首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to acute preparations such as the exteriorized mesentery or the cremaster muscle, chronically instrumented chamber models allow one to study the microcirculation under "physiological" conditions, i.e., in the absence of trauma-induced leukocyte rolling along the venular endothelium. To underscore the importance of studying the naive microcirculation, we implanted titanium dorsal skinfold chambers in hamsters and used intravital fluorescence microscopy to study venular leukocyte rolling in response to ischemia-reperfusion injury or extracorporeal blood circulation. The experiments were performed in chambers that fulfilled all well-established criteria for a physiological microcirculation as well as in chambers that showed various extents of leukocyte rolling due to trauma, hemorrhage, or inflammation. In ideal chambers with a physiological microcirculation (<30 rolling leukocytes/mm vessel circumference in 30 s), ischemia-reperfusion injury and extracorporeal blood circulation significantly stimulated leukocyte rolling along the venular endothelium and, subsequently, firm leukocyte adhesion. In contrast, both stimuli failed to elicit leukocyte rolling in borderline chambers (30-100 leukocytes/mm), and in blatantly inflamed chambers with yet higher numbers of rolling leukocytes at baseline (>100 leukocytes/mm), we observed a paradoxical reduction of leukocyte rolling after ischemia-reperfusion injury or extracorporeal blood circulation. A similar effect was observed when we superfused leukotriene B4 (LTB4) onto the chamber tissue. The initial increase in leukocyte rolling in response to an LTB4 challenge was reversed by a second superfusion 90 min later. These observations underscore 1) the benefit of studying leukocyte-endothelial cell interaction in chronically instrumented chamber models and 2) the necessity to strictly adhere to well-established criteria of a physiological microcirculation.  相似文献   

2.
To investigate the direct effect of leukocyte adherence to microvessel walls on microvessel permeability, we developed a method to measure changes in hydraulic conductivity (L(p)) before and after leukocyte adhesion in individually perfused venular microvessels in frog mesentery. In 19 microvessels that were initially free of leukocyte sticking or rolling along the vessel wall, control L(p) was measured first with Ringer-albumin perfusate. Blood flow was then restored in each vessel with a reduced flow rate in the range of 30-116 microm/s to facilitate leukocyte adhesion. Each vessel was recannulated in 45 min. The mean number of leukocytes adhering to the vessel wall was 237 +/- 22 leukocytes/mm(2). At the same time, L(p) increased to 4.7 +/- 0.5 times the control value. Superfusion of isoproterenol (10 microM) after leukocyte adhesion brought the increased L(p) back to 1.1 +/- 0.2 times the control in 5-10 min (n = 9). Superfusing isoproterenol before leukocyte adhesion prevented the increase in L(p) (n = 6). However, the number of leukocytes adhering to the vessel wall was not significantly affected. These results demonstrated that leukocyte adhesion caused an increase in microvessel permeability that could be prevented or restored by increasing cAMP levels in endothelial cells using isoproterenol. Thus cAMP-dependent mechanisms that regulate inflammatory agent-induced increases in permeability also modulate leukocyte adhesion-induced increases in permeability but act independently of mechanisms that regulate leukocyte adhesion to the microvessel wall. Application of ketotifen, a mast cell stabilizer, and desferrioxamine mesylate, an iron-chelating reagent, attenuated the increase in L(p) induced by leukocyte adhesion, suggesting the involvement of oxidants and the activation of mast cells in leukocyte adhesion-induced permeability increase. Furthermore, with the use of an in vivo silver stain technique, the locations of the adherent leukocytes on the microvessel wall were identified quantitatively in intact microvessels.  相似文献   

3.
Computational fluid dynamics was used to model flow past multiple adherent leukocytes in postcapillary size vessels. A finite-element package was used to solve the Navier-Stokes equations for low Reynolds number flow of a Newtonian fluid past spheres adhering to the wall of a cylindrical vessel. We determined the effects of sphere number, relative geometry, and spacing on the flow resistance in the vessel and the fluid flow drag force acting to sweep the sphere off the vessel wall. The computations show that when adherent leukocytes are aligned on the same side of the vessel, the drag force on each of the interacting leukocytes is less than the drag force on an isolated adherent leukocyte and can decrease by up to 50%. The magnitude of the reduction depends on the ratio of leukocyte to blood vessel diameter and distance between adherent leukocytes. However, there is an increase in the drag force when leukocytes adhere to opposite sides of the vessel wall. The increase in resistance generated by adherent leukocytes in vessels of various sizes is calculated from the computational results. The resistance increases with decreasing vessel size and is most pronounced when leukocytes adhere to opposite sides of the vessel.  相似文献   

