首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Specific stress treatments (sucrose starvation, alone or combined with a heat shock) applied to isolated tobacco (Nicotiana tabacum L.) microspores irreversibly blocked normal gametophytic development and induced the formation of embryogenic cells, which developed subsequently into pollen-derived embryos by culture at 25°C in a sugar-containing medium. A cold shock at 4°C did not inhibit microspore maturation in vitro and did not induce cell division activity, even when combined with a starvation treatment. In the absence of sucrose, microspores isolated in the G1 phase of the cell cycle replicated their DNA and accumulated in G2. Late microspores underwent miotosis during the first day of culture which resulted in a mixed population of bicellular pollen grains and uninucleate microspores, both embryogenic. After the inductive stress treatments the origin of the first multicellular structures, formed in the sugar-containing medium, could be traced to divisions of the microspore cell or divisions of the vegetative cell of bicellular pollen, indicating that the symmetry of microspore mitosis in vitro is not important for embryogenic induction. These results represent a step forward towards a unified model of induction of embryogenesis from microspores/pollen which, within a relatively wide developmental window, are competent to deviate from normal gametophytic development and initiate the alternative sporophytic programme, in response to specific stress signals.Abbreviation DAPI 4,6-diamidino-2-phenylindole We acknowledge the help of Monica Boscaiu and Zarko Hrzenjak with the artwork, and Michaela Braun-Mayer for growing the tobacco plants. This project was financed by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung, grant S6003-BIO.  相似文献   

2.
Summary Conditions favourable to embryogenesis from isolated microspores of Brassica rapa L. ssp. oleifera (canola quality) were identified. A population with enhanced responsiveness for microspore embryogenesis (C200) was synthesized by crossing individual plants showing microspore embryogenic potential. For optimal microspore embryogenesis, buds (2–3mm in length, containing mid-late uninucieate microspores) were collected from older plants (2 months old) and microspores isolated and washed in iron-free B5 medium. NLN medium with its iron content reduced to half was beneficial for initial microspore culture. An elevated temperature(33–35°C) during the first day of culture, followed by maintenance at 25°C resulted in dozens of embryos from each isolation (about 100 buds). Seeds were obtained from plants regenerated from microsporederived embryos after colchicine treatment.  相似文献   

3.
The dynamics of nuclear DNA synthesis were analysed in isolated microspores and pollen of Brassica napus that were induced to form embryos. DNA synthesis was visualized by the immunocytochemical labelling of incorporated Bromodeoxyuridine (BrdU), applied continuously or as a pulse during the first 24 h of culture under embryogenic (32 °C) and non-embryogenic (18 °C) conditions. Total DNA content of the nuclei was determined by microspectrophotometry. At the moment of isolation, microspore nuclei and nuclei of generative cells were at the G1, S or G2 phase. Vegetative nuclei of pollen were always in G1 at the onset of culture. When microspores were cultured at 18 °C, they followed the normal gametophytic development; when cultured at 32 °C, they divided symmetrically and became embryogenic or continued gametophytic development. Because the two nuclei of the symmetrically divided microspores were either both labelled with BrdU or not labelled at all, we concluded that microspores are inducible to form embryos from the G1 until the G2 phase. When bicellular pollen were cultured at 18 °C, they exhibited labelling exclusively in generative nuclei. This is comparable to the gametophytic development that occurs in vivo. Early bicellular pollen cultured at 32 °C, however, also exhibited replication in vegetative nuclei. The majority of vegetative nuclei re-entered the cell cycle after 12 h of culture. Replication in the vegetative cells preceded division of the vegetative cell, a prerequisite for pollen-derived embryogenesis.  相似文献   

4.
The major advantage of doubled haploids in plant breeding is the immediate achievement of complete homozygosity. Desired genotypes are thus fixed in one generation, reducing time and cost for cultivar or inbred development. Among the different technologies to produce doubled haploids, microspore embryogenesis is by far the most common. It usually requires reprogramming of microspores by stress such as cold, heat, and starvation, followed by embryo development under stress-free conditions. We report here the development of a simple and efficient isolated microspore culture system for producing doubled haploid wheat plants in a wide spectrum of genotypes, in which embryogenic microspores and embryos are formed without any apparent stress treatment. Microspores were isolated from fresh spikes in a nutrient-free medium by stirring and cultured in medium A2 in the dark at 25°C. Once embryogenic microspores were formed, ovaries and phytohormones were added directly to the cultures without changing the medium. The cultures were incubated in the dark at 25–27°C until the formation of embryos and then the embryos were transferred to regeneration medium. The regeneration frequency and percentage of green plants increased significantly using this protocol compared to the shed microspore culture method.Communicated by W. Harwood  相似文献   

