首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro antagonistic effects of rhizobacteria associated with Coffea arabica L. against some fungal coffee pathogens were studied. The aims were to screen indigenous coffee‐associated isolates for their inherent antagonistic potential against major coffee wilt diseases induced by Fusarium spp. Antagonistic effects, siderophore, HCN and lytic enzyme production were determined on standard solid media. Chemical methods were employed to categorize the major types of siderophores. From a total of 212 rhizobacterial isolates tested, over 10 % (all Pseudomonas and Bacillus spp.) exhibited remarkable inhibition against Fusarium spp. One isolate AUPB24 (P. chlororaphis) showed maximum inhibition of mycelial growth against all fungal pathogens tested, whereas other isolates were mostly inhibitory to F. stilboides and F. oxysporum. The isolate AUBB20 (B. subtilis) was most antagonistic to F. xylarioides. Of the rhizobacterial isolates tested, 67 % produced siderophores and 35 % produced HCN. Many strains (all Pseudomonas spp.) produced siderophores of the hydroxamate type and only a small proportion produced those of the catecholate type. Few antagonists showed chitinase activity. The production of siderophores and HCN by Pseudomonas spp., lipase and protease by all antagonists and β‐1,3‐glucanase by several Bacillus spp. could be considered the major mechanisms involved in the inhibition of fungal growth. The in vitro results provide the first evidence of an antagonistic effect of coffee‐associated rhizobacteria against the emerging fungal coffee pathogens F. stilboides and F. xylarioides and indicate the potential of both bacterial groups for biological control of coffee wilt diseases.  相似文献   

2.
Native strains ofPseudomonas fluorescens exhibitedin vitro antibiosis towards isolates of races 1 and 4 ofFusarium oxysporum f.sp.cubense, the Panama wilt pathogen of banana. The seedlings ofMusa balbisiana seedlings treated withP. fluorescens showed less severe wilting and internal discolouration due toF. oxysporum f.sp.cubense infection in greenhouse experiments. In addition to suppressing Panama wilt, bacterized seedlings ofM. balbisiana also showed better root growth and enhanced plant height.  相似文献   

3.
Aims: To determine the stability and conidial yield of two strains of the entomopathogenic fungus Metarhizium anisopliae and one strain of M. brunneum, being developed for the control of insect pests. Methods and Results: The conidial yields and the shelf‐life of the conidia of two commercially viable strains of M. anisopliae V275 (=F52) and ARSEF 4556 and one strain of M. brunneum (ARSEF 3297) were determined after harvesting conidia from in vitro subcultures on Sabouraud dextrose agar (SDA) and broken basmati rice. The strains were stable and showed no decline in virulence against Tenebrio molitor, even when subcultured successively 12 times on SDA. Conidia‐bound Pr1 protease activity decreased in conidia harvested from SDA and mycosed cadavers after the 1st subculture, but increased in conidia produced on rice. The C:N ratio of conidia from mycosed cadavers was lower than that of conidia from rice or SDA. Irrespective of the number of subcultures, strain ARSEF 4556 produced significantly higher conidial yields than ARSEF 3297 and V275. The 12th subculture of V275 and ARSEF 3297 produced the lowest conidial yield. Shelf‐life studies showed that conidia of strain ARSEF 4556 had a higher conidial viability than V275 and ARSEF 3297 after 4 months, stored at 4°C. Conclusions: The current study shows that determining strain stability and conidial yield through successive subculturing is an essential component for selecting the best strain for commercial purposes. Significance and Impact of the Study: This is the first study to compare quality control parameters in the production of conidia on rice, and it shows that the level of Pr1 is comparatively high for inoculum produced on rice.  相似文献   