4.
几种不同刺激对血管内白细胞粘附的影响   总被引:6,自引:0,他引:6  
目的:研究几种刺激引起白细胞与内皮细胞粘附的变化。方法:本实验采用脉冲电刺激、缺血再灌、内毒素和白介素-8等物理或药物的作用,观察大鼠肠系膜细静脉内白细胞粘附及白细胞和血管内皮粘附之间的差别。结果:缺血再灌、内毒素、内毒素、脉冲电刺激和白介纱-8(IL-8)作用后肠系膜细静脉白细胞粘附数量比正常组明显增多,IL-8用药后30min细静脉内白细胞粘附数量最多、缺血再灌、内毒素、脉冲电刺激后白细胞粘附数量大致相同。结论:缺血再灌、内毒素、脉冲电刺激能诱导白细胞的粘附作用。造成内皮损伤,IL-8诱导白细胞的粘附作用最强。  相似文献   

5.
Both leukocytes and platelets accumulate in the colonic microvasculature during experimental colitis, leading to microvascular dysfunction and tissue injury. The objective of this study was to determine whether the recruitment of leukocytes and platelets in inflamed colonic venules are codependent processes. The rolling and adherence of leukocytes and platelets in colonic venules of mice with dextran sodium sulfate (DSS)-induced colitis were monitored by intravital videomicroscopy. DSS elicited an increased recruitment of both rolling and adherent leukocytes and platelets. DSS-colitic mice rendered thrombocytopenic with anti-platelet serum exhibited profound reductions in leukocyte adhesion. Neutropenia, induced with anti-neutrophil serum, significantly reduced the adhesion of leukocytes and the accumulation of platelet-leukocyte aggregates while greatly enhancing the number of platelets that roll and adhere directly to venular endothelial cells. The enhanced platelet adhesion associated with neutropenia was mediated by platelet P-selectin interactions with endothelial cell P-selectin glycoprotein ligand (PSGL-1). DSS colitis was also associated with an increased expression of PSGL-1 in the colonic vasculature. These findings indicate that the recruitment of leukocytes and platelets in inflamed colonic venules are co-dependent processes.  相似文献   

6.
The influence of reductions in venular shear rate on platelet-endothelial (P/E) cell adhesion has not been previously addressed. The objectives of this study were to define the effects of reductions in venular shear rate on P/E cell adhesion and to determine the interdependence of P/E cell adhesion and leukocyte-endothelial (L/E) cell adhesion at low shear rates. Intravital videomicroscopy was used to quantify P/E and L/E cell adhesion in rat mesenteric venules exposed to shear rates ranging between 118 +/- 9 and 835 +/- 44 s(-1). Shear rate was altered in postcapillary venules by rapid, graded blood withdrawal, without retransfusion of shed blood. Reducing shear rate from >600 s(-1) to <200 s(-1) resulted in an eightfold increase in L/E cell adhesion, whereas P/E cell adhesion increased 18-fold. A blocking antibody directed against P-selectin blunted both the P/E and L/E cell adhesion elicited by low shear rates. Immunoneutralization of CD11/CD18 on leukocytes or rendering animals neutropenic also blocked the shear rate-dependent recruitment of both platelets and leukocytes. These findings indicate that 1) low shear rates promote P/E and L/E cell adhesion in mesenteric venules, and 2) adherent neutrophils (mediated by CD11/CD18) create a platform onto which platelets can bind to the venular wall at low shear rates.  相似文献   

7.
本实验采用中文吖啶橙荧光标记技术,结合微循环观察用显微超高速摄录像装置,观察了内毒素对微血管内白细胞与微静脉血管内皮细胞的粘附性的影响。结果表明,内毒素对大鼠的血压、微血管口径和微动脉血流速度影响不大,微静脉血流速度在滴注内毒素后45和60min下降了16.67%和17.95%(P<0.05);但内毒素能迅速改变微静脉内的白细胞流态,明显增加附壁滚动的白细胞数和粘附白细胞密度指数,经测量同一微静脉内的白细胞和红细胞流速,求得白细胞与微静脉内皮细胞之间的破裂力在5min和15min时下降了25.96%和42.88%(P<0.01),下降趋势持续整个实验过程;说明内毒素能明显地增加白细胞与微静脉血管内皮细胞之间的粘附力。由此提示,研究白细胞与微静脉血管内皮细胞之间粘附力增强机制及寻找其抑制因素对改善微循环紊乱、抢救休克具有重要的临床意义。  相似文献   