5.
Summary Embryogenic microspore and pollen culture followed by subculture of microspore-derived plantlets enabled the production of clones ofBrassica napus cv. Topas. Flow-cytometric analysis revealed that most microspore- and pollen-derived embryos (pEMs) were haploid initially. Spontaneous diploidization occurred at the globular stage of the pEMs, and was expressed as the relative increase of the 2C and 4C nuclear DNA content. Diploidization occurred throughout various organs of the pEMs and resulted in the formation of haploid and doubled haploid chimerics. In some embryos, nearly all cells were doubled haploid. From early cotyledon stage onward, pure haploid embryos were not observed anymore. At late cotyledon and germination stages, pure doubled haploid embryos and plantlets increased in number. Tetraploid pEMs were found occasionally. A culture regime was established to induce somatic embryos on the pEM-derived young plantlets. The ploidy of the somatic embryos varied highly and tended to be the same as that of the tissue at the initiation site on the pEM-plant. The results show that during the embryogenic development ofB. napus microspores, spontaneous diploidization occurs at globular stage, and increases progressively, resulting in the formation of chimerical haploid and doubled haploid plants as well as pure doubled haploid plants; ploidy neither affects pEM development at embryo developmental stages nor somatic embryogenesis, that starts on young pEM-derived plantlets; doubled haploid somatic embryos can be cloned from single pEM-derived plantlets; and doubled haploid embryos develop to fertile plants.  相似文献   

6.
Brassica napus L. microspores at the late uninucleate to early binucleate stage of development can be induced in vitro to alter their development from pollen to embryo formation. High temperatures or other stress treatments are required to initiate this redirection process. The critical period for induction of microspore embryogenesis is within the first 8 h of temperature-stress imposition. During this period, which precedes the first embryogenic nuclear division, the process regulating the induction and sustainment of microspore embryogenesis is activated. A number of mRNAs and proteins, some of them possibly heat-shock proteins, appear in microspores during the commitment phase of the induction process.Abbreviations SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

7.
Induction of haploid embryos and regeneration of plantlets have been obtained, for the first time, in cork oak ( Quercus suber L.) by combining a starvation treatment in anther culture with a mild heat shock at 33°C for 5 days, followed by culture at 25°C in a simple agar medium without growth regulators. The same conditions had been shown previously to be optimal for embryogenic induction in isolated microspore cultures of several model species such as tobacco and wheat. These results support the notion that stress, particularly sucrose starvation, a heat shock or a combination of both treatments could be the major and general signal responsible for the inhibition of normal gametophytic development of the microspores and for the induction of the alternative embryogenic pathway. A similar approach may be used for the production of haploid and doubled haploids for plant breeding in other species that, like most forest trees, are still recalcitrant in anther culture.  相似文献   