4.
Aims: To isolate and characterize phosphate‐solubilizing strains from a constrained environment such as the Salado River Basin and to assess their phosphate‐solubilizing mechanisms, to further selection of the most promising strains to inoculate and improve the implantation and persistence of Lotus tenuis in the most important area devoted to meat‐cow production in Argentina. Methods and Results: Fifty isolates were obtained and through BOX‐PCR analysis, 17 non‐redundant strains were identified. Subsequently, they were found to be related to Pantoea, Erwinia, Pseudomonas, Rhizobium and Enterobacter genera, via 16S rRNA gene sequence analysis. This was in agreement with the clusters obtained by antibiotic resistance analysis. All isolates were tested for their phosphate‐solubilizing activity and selected strains were inoculated onto L. tenuis plants. The most efficient isolate, was identified as Pantoea eucalypti, a novel species in terms of plant growth‐promoting rhizobacteria. Conclusions: The isolates obtained in this study showed a significant in vitro plant‐growth promoting activity onto Lotus tenuis and the best of them solubilizes phosphate mainly via induction of the metabolism through secretion and oxidation of gluconic acid. Singnificance and Impact of the Study: The use of these bacteria as bioinoculants, alone or in combination with nitrogen‐fixing micro‐organisms, could be a sustainable practice to facilitate the nutrient supply to Lotus tenuis plants and preventing negative side‐effects such as eutrophication.  相似文献   

5.
Sesame (Sesamum indicum L.) is one of the most important oilseed crops in Egypt and worldwide. It is being infected with many pathogens, among these pathogens Fusarium oxysporum f.sp. sesami (Zap.) Cast is causing severe economic losses on sesame. In this study, antagonistic capability of 24 isolates of Trichoderma spp. was assessed in vitro against F. oxysporum f.sp. sesami. Two strains; T. harzianum (T9) and T. viride (T21) were revealed to have high antagonistic effect against F. oxysporum f.sp. sesami in vitro with inhibition percentage about 70 and 67%, respectively. These two isolates proved to have high ability to control Fusarium wilt disease under greenhouse conditions. The highest reduction in disease severity was achieved with T. viride followed by T. harzianum with reduction in disease severity about 77 and 74%, respectively. This study revealed that the time of application of bioagents is a decisive factor in determining the efficacy of Trichoderma isolates to control Fusarium wilt of sesame. It was revealed that the highest reduction in the disease severity was achieved when either Trichoderma viride or T. harzianum were applied 7 days before challenging with the F. oxysporum f.sp. sesami.  相似文献   

6.
Aims: To determine if nisin F‐loaded self‐setting brushite cement could control the growth of Staphylococcus aureus in vivo. Methods and Results: Brushite cement was prepared by mixing equimolar concentrations of β‐tricalcium phosphate and monocalcium phosphate monohydrate. Nisin F was added at 5·0, 2·5 and 1·0% (w/w) and the cement moulded into cylinders. In vitro antibacterial activity was determined using a delayed agar diffusion assay. Release of nisin F from the cement was determined using BCA protein assays. Based on scanning electron microscopy and X‐ray diffraction analysis, nisin F did not cause significant changes in cement structure or chemistry. Cement containing 5·0% (w/w) nisin F yielded the most promising in vitro results. Nisin F‐loaded cement was implanted into a subcutaneous pocket on the back of mice and then infected with S. aureus Xen 36. Infection was monitored for 7 days, using an in vivo imaging system. Nisin F prevented S. aureus infection for 7 days and no viable cells were isolated from the implants. Conclusions: Nisin F‐loaded brushite cement successfully prevented in vivo growth of S. aureus. Significance and Impact of the Study: Nisin F incorporated into bone cement may be used to control S. aureus infection in vivo.  相似文献   

7.
The autoregulation of conidium germination in phytopathogenic micromycetes of the genera Fusarium, Botrytis, and Bipolaris was studied. It was shown that Trichoderma longibrachiatum was less competitive than Fusarium oxysporum after their simultaneous inoculation but inhibited the phytopathogen growth in the case of earlier introduction. In the latter case, no autoinhibition of the germination of F. oxysporum conidia occurred; moreover, a cooperative effect was observed, i.e., the number of germinated F. oxysporum conidia increased with an increase in their density.  相似文献   