8.
Das B  Johnson PC  Popel AS 《Biorheology》2000,37(3):239-258
The study of the effect of leukocyte adhesion on blood flow in small vessels is of primary interest to understand the resistance changes in venular microcirculation. Available computational fluid dynamic studies provide information on the effect of leukocyte adhesion when blood is considered as a homogeneous Newtonian fluid. In the present work we aim to understand the effect of leukocyte adhesion on the non-Newtonian Casson fluid flow of blood in small venules; the Casson model represents the effect of red blood cell aggregation. In our model the blood vessel is considered as a circular cylinder and the leukocyte is considered as a truncated spherical protrusion in the inner side of the blood vessel. The cases of single leukocyte adhesion and leukocyte pairs in positions aligned along the same side, and opposite sides of the vessel wall are considered. The Casson fluid parameters are chosen for cat blood and human blood and comparisons are made for the effects of leukocyte adhesion in both species. Numerical simulations demonstrated that for a Casson fluid with hematocrit of 0.4 and flow rate Q = 0.072 nl/s, a single leukocyte increases flow resistance by 5% in a 32 microns diameter and 100 microns long vessel. For a smaller vessel of 18 microns, the flow resistance increases by 15%.  相似文献   

9.
The objective of this study was to investigate whether leukocyte adhesion and/or emigration are critical steps in increased microvessel permeability during acute inflammation. To conduct this study, we combined autologous blood perfusion with a single microvessel perfusion technique, which allows microvessel permeability to be measured precisely after the endothelium has interacted with blood-borne stimuli. Experiments were carried out in intact venular microvessels in rat mesenteries. Firm attachment of leukocytes to endothelial cells was induced by intravenous injection of TNF-alpha (3.5 microg/kg) and resuming autoperfusion in a precannulated microvessel. Leukocyte emigration was facilitated by superfusion of formyl-Met-Leu-Phe-OH. Microvessel permeability was measured as hydraulic conductivity (L(p)) or the solute permeability coefficient to tetramethylrhodamine isothiocyanate-labeled alpha-lactalbumin before and after leukocyte adhesion and emigration in individually perfused microvessels. We found that perfusion of a microvessel with TNF-alpha did not affect basal microvessel permeability, but intravenous injection of TNF-alpha caused significant leukocyte adhesion. However, the significant leukocyte adhesion and emigration did not cause corresponding increases in either L(p) or solute permeability. Thus our results suggest that leukocyte adhesion and emigration do not necessarily increase microvessel permeability and the mechanisms that regulate the adhesion process act independently from mechanisms that regulate permeability. In addition, silver staining of endothelial boundaries demonstrated that leukocytes preferentially adhere at the junctions of endothelial cells. The appearance of the silver lines indicates that the TNF-alpha-induced firm adhesion of leukocyte to microvessel walls did not involve apparent changes in the junctional structure of endothelial cells, which is consistent with the results of permeability measurements.  相似文献   

10.
Inflammatory responses to ischemia,and reperfusion in skeletal muscle   总被引:16,自引:0,他引:16  
Skeletal muscle ischemia and reperfusion is now recognized as one form of acute inflammation in which activated leukocytes play a key role. Although restoration of flow is essential in alleviating ischemic injury, reperfusion initiates a complex series of reactions which lead to neutrophil accumulation, microvascular barrier disruption, and edema formation. A large body of evidence exists which suggests that leukocyte adhesion to and emigration across postcapillary venules plays a crucial role in the genesis of reperfusion injury in skeletal muscle. Reactive oxygen species generated by xanthine oxidase and other enzymes promote the formation of proinflammatory stimuli, modify the expression of adhesion molecules on the surface of leukocytes and endothelial cells, and reduce the bioavailability of the potent antiadhesive agent nitric oxide. As a consequence of these events, leukocytes begin to form loose adhesive interactions with postcapillary venular endothelium (leukocyte rolling). If the proinflammatory stimulus is sufficient, leukocytes may become firmly adherent (stationary adhesion) to the venular endothelium. Those leukocytes which become firmly adherent may then diapedese into the perivascular space. The emigrated leukocytes induce parenchymal cell injury via a directed release of oxidants and hydrolytic enzymes. In addition, the emigrating leukocytes also exacerbate ischemic injury by disrupting the microvascular barrier during their egress across the vasculature. As a consequence of this increase in microvascular permeability, transcapillary fluid filtration is enhanced and edema results. The resultant increase in interstitial tissue pressure physically compresses the capillaries, thereby preventing microvascular perfusion and thus promoting the development of the no-reflow phenomenon. The purpose of this review is to summarize the available information regarding these mechanisms of skeletal muscle ischemia/reperfusion injury.  相似文献   