8.
Summary Brassica napus cv. Topas microspores isolated and cultured near the first pollen mitosis and subjected to a heat treatment develop into haploid embryos at a frequency of about 20%. In order to obtain a greater understanding of the induction process and embryogenesis, transmission electron microscopy was used to study the development of pollen from the mid-uninucleate to the bicellular microspore stage. The effect of 24 h of high temperature (32.5 °C) on microspore development was examined by heat treating microspore cultures or entire plants. Mid-uninucleate microspores contained small vacuoles. Late-uninucleate vacuolate microspores contained a large vacuole. The large vacuole of the vacuolate stage was fragmented into numerous small vacuoles in the late-uninucleate stage. The late-uninucleate stage contained an increased number of ribosomes, a pollen coat covering the exine and a laterally positioned nucleus. Prior to the first pollen mitosis the nucleus of the lateuninucleate microspore appeared to be appressed to the plasma membrane; numerous perinuclear microtubules were observed. Microspores developing into pollen divided asymmetrically to form a large vegetative cell with amyloplasts and a small generative cell without plastids. The cells were separated by a lens-shaped cell wall which later diminished. At the late-bicellular stage the generative cell was observed within the vegetative cell. Starch and lipid reserves were present in the vegetative cell and the rough endoplasmic reticulum and Golgi were abundant. The microspore isolation procedure removed the pollen coat, but did not redistribute or alter the morphology of the organelles. Microspores cultured at 25 °C for 24 h resembled late-bicellular microspores except more starch and a thicker intine were present. A more equal division of microspores occurred during the 24 h heat treatment (32.5 °C) of the entire plant or of cultures. A planar wall separated the cells of the bicellular microspores. Both daughter cells contained plastids and the nuclei were of similar size. Cultured embryogenie microspores contained electron-dense deposits at the plasma membrane/cell wall interface, vesicle-like structures in the cell walls and organelle-free regions in the cytoplasm. The results are related to embryogenesis and a possible mechanism of induction is discussed.Abbreviations B binucleate - LU late uninucleate - LUV late uninucleate vacuolate - M mitotic - MU mid-uninucleate - RER rough endoplasmic reticulum - TEM transmission electron micrograph  相似文献   

9.
M. Sun  H. Kieft  C. Zhou  A. nvan Lammeren 《Protoplasma》1999,208(1-4):265-274
Summary This paper describes a procedure in which protoplasts are obtained from microspores and pollen of rapeseed to induce callus formation aided by a feeder cell system with embryogenic microspores. Microspores at late unicellular stage and pollen at early bicellular stage were isolated and precultured for 24 h at 32 °C before enzymatic treatment. Eleven enzymes were tested in various combinations and concentrations. The optimal enzyme combination was 1.0% cellulase, 0.8% pectinase, 0.3% macerozyme, and 0.02% pectolyase, in which 26.3% of the microspores released protoplasts. A successful co-culture system was set up by employing embryogenic microspores as feeder cells. To this end, microspores were cultured in a medium with high osmotic pressure at 32 °C. Up to 37% of the microspores exhibited cell division and embryos developed to the heart-shape stage without changing medium. Microspore protoplasts were cultured in Millicells surrounded by the embryogenic microspores as feeder. In growth-regulator-free medium 14.5% of the protoplasts divided but only formed budding-like multicellular structures. Only after pretreatment with 4 mg of 2,4-dichlorophenoxyacetic acid and 1 mg of naphthaleneacetic acid per liter protoplasts divided and formed microcalli. Pollen tubes or tubelike structures were not observed. The experiments reveal that selection of the specific developmental stage of microspores, which is a prerequisite for microspore embryogenesis, is also important in microspore protoplast culture. Compared to other methods used before, microculture fed with embryogenic microspores has obvious superiority.Abbreviations CPW basic protoplast washing medium according to Power and Chapman - CPW972 CPW basic medium supplemented with 9% mannitol and 7.2% sorbitol - DAPI 4,6-diamidino-2-phenylindole - NLN nutrient medium according to Lichter modified by Pechan and Keller - NLN13 NLN medium supplemented with 13% sucrose - NLNP NLN13 supplemented with 7.2% sorbitol  相似文献   

10.
Androgenesis is a phenomenon in which microspores are made to bypass the sexual pathway and follow the sporophytic mode of development to generate new plants without the intervention of fertilization under specialized in vitro conditions. Microspore culture provides an ideal system, with a large, relatively uniform population of haploid cells, for use in mutant selection, genetic transformation and in studies on the molecular mechanism of induction of androgenesis and embryogenesis. This paper involves a study on establishing a reproducible and efficient protocol for microspore embryogenesis in various varieties of Brassica juncea. The genotype had a pronounced effect on androgenic response in microspore cultures. The cultivar Rajat exhibited the most response, producing around 3500 embryos/100 buds. The microspores of B. juncea cv. PR-45 from ed plants maintained at a day/night temperature of 10 °C/5 °C form embryos with suspensors with varied morphology. The microspore embryos germinated to produce plants with frequencies. These plants exhibited 52% survival and 74% fertility.  相似文献   