8.
Fusarium wilt disease is a growing concern in cucurbit crops in the Philippines. Most often than not, farmers highly depend on commercial fungicides for control but these chemicals are very expensive and not environment-friendly. Biofumigation and green manuring using Brassica plants is a potential alternative for sustainable management of this destructive disease. A study was conducted to evaluate the efficacy of mustard var. Montevede as a biofumigant and green manure to control Fusarium wilt disease of bittergourd (Momordica charantia L.) and bottlegourd (Lagenaria siceraria (Mol.) Standl.). In vitro assay of mustard slurry resulted in 100% suppression of the mycelial growth of F. oxysporum f. sp. momordicae and F. oxysporum f. sp. lagenariae isolates after exposure to 5, 10 and 15?g of mustard slurry compared with the control. Similarly, incorporation of the macerated mustard leaves in the infested soil reduced Fusarium wilt incidence by 100% in bittergourd and bottlegourd. The effect of mustard was comparable to Bavistin® fungicide both in vitro and in vivo.  相似文献   

9.
10.
Local beneficial rhizobacteria were selected based upon their ability to control the fungus Fusarium oxysporum f. sp. radicis-lycopersici which causes crown and root rot of tomato. Seven out of 384 strains prevailed in multiple and dual cultures and were identified as Pseudomonas chlororaphis (one strain), Bacillus cereus (one strain), Serratia marcescens (three strains) and Serratia rubidaea (two strains), by sequencing the 16S rRNA or the 16S and 23S rRNA inter-spacer region. The seven selected rhizobacteria were tested for their biocontrol and growth-promoting effects in planta, and their antifungal properties in vitro. All strains significantly reduced disease severity under controlled conditions, in a gnotobiotic system and in pots. Moreover, one P. chlororaphis and one S. marcescens strain significantly decreased disease severity to the level of the healthy control under natural conditions in pots experiments. The inhibitory activity of bacterial liquid cultures' metabolites on the fungus was demonstrated for all strains in vitro, using filter paper, thin layer chromatography and microtiter bioassays. Genes encoding phenazines were tentatively detected by PCR in the P. chlororaphis strain and chitinase-encoding genes were detected in one S. rubidaea and all three S. marcescens strains. Production of phenazine-1-carboxamide and hydrogen cyanide was evidenced for the P. chlororaphis strain while protease activity and production of siderophore-like compounds was confirmed in all bacterial strains. Possible use of these strains as biological control agents and their impact on natural biocontrol of pathogens in soils is discussed.  相似文献   

11.
The aim of this study was to establish an ex vivo model for dermatophyte biofilm growth, using hair from dogs and cats. Strains of Microsporum canis, M. gypseum, Trichophyton mentagrophytes and T. tonsurans were assessed for in vitro and ex vivo biofilm production. All T. mentagrophytes and T. tonsurans isolates and 8/12?M. canis and 1/7?M. gypseum isolates formed biofilms in vitro, while all tested isolates presented biofilm growth on ex vivo models. T. mentagrophytes and M. canis formed more homogeneous and better-structured biofilms with greater biomass production on cat hair but T. tonsurans formed more biofilm on dog hair. Confocal and scanning electron microscopy demonstrated fungal hyphae colonizing and perforating the hair shaft, abundant fungal conidia, biofilm extracellular matrix and biofilm water channels. The present study demonstrated an ex vivo model for the performance of studies on biofilm formation by dermatophytes, using dog and cat hair.  相似文献   