11.
Our previous study (Am J Physiol Heart Circ Physiol 288: H1331-H1338, 2005) demonstrated that TNF-alpha induced significant leukocyte adhesion without causing increases in microvessel permeability, and that formyl-Met-Leu-Phe-OH (fMLP)-stimulated neutrophils in the absence of adhesion increased microvessel permeability via released reactive oxygen species (ROS). The objective of our present study is to investigate the mechanisms that regulate neutrophil respiratory burst and the roles of fMLP-stimulated ROS release from adherent leukocytes in microvessel permeability. A technique that combines single-microvessel perfusion with autologous blood perfusion was employed in venular microvessels of rat mesenteries. Leukocyte adhesion was induced by systemic application of TNF-alpha. Microvessel permeability was assessed by measuring hydraulic conductivity (L(p)). The 2-h autologous blood perfusion after TNF-alpha application increased leukocyte adhesion from 1.2 +/- 0.2 to 13.3 +/- 1.6 per 100 microm of vessel length without causing increases in L(p). When fMLP (10 microM) was applied to either perfusate (n = 5) or superfusate (n = 8) in the presence of adherent leukocytes, L(p) transiently increased to 4.9 +/- 0.9 and 4.4 +/- 0.3 times the control value, respectively. Application of superoxide dismutase or an iron chelator, deferoxamine mesylate, after fMLP application prevented or attenuated the L(p) increase. Chemiluminescence measurements in isolated neutrophils demonstrated that TNF-alpha alone did not induce ROS release but that preexposure of neutrophils to TNF-alpha in vivo or in vitro potentiated fMLP-stimulated ROS release. These results suggest a priming role of TNF-alpha in fMLP-stimulated neutrophil respiratory burst and indicate that the released ROS play a key role in leukocyte-mediated permeability increases during acute inflammation.  相似文献   

12.
The recruitment of leukocytes from the blood stream and their subsequent adhesion to endothelial walls are essential stages to the immune response system during inflammation. The precise dynamic mechanisms by which molecular mediators facilitate leukocyte arrests are still unknown. In this study combined experimental results and computer simulations are used to investigate localized hydrodynamics of individual and collective behavior of clusters of leukocytes. Leukocyte-endothelial cell interactions in post-capillary venules of Wistar rats cremaster muscle were monitored by intravital microscopy. From these experiments the hemorheologic and hemodynamical measured parameters were used in time dependent three-dimensional computer simulations, using a mesoscopic lattice Boltzmann flow solver for shear thinning fluids. The dynamics of leukocyte clusters under generalized Newtonian blood flow with shear thinning viscosity was computed and discussed. In this paper we present quantified distributions of velocity and shear stress on the surface of leukocytes and near vessel wall attachment points. We have observed one region of maximum shear stress and two regions of minimum shear stress on the surface of leukocytes close to the endothelial wall. We verified that the collective hydrodynamic behavior of the cluster of recruited leukocytes establishes a strong motive for additional leukocyte recruitment. It was found that the lattice Boltzmann solver used here is fully adaptive to the measured experimental parameters. This study suggests that the influence of the leukocytes rolling on the increase of the endothelial wall shear stress may support the activation of more signalling mediators during inflammation.  相似文献   