11.
Microspore culture for the purpose of developing doubled haploid plants is routine for numerous plant species; however, the embryo yield is still very low compared with the total available microspore population. The ability to select and isolate highly embryogenic microspores would be desirable for high embryo yield in microspore culture. To maximize the efficiency of canola microspore culture, a combination of bud size selection and microspore fractionation using a Percoll gradient was followed. This approach has consistently given high embryo yields and uniform embryo development. Microspores isolated from buds 1.5 to 4.4 mm in length of Brassica napus genotypes Topas 4079, DH12075, Westar and 0025 formed embryos at different frequencies. The most embryogenic bud size range varied with each cultivar: Topas 4079 3.5–3.9 mm, DH12075 2.0–2.4 mm, and Westar and 0025 2.5–2.9 mm. When the microspores from 2.0 to 2.4 mm buds of DH12075 were carefully layered on top of a discontinuous Percoll gradient of 10, 20 and 40%, and subsequently spun through the Percoll layers by centrifugation, bands were formed containing populations of microspores of uniform developmental stage. The middle layer of the gradient contained the late uninucleate and early binucleate microspores that were the most embryogenic. In addition, the relationship between the bud size, developmental stage of isolated microspores, Percoll gradient concentration and the embryogenic frequency of each cultivar were studied. Optimization of these factors is required for each genotype evaluated.  相似文献   

12.
13.
Summary Gamma irradiation and ethanol stress treatments redirected pollen development to an embryo formation pathway inBrassica napus. Less than 0.01% of microspores developed into embryos at 25°C compared to approximately 2% at 32°C. However, subsequent to gamma irradiation and ethanol treatments up to 1% and 0.7% of microspores formed embryos at 25°C, respectively. Gamma irradiation also enhanced embryogenesis at 32°C. The possible importance of these findings is discussed in relation to microspore embryogenesis.  相似文献   

14.
Prior to this report, heat treatment (32.5°C, 24 h) was the method used to induce embryogenesis fromBrassica napus microspores. Continuous culture at 25°C results in pollen development. This study shows that colchicine alone, at the non-inductive temperature of 25°C, can induce embryogenesis, thus demonstrating that heat shock is not required for embryogenic induction inB. napus cv. Topas. Embryogenic frequencies of over 15% were obtained by culturing isolated microspores with 25 M colchicine for 42 h at 25°C. The microspore developmental stages responsive to colchicine were unicellular vacuolate and late unicellular, somewhat earlier stages than the population responsive to heat induction. Other groups have reported that heat-shock proteins are essential to the induction of embryogenesis. The present study offers a method of embryogenic induction without the use of heat which will allow discrimination between the factors associated with response to heat shock and those involved with changing cell development.Abbreviations LU Late-unicellular - PPB Preprophase band - UV unicellular-vacuolate The authors wish to thank C. Bornman for his interest and encouragement. We gratefully acknowledge support from the School of Graduate Studies and Research, Queen's University to J.-P. Z., from Hilleshog AB, Sweden to D.H.S., and from the Natural Sciences and Engineering Research Council of Canada to D.H.S. and W.N. Plant Research Centre contribution No. 1595.  相似文献   

15.
The inherent potential to produce plants from microspores or immature pollen exists naturally in many plant species. Some genotypes in hexaploid wheat (Triticum aestivum L.) also exhibit the trait for androgenesis. Under most circumstances, however, an artificial manipulation, in the form of physical, physiological and/or chemical treatment, need to be employed to switch microspores from gametophytic development to a sporophytic pathway. Induced embryogenic microspores, characterized by unique morphological features, undergo organized cell divisions and differentiation that lead to a direct formation of embryoids. Embryoids `germinate' to give rise to haploid or doubled haploid plants. The switch from terminal differentiation of pollen grain formation to sporophytic development of embryoid production involves a treatment that halts gametogenesis and initiates sporogenesis showing predictable cellular and molecular events. In principle, the inductive treatments may act to release microspores from cell cycle control that ensures mature pollen formation hence overcome a developmental block to embryogenesis. Isolated microspore culture, genetic analyses, and studies of cellular and molecular mechanisms related to microspore embryogenesis have yielded useful information for both understanding androgenesis and improving the efficiency of doubled haploid production. The precise mechanisms for microspore embryogenesis, however, must await more research.  相似文献   