12.
M. Nie    W. Q. Zhang    M. Xiao    J. L. Luo    K. Bao    J. K. Chen    B. Li 《Journal of Phytopathology》2007,155(6):364-367
A rapid spectroscopic approach for whole‐organism fingerprinting of Fourier transform infrared (FT‐IR) spectroscopy was used to analyse 16 isolates from five closely related species of Fusarium: F. graminearum, F. moniliforme, F. nivale, F. semitectum and F. oxysporum. Principal components analysis and hierarchical cluster analysis were used to study the clusters in the data. On visual inspection of the clusters from both methods, the spectra were not differentiated into five separate clusters corresponding to species and these unsupervised methods failed to identify these fungal strains. When the data were trained by back propagation algorithm of artificial neural networks (ANNs) with principal components scores of spectra used as input modes, the strains were accurately predicted and recognized. The results in this study show that FT‐IR spectroscopy in combination with principal component artificial neural networks (PC‐ANNs) is well suited for identifying Fusarium spp. It would be advantageous to establish a comprehensive database of taxonomically well‐defined Fusarium species to aid the identification of unknown strains.  相似文献   

13.

Plant growth-promoting rhizobacteria are bacteria that improve plant growth and reduce plant pathogen damages. In this study, 100 nodule bacteria were isolated from chickpea, screened for their plant growth-promoting (PGP) traits and then characterised by PCR-RFLP of 16 S rDNA. Results showed that most of the slow-growing isolates fixed nitrogen but those exhibiting fast-growth did not. Fourteen isolates solubilized inorganic phosphorus, 16 strains produced siderophores, and 17 strains produced indole acetic acid. Co-culture experiments identified three strains having an inhibitory effect against Fusarium oxysporum, the primary pathogenic fungus for chickpea in Tunisia. Rhizobia with PGP traits were assigned to Mesorhizobium ciceri, Mesorhizobium mediterraneum, Sinorhizobium meliloti and Agrobacterium tumefaciens. We noted that PGP activities were differentially distributed between M. ciceri and M. mediterraneum. The region of Mateur in northern Tunisia, with clay–silty soil, was the origin of 53% of PGP isolates. Interestingly, we found that S. meliloti and A. tumefaciens strains did not behave as parasitic nodule-bacteria but as PGP rhizobacteria useful for chickpea nutrition and health. In fact, S. meliloti strains could solubilize phosphorus, produce siderophore and auxin. The A. tumefaciens strains could perform the previous PGP traits and inhibit pathogen growth also. Finally, one candidate strain of M. ciceri (LL10)—selected for its highest symbiotic nitrogen fixation and phosphorus solubilization—was used for field experiment. The LL10 inoculation increased grain yield more than three-fold. These finding showed the potential role of rhizobia to be used as biofertilizers and biopesticides, representing low-cost and environment-friendly inputs for sustainable agriculture.

  相似文献   

14.
During the summer season of 2003 and 2004, wilt syndromes of grapevine leaves (Cv. crimson) and vascular discolouration of roots have been observed in 2-year-old grapevine plants in the field at two sides in Gharbeia Governorate, Egypt. First, symptoms of wilt began on bottom leaves borderline as chlorosis and then these turned to necrotic spots and the leaves died. Wilt symptoms were spread to apical associated with vascular discolouration of roots and stem basal. Routine isolations of discoloured root tissue from diseased plant yielded eight isolates of Fusarium oxysporum Schlechtend only where no other fungi were developed. Microscopic examination revealed the presence of three shapes of microconidia, first is avoid shape non-septate measuring 2.5–3.0 μm × 6–10 μm, second is cylindrical with one septa measuring 2.6 μm × 17.0 μm and third shape also cylindrical with two septate measuring 3.0 μm × 20.0 μm. Macroconidia was rarely with three septate measuring 3.5– 4.0 μm × 35.0–38.0 μm, and chlamydospores were found singly or in pairs or chains. F. oxysporum isolates attacked grapevine plants (Cv. crimson) causing vascular wilt (66.7%) and root-rot syndrome (33.3%). In vitro isolates of F. oxysporum causing wilt of grapevine (Cv. crimson) varied for producing lytic enzymes, i.e. polygalacturonase (PG) and cellulase. The reactions of several grapevines (Cvs.) with a virulent isolate of F. oxysporum indicated the presence of two different symptoms, i.e. vascular wilt only on grapevine plants (Cv. crimson) and root-rot on the other grapevine (Cvs.), i.e. superior, Thompson, King robi and flame seedless. All F. oxysporum isolates caused vascular wilt of grapevine Cv. crimson, successfully reisolated from symptomatic vascular infected tissue and complete identification on the basis of colony, conidia morphology and host range at formae speciales level as F. oxysporum f. sp. herbemontis (Tochetto) Gordan. This is the first report of Fusarium wilt on grapevine in Egypt.  相似文献   

