Significance

Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.  相似文献   

13.
Osteomyelitis can lead to severe morbidity and even death resulting from an acute or chronic inflammation of the bone and contiguous structures due to fungal or bacterial infection. Incidence approximates 1 in 1000 neonates and 1 in 5000 children in the United States annually and increases up to 0.36% and 16% in adults with diabetes or sickle cell anaemia, respectively. Current regimens of treatment include antibiotics and/or surgery. However, the increasing number of antibiotic resistant pathogens suggests that alternate strategies are required. We are investigating photodynamic therapy (PDT) as one such alternate treatment for osteomyelitis using a bioluminescent strain of biofilm-producing staphylococcus aureus (S. aureus) grown onto kirschner wires (K-wire). S. aureus-coated K-wires were exposed to methylene blue (MB) or 5-aminolevulinic acid (ALA)-mediated PDT either in vitro or following implant into the tibial medullary cavity of Sprague-Dawley rats. The progression of S. aureus biofilm was monitored non-invasively using bioluminescence and expressed as a percentage of the signal for each sample immediately prior to treatment. S. aureus infections were subject to PDT 10 days post inoculation. Treatment comprised administration of ALA (300 mg kg(-1)) intraperitoneally followed 4 h later by light (635 +/- 10 nm; 75 J cm(-2)) delivered transcutaneously via an optical fiber placed onto the tibia and resulted in significant delay in bacterial growth. In vitro, MB and ALA displayed similar cell kill with > or =4 log(10) cell kill. In vivo, ALA-mediated PDT inhibited biofilm implants in bone. These results confirm that MB or ALA-mediated PDT have potential to treat S. aureus cultures grown in vitro or in vivo using an animal model of osteomyelitis.  相似文献   

14.
15.
The combination of high‐frequency ultrasound (HFUS) and UV represents a new approach to disinfecting surfaces. This study aimed to examine the inactivation efficiency of HFUS (1.7 MHz) and monochromatic UV radiation of KrCl excilamp (222 nm) in a single and a sequential mode against Bacillus cereus cells and spores added to glass surfaces. When treated by UV only, cells at populations of 103, 104, and 105 colony‐forming units (CFU)/cm2 showed 100% disinfection at high doses up to 1760 mJ/cm2. Spores at 104 CFU/cm2 were completely inactivated at a dose of 1170 mJ/cm2. Treatment with aqueous aerosol (produced by HFUS) reduced cell counts by 100% within a 40‐min exposure, whereas it was ineffective in inactivating spores under these conditions. In a sequential mode, the contaminated surface was pretreated with the sonicated aqueous aerosol and subsequently irradiated with the excilamp. It was found that HFUS exposure times and UV doses for complete inactivation decreased by a factor of 2 and 6–7, respectively, compared to sole HFUS or UV. A portable apparatus for surface disinfection was designed. The combined HFUS/UV method may be a promising technique for rapid disinfection of microbially contaminated surfaces.  相似文献   

16.
Photodynamic therapy (PDT) was discovered more than 100 years ago. Since then, many protocols and agents for PDT have been proposed for the treatment of several types of cancer. Traditionally, cell death induced by PDT was categorized into three types: apoptosis, cell death associated with autophagy, and necrosis. However, with the discovery of several other regulated cell death modalities in recent years, it has become clear that this is a rather simple understanding of the mechanisms of action of PDT. New observations revealed that cancer cells exposed to PDT can pass through various non-conventional cell death pathways, such as paraptosis, parthanatos, mitotic catastrophe, pyroptosis, necroptosis, and ferroptosis. Nowadays, immunogenic cell death (ICD) has become one of the most promising ways to eradicate tumor cells by activation of the T-cell adaptive immune response and induction of long-term immunological memory. ICD can be triggered by many anti-cancer treatment methods, including PDT. In this review, we critically discuss recent findings on the non-conventional cell death mechanisms triggered by PDT. Next, we emphasize the role and contribution of ICD in these PDT-induced non-conventional cell death modalities. Finally, we discuss the obstacles and propose several areas of research that will help to overcome these challenges and lead to the development of highly effective anti-cancer therapy based on PDT.Subject terms: Cancer immunotherapy, Cell death and immune response  相似文献   