16.
Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after stress in the two in vitro systems, one involved in programmed cell death in embryogenic suspension cultures and the other in the initiation of cell division leading to embryogenesis in reprogrammed microspores.  相似文献   

17.
Genetic manipulation of microspores and microspore-derived embryos   总被引:4,自引:0,他引:4  
Summary Recent advances in plant cell and molecular biology have furthered the genetic manipulation of many plant species and advanced the options for crop improvement. Among the many targets for genetic manipulation, microspores offer several unique advantages: they are haploid, single-celled, and highly synchronized. In many plant species microspores develop into haploid embryos, and eventually haploid and doubled haploid plants, after in vitro anther or microspore culture. This induced in vitro developmental pathway of microspores, termed microspore embryogenesis, can be used to recover individual homozygous plants from microspores and microspore-derived embryos after genetic manipulation such as mutagenesis and gene transfer. The highly efficient microspore embryogenesis system inBrassica napus has been used successfully to obtain various mutants after microspore mutagenesis, and to achieve gene transfer mediated byAgrobacterium tumefaciens. Presented in the Session-in-Depth In Vitro Gametophyte Biology at the 1991 World Congress on Cell and Tissue Culture held in Anaheim, California, June 16–20, 1991.  相似文献   

18.
A number of factors influencing embryogenesis from isolated microspores of radish (Raphanus sativus) were examined. Of 11 genotypes evaluated, six produced embryos ranging from 8.3 embryos per 105 microspores for Chugoku-ao to 0.2 for Tenshun, but five genotypes were not responsive. An initial culture period at elevated temperature before incubation at 25°C was essential for induction of microspore embryogenesis. However, the optimum period of the treatment varied among genotypes and/or experiments. Bud size also influenced microspore embryogenesis. Though optimum bud size was different between genotypes, the microspore populations represented in these buds contained uninucleate and binucleate microspores. Selection of embryogenic microspores using percoll density gradient resulted in up to 1.3-fold increase of embryo yield. Though almost all embryos failed to develop directly into plantlets, plants were obtained by multiple subcultures. The regenerated plants had hyperploid chromosome numbers.  相似文献   

19.
Summary A method for obtaining a high frequency of haploid asparagus embryos through anther culture was developed. Flowers collected from plants in the field in July, August and September 1990, for the genotype G203, were stored at 5°C for 24 h. Anthers were placed on Murashige and Skoog medium (MS) containing 500 mg l –1 casein hydrolysate, 800 mg l–1 glutamine, 2 mg l –1 NAA, 1 mg l –1 BA and 5 % sucrose at 32 °C in the dark for three to four weeks to induce calli. Calli were then grown at 25 °C with a 16 h photoperiod for three to four weeks. Developing embryos and calli were transferred to embryo maturation medium, MS containing 6% sucrose, 0.1 mg l –1 NAA, 0.1 mg l –1 kinetin and 0.65 mg l –1 ancymidol, for four weeks. More than 50% of the recovered mature embryos germinated on MS containing l mg l –1 GA3. Anthers with microspores at the late-uninucleate stage had the highest frequency of total and embryogenic calli formation, 40% and 15%, respectively. Each embryogenic callus usually produced 10–15 embryos. Aproximately 75 plants per 100 anthers cultured were recovered: 76% haploid, 22% diploid and 2% triploid. High temperature was critical for the induction of embryogenic callus.Abbreviations NAA naphthaleneacetic acid - BA 6-benzylaminopurine - MS Murashige and Skoog (1962)  相似文献   

20.
Direct microspore-derived embryo formation in anther cultures of two cultivars of Brassica juncea was obtained. Preliminary culture of anthers at 35°C for 1–5 days prior to maintenance at 25°C stimulated embryogenesis. Embryogenesis was also stimulated by an initial culture at 5°C for 3 days. Analysis of squashed anthers revealed that approximately 10% of the microspores began dividing, but less than 1% developed into macroscopic embryos. All embryos transferred to embryo culture medium survived, but only 30% of these developed directly into normal plantlets. The androgenic plants were haploid (2n=18).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号