15.
Paxillus involutus, an ectomycorrhizal fungus, had an inhibitory effect on the root pathogenic fungus Fusarium moniliforme and two isolates of F. oxysporum when grown in paired cultures on modified Melin Norkrans’ medium. In contrast, one isolate of F. oxysporum was not inhibited and another damping-off fungus, Cylindrocarpon destructans inhibited growth of Pax. involutus in similar paried cultures. Survival of Pinus resinosa (red pine) seedlings was increased significantly when they were grown in vitro concomitantly with either Pax. involutus and F. moniliforme or Pax. involutus and the three isolates of F. oxysporum, compared with seedlings inoculated with either F. moniliforme or F. oxysporum isolates alone. pax. involutus showed no protective effect against C. destructans. The number of colony forming units of Fusarium spp. was reduced significantly in the root extract and rhizosphere substrate of P. resinosa seedlings inoculated with Pax. involutus. Spore germination of Fusarium spp. was reduced significantly when treated with culture filtrate of Pax. involutus and root extract of P. resinosa seedlings inoculated with Pax. involutus. Neither colony forming units nor spore germination of C. destructans was affected either by culture filtrate of Pax. involutus or root extract of P. resinosa seedlings inoculated with Pax. involutus.  相似文献   

16.
Dominant phylloplane fungi of guava (Psidium guajava L.) were screened for their antagonistic activities against the two pathogens,Colletotrichum gloeosporioides andPestalotia psidii, bothin vitro andin vivo. Culture filtrates ofAspergillus niger, Fusarium oxysporum andPenicillium citrinum caused more than 50% growth inhibition ofC. gloeosporioides. Filtrates ofCephalosporium roseo-griseum andF. oxysporum were most effective in reducing the growth ofP. psidii. Volatiles produced from the cultures ofA. niger, F. oxysporum, P. citrinum andP. oxalicum inhibited the growth ofC. gloeosporioides, whereas volatiles fromC. roseo-griseum, F. oxysporum andTrichoderma harzianum inhibited the growth ofP. psidii. The inhibitory effect of volatiles decreased with increase in incubation time. In general, the maximum effect of volatiles was noticed after 48 h incubation. Different grades of colony interactions in dual cultures were recognised between the two pathogens and the phylloplane fungi examined. Maximum inhibition ofC. gloeosporioides was caused byAureobasidium pullulans, Cladosporium cladosporioides, epicoccum purpurascens, F. oxysporum andMyrothecium roridum, whereasAspergillus terreus, C. roseo-griseum andP. oxalicum significantly reduced the growth ofP. psidii. Application of a spore suspension of each test fungus inhibited lesion development of guava leaves caused by the test pathogensin vitro. Inhibition was more pronounced when the spore concentration was increased.A. pullulans, C. cladosporioides, E. purpurascens, F. oxysporum, andT. harzianum were found to be strongly antagonistic toC. gloeosporioides. A. niger, A. terreus, C. roseo-grisem andT. harzianum were strongly antagonistic toP. psidii.  相似文献   

