首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenate, an analogue of inorganic phosphate, causes an increase in the intrinsic fluorescence of the Ca(2+)-ATPase of sarcoplasmic reticulum membranes. This increase in fluorescence is observed regardless of whether Ca(2+)-loaded or leaky vesicles are assayed. The maximal fluorescence change (2-3%) is observed at pH 6.0 in the presence of Mg2+ and is abolished by the addition of micromolar Ca2+ concentrations. Dimethyl sulfoxide (20% v/v) increases the enzyme's affinity for arsenate one order of magnitude. It is concluded that arsenate, after binding, promotes the same conformational change of the enzyme as that produced by Pi.  相似文献   

2.
Ca2+ release from heavy sarcoplasmic reticulum (SR) vesicles was induced by 2 mM caffeine, and the amount (A) and the rate constant (k) of Ca2+ release were investigated as a function of the extent of Ca2+ loading. Under both passive and active loading conditions, the A value increased monotonically in parallel to Ca2+ loading. On the other hand, k sharply increased at partial Ca2+ loading, and upon further loading, it decreased to a lower level. Since most of the intravesicular calcium appears to be bound to calsequestrin both under passive and under active loading conditions, these results suggest that the kinetic properties of induced Ca2+ release show significant variation depending upon how much calcium has been bound to calsequestrin at the time of the induction of Ca2+ release. An SR membrane segment consisting of the junctional face membrane (jfm) and attached calsequestrin (jfm-calsequestrin complex) was prepared. The covalently reacting thiol-specific conformational probe N-[7-(dimethylamino)-4-methyl-3-coumarinyl]maleimide (DACM) was incorporated into several proteins of the jfm, but not into calsequestrin. The fluorescence intensity of DACM increased with Ca2+. Upon dissociation of calsequestrin from the jfm by salt treatment, the DACM fluorescence change was abolished, while upon reassociation of calsequestrin by dilution of the salt it was partially restored. These results suggest that the events occurring in the jfm proteins are mediated via the attached calsequestrin rather than by a direct effect of Ca2+ on the jfm proteins. We propose that the [Ca2+]-dependent conformational changes of calsequestrin affect the jfm proteins and in turn regulate the Ca2+ channel functions.  相似文献   

3.
Two distinct dimerization contacts in calsequestrin crystals suggested a mechanism for Ca(2+) regulation resulting from the occurrence of coupled Ca(2+) binding and protein polymerization. Ca(2+)-induced formation of one contact was proposed to lead to dimerization followed by Ca(2+)-induced formation of the second contact to bring about polymerization (). To test this mechanism, we compared canine cardiac calsequestrin and four truncation mutants with regard to their folding properties, structures, and Ca(2+)-induced polymerization. The wild-type calsequestrin and truncation mutants exhibited similar K(+)-induced folding and end-point structures as indicated by intrinsic fluorescence and circular dichroism, respectively, whereas the polymerization tendencies of the wild-type calsequestrin differed markedly from the