13.
Petri B  Bixel MG 《The FEBS journal》2006,273(19):4399-4407
The recruitment of leukocytes from the circulation into tissues requires leukocyte migration through the vascular endothelium. The mechanisms by which leukocytes attach and firmly adhere to the endothelial cell surface have been studied in detail. However, much less is known about the last step in this process, the diapedesis of leukocytes through the vascular endothelium. This minireview focuses on the interactions between leukocyte and endothelial cell adhesion molecules that are important during leukocyte extravasation. In the past few years a series of endothelial cell surface and adhesion molecules have been identified that are located at endothelial cell contacts and found to participate in leukocyte diapedesis. These junctional cell adhesion molecules are believed to have an active role in controlling the opening and closure of endothelial cell contacts to allow the passage of leukocytes between adjacent endothelial cells. Alternatively, leukocytes can cross the endothelium at nonjunctional locations, with leukocytes migrating through a single endothelial cell. Further work is clearly needed to understand, in greater detail, the molecular mechanisms that allow leukocytes to cross the endothelium via either the paracellular or the transcellular pathway.  相似文献   

14.
Elevated venous pressure can be associated with severe tissue injury. Few links, however, between venous hypertension and tissue damage have been established. We examined here the effects of micropressure elevation on the outcome of venular occlusion/reperfusion in the mesenteric microvasculature of male Wistar rats. One hour of venular occlusion (diameter approximately 50 microm) by micropipette occlusion followed by reperfusion were carried out with sham surgery without occlusion as control. Leukocyte rolling, adhesion, and migration, oxygen radicals detected by dichlorofluorescein (DCF), and parenchymal cell death detected by propidium iodide (PI) were recorded simultaneously in the same vessel at a location upstream of the occlusion site with elevated micropressure and at a downstream location with low micropressure. The number of rolling, adhering, and migrating leukocytes increased on the upstream side of the occlusion to a higher level than downstream of the occlusion site. During occlusion, DCF intensity on the venular endothelium was greater on the upstream side than in the downstream side, but there were no differences during reperfusion. The number of PI-positive cells adjacent to the venules increased significantly compared with controls, and it remained greater on the upstream higher-pressure side than the downstream side. Leukocyte adhesion and transvascular migration in postcapillary venules as well as parenchymal cell death could be significantly reduced by the hydroxyl radical scavenger dimethylthiourea. Microhemorrhages of blood cells into the mesentery interstitium were observed only on the upstream side of the occlusion. These results indicate that an elevation of the venular blood pressure during occlusion/reperfusion exacerbates the inflammatory cascade and tissue injury. Venous occlusion may constitute an important mechanism for tissue injury.  相似文献   

15.
Substance P (SP), one of the established neurotransmitters, evokes an immunoinflammatory response involving leukocyte adhesion to venular endothelium and the degranulation of mast cells. The pathogenetic relationship between these responses, however, remains unresolved. In this study, we propose to examine the changes associated with the activation of mast cells, as well as leukocyte adhesion to venular endothelium by in vivo observation of the rat mesentery. The use of an in vitro assay for intracellular Ca2+ mobilization and the degranulation of mast cells demonstrated the significant upper shift of concentration response to SP (10−4–10−5 M). In vivo experiments on the mesenteric microcirculation also showed that SP induced a significant increase in the number of degranulated mast cells as well as in the number of leukocytes adherent to the venular wall. Tranilast, a mast cell stabilizer, as well as SP antagonist (CP-96,345) significantly attenuated the extent of mast cell degranulation and leukocyte adhesion elicited by SP. Although an immunoneutralization against CD18 by WT-3 significantly attenuated the leukocyte adhesion, it had no influence on the mast cell degranulation after SP superfusion. These separate in vivo observations show that SP induces leukocyte adhesion to the venular endothelium, possibly through the degranulation of mast cells.  相似文献   

16.
Inhaled nitric oxide (NO) has been shown to have some protective effect in the peripheral distal inflamed vasculature. The objective of the study was to determine whether inhaled NO would reduce endotoxin-induced leukocyte activation and myocardial contractile dysfunction. Rats were treated with either saline or endotoxin (10 mg/kg iv) and then allowed to breathe (4 h) either air or air plus NO (10 ppm). In endotoxemic rats, mesenteric venular endothelium leukocyte firm adhesion increased compared with control rats (1.15 +/- 0.32 vs. 4.08 +/- 0.96 leukocytes/100 microm; P < 0.05). Inhaled NO significantly attenuated endotoxin-induced venular endothelium leukocyte adhesion (4.08 +/- 0.96 vs. 1.86 +/- 0.76 leukocytes/100 microm; P < 0.05) and FITC-conjugated anti-intercellular adhesion molecule-1 fluorescence intensity. Endotoxin-induced myocardial dysfunction and leukocyte content increases were reduced in inhaled NO-treated rats. These observations suggest that inhaled NO reduces the degree of cardiovascular dysfunction and inflammation in endotoxemic rats.  相似文献   

17.
The expression of intercellular adhesion molecule-1 (ICAM-1) was studied in 8-week-old non-obese diabetic (NOD) mice and low-dose streptozocin-treated (LDS) mice. ICAM-1 expression in NOD mice was observed at the islet periphery, corresponding to the perislet venular network, within the islet and on scattered elements along septa of the exocrine portion of the pancreas. Image analysis demonstrated that LDS-treated animals had less ICAM-1 immunoreactivity within and around the islets compared to NOD mice. At the ultrastructural level the peri-islet vessels were found to be filled with mononuclear elements. Moreover, endothelial cells showed signs of activation, and margination of monocytes and polymorphonuclear leukocytes was observed.  相似文献   

18.
Activated neutrophils interacting with the vessel wall can alter vascular permeability to macromolecules such as albumin via release of various secretion products that induce changes in the endothelial monolayer. In the current work we used cremaster microvessels of anesthetized mice to show that, in addition to this paracrine mechanism, leukocyte ligation of endothelial ICAM-1 directly activates endothelial cell (EC) signaling, altering EC permeability to albumin [i.e., solute permeability (P(s))]. We show that antibody cross-linking of surface ICAM-1 in intact microvessels is sufficient to increase P(s) even in the absence of interacting leukocytes. Unstimulated arterioles do not support leukocyte-EC interactions, but despite this, antibody ligation of ICAM-1 in these vessels induced a twofold increase in P(s). Similarly, in venules that were depleted of interacting neutrophils, P(s) was decreased to below resting levels and was restored by ligation of ICAM-1. Use of function-blocking antibodies to separately block leukocyte rolling or adhesion under unstimulated or TNF-α-activated conditions established that both rolling and adhered leukocytes contribute to P(s) regulation in situ. Both rolling and adhesion activated EC-dependent signaling mechanisms that increased P(s). ICAM-1 ligation with primary antibody alone or primary followed by secondary antibodies showed that regulation of P(s) is directly dependent on the degree of ICAM-1 clustering. Under physiological versus inflamed conditions, respectively, this ICAM-1 clustering-dependent regulation of P(s) switches from PKC dependent and Src independent to Src dependent and PKC independent. This study thus identifies a new mechanism by which antiadhesion treatment may constitute a potential therapy for tissue edema.  相似文献   

19.
Putative dual role of ephrin-Eph receptor interactions in inflammation   总被引:1,自引:0,他引:1  
Inflammation is associated with a decreased adhesion between endothelial cells in blood vessels and an increased adhesion of circulating leukocytes to vascular endothelium and to epithelia of internal organs. These changes lead to leukocyte extravasation and tissue transmigration. We propose that ephrins and Eph receptors play important, but underappreciated, signaling roles in these processes. At early stages of inflammation, EphA2 receptor and ephrin-B2 are overexpressed in endothelial and epithelial cells, thus leading to those events (expression of adhesion molecules on the cell surface and reorganization of the intracellular cytoskeleton) that cause cell repulsion and disruption of endothelial and epithelial barriers. At later stages of inflammation, expression of EphA1, EphA3, EphB3, and EphB4 on leukocytes and endothelial cells decreases, thus promoting adhesion of leukocytes to endothelial cells. Taking into consideration the abundance of ephrins and Eph receptors in tissues and the robustness of their signaling effects, the proposed involvement is likely to be substantial and may constitute a novel therapeutic target.  相似文献   

20.
目的:探讨淋浆对内毒素休克的干预作用及其机制。方法:Wistar雄性大鼠60只,随机分为对照组、模型组和淋浆组,以颈静脉注射LPS(15 mg/kg)复制内毒素休克模型,造模15 min后,淋浆组自颈静脉注射正常淋浆(占全血量1/15),观察对平均动脉血压(MAP)、回肠下段肠系膜微循环、细静脉壁白细胞粘附数、血浆P-选择素和细胞间粘附分子(ICAM-1)含量的影响。结果:正常淋浆可防止内毒素休克的MAP进行性下降,解除肠系膜微血管的病理性缩窄,减少白细胞在细静脉壁的粘附,改善微循环的流态,降低血浆P-选择素和ICAM-1的水平。结论:小量正常淋浆对LPS攻击导致内毒素休克的微循环障碍和低血压均有良好的干预作用,其机制与减少细胞粘附分子生成有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号