17.
The rhizosphere microbial community in a multiple parallel mineralization (MPM) system contributes to suppression of root‐borne diseases. We hypothesized this phenomenon can be attributed to the interplay of non‐antagonistic bacteria rather than to a single antagonistic microbe. In this study, we tested this hypothesis by investigating the potential roles of bacterial interplay in a subset of MPM microbiota in the suppression of the fungal phytopathogen Fusarium oxysporum. Bacterial strains isolated from the MPM system were subjected to in vitro and in planta tests on F. oxysporum. A community of seven bacterial strains (Kaistia sp. TBD58, Sphingopyxis sp. TBD84, Bosea sp. TBD101, Ancylobacter sp. TBD132, Cupriavidus sp. TBD162, Brevibacillus sp. TBD179 and Sphingopyxis sp. TBD181) suppressed F. oxysporum growth. None of the strains alone was antagonistic against F. oxysporum, whereas several pairs of those non‐antagonistic strains inhibited its growth. Morphological observations showed the formation of swollen F. oxysporum cells in the presence of these bacterial pairs. The same bacterial pairs also suppressed Fusarium wilt disease in Arabidopsis thaliana. These results indicate that a complex bacterial interplay among non‐antagonistic bacteria can significantly contribute to the development of antagonism against F. oxysporum in the context of the MPM system.  相似文献   

18.
Aims: To explore the preventative potential of muscadine grape skin (MGS) and the single flavonoid, quercetin, as an alternative means for ameliorating Helicobacter pylori infection and/or the H. pylori‐induced inflammatory response in mice. Methods and Results: The antimicrobial and anti‐inflammatory properties of MGS and quercetin, a major phenolic constituent, were evaluated against H. pylori in vitro and in vivo. The antimicrobial activity of quercetin was evaluated against 11 H. pylori strains in vitro with inhibition of all strains at 128–64 μg ml?1. In vivo studies showed a moderate reduction in H. pylori counts following treatment with 5 and 10% MGS or quercetin (25 mg kg?1 body weight) in addition to significantly reduced inflammatory cytokines (TNF‐α, IL‐1β and IFN‐γ) when compared with untreated mice. Conclusions: MGS and quercetin did not significantly reduce H. pylori growth in a mouse model. However, these products were effective in regulating the inflammatory response to H. pylori infection. Significance and Impact of the Study: Our results suggest that H. pylori infection may be reduced or prevented via the consumption of fruits rich in certain phenolic compounds (e.g. quercetin) such as muscadine grapes.  相似文献   

19.
Thirty-two Trichoderma isolates were collected from soils grown with chickpea in central highlands of Ethiopia. The eight isolates were identified by CAB-International as Trichoderma harzianum, T. koningii and T. pseudokoningii. In in vitro tests, all Trichoderma isolates showed significant (P < 0.05) differences in their colony growth and in inhibiting the colony growth of Fusarium oxysporum f.sp. ciceris, race 3. In potted experiment, four Trichoderma isolates were tested as seed treatment on three chickpea cultivars (JG-62 susceptible, Shasho moderately susceptible and JG-74 resistant) against F. oxysporum f.sp. ciceris, race 3. The result showed that T. harzianum and unidentified Trichoderma isolate T23 significantly reduced wilt severity and delayed disease onset. The degree of wilt severity and delay of disease onset varied with chickpea cultivars. Our study revealed that biological control agents such as Trichoderma can be a useful component of integrated chickpea Fusarium wilt management.  相似文献   

20.
This study describes in vitro and in vivo azygospore production by nine isolates of Entomophaga maimaiga, a fungal pathogen of the gypsy moth, Lymantria dispar. The three E. maimaiga isolates that consistently produced azygospores in vitro were also strong producers of azygospores in vivo. However, two additional isolates that were strong azygospore producers in vivo did not produce azygospores in vitro. Isolates that produced azygospores in vitro produced both conidia and azygospores more frequently in vivo than isolates not producing azygospores in vitro. In vitro azygospore production varied over time as well as by isolate. After >2 years of cold storage, while three isolates continued in vitro azygospore production, three isolates no longer produced azygospores in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号