17.
We have explored the intracellular cell organelle's structural alterations after photodynamic treatment with chlorin p6-histamine conjugate (Cp6-his) in human oral cancer cells. Herein, the cells were treated with Cp6-his (10 μm) and counterstained with organelle-specific fluorescence probes to find the site of intracellular localization using confocal microscopy. For photodynamic therapy (PDT), the cells were exposed to ~30 kJ/m2 red light (660 ± 20 nm) to induce ~90% cytotoxicity. We used the three-dimensional (3D) image reconstruction approach to analyze the photodynamic damage to cell organelles. The result showed that Cp6-his localized mainly in the endoplasmic reticulum (ER) and lysosomes but not in mitochondria and Golgi apparatus (GA). The 3D model revealed that in necrotic cells, PDT led to extensive fragmentation of ER and fragmentation and swelling of GA as well. Results suggest that the indirect damage to GA occurred due to loss of connection between ER and GA. Moreover, in damaged cells with no sign of necrosis, the perinuclear ER appeared condensed and surrounded by several small clumps at the peripheral region of the cell, and the GA was observed to form a single condensed structure. Since these structural changes were associated with apoptotic cell death, it is suggested that the necrotic and apoptotic death induced by PDT with Cp6-his is determined by the severity of damage to ER and indirect damage to GA. The results suggest that the indirect damage to cell organelle apart from the sites of photosensitizer localization and the severity of damage at the organelle level contribute significantly to the mode of cell death in PDT.  相似文献   

18.
Programmed death (PD) of the mycelium of Streptomyces lividans, namely, its delayed lysis in response to treatment with indolylmaleimide derivatives, which inhibit actinobacterial serine/threonine protein kinases (STPK), is described. Delayed lysis of mycelial cell was accompanied by DNA damage similar to PD in differentiating S. lividans mycelium. Two-dimensional electrophoresis and mass spectrometry were used to identify proteins up-regulated by a PD-inducing STPK inhibitor. Most of these proteins are known to be implicated in responses to various stress stimuli. Thus, our model of delayed cell lysis of actinobacteria upon STPK inhibition may serve for unveiling the molecular mechanisms of bacterial PD and for antimicrobial drug design.  相似文献   

19.
Apoptotic and autophagic responses to Bcl-2 inhibition and photodamage.   总被引:1,自引:0,他引:1  
Among the cellular responses to photodamage initiated by photodynamic therapy (PDT) are autophagy and apoptosis. While autophagy is a reversible process that can be both a survival and a death pathway, apoptosis is irreversible, leading only to cell death. In this study, we followed the fate of mouse leukemia L1210 cells after photodamage to the endoplasmic reticulum (ER) using a porphycene photosensitizer, where Bcl-2 was among the PDT targets. In wild-type cells, we observed a rapid wave of autophagy, presumed to represent the recycling of some damaged organelles, followed by apoptosis. Using shRNA technology, we created a Bax knockdown line (L1210/Bax(-)). In the latter cell line, we found a marked decrease in apoptosis after photodamage or pharmacologic inactivation of Bcl-2 function, but this did not affect PDT efficacy. Loss of viability was associated with a highly-vacuolated morphology consistent with autophagic cell death. Previous studies indicated pro-survival attributes of autophagy after low-dose PDT, suggesting that autophagy may be responsible for the 'shoulder' on the dose-response curve. It appears that attempts at extensive recycling of damaged organelles are associated with cell death, and that this phenomenon is amplified when apoptosis is suppressed.  相似文献   

20.
PDT (photodynamic therapy) has been used for the treatment of NMCC (non‐melanoma cutaneous cancer) particularly, human SCC (squamous cell carcinoma). However, the nature of the photosensitizer, the activation light source and the mode of cell death induced post‐PDT remains elusive. We tried to optimize PDT using the light‐activated (320–400 nm) St John's Wort‐derived compound, Hyp (hypericin). The work highlights the potential mode of cell death and the increased efficacy of the technique associated with multiple Hyp‐PDT treatment. SCC cells were exposed to different concentrations of Hyp and activated with light at 1 J/cm2 for 1 or 2 days. Thereafter with the optimum dose of Hyp proliferation, ROS (reactive oxygen species), and apoptosis were analysed by XTT [2,3‐bis‐(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐5‐carboxanilide] assay, FACS analysis and Fluorescent/Phase contrast microscopy was carried out for morphological studies. Hyp‐PDT produces more ROS after 1 day compared with 2 days and the mode of cell death is a necrotic caspase‐independent mechanism. We propose a novel ‘double‐hit/2‐day’ strategy to reduce the viability in SCC using Hyp‐based PDT as an adjunctive treatment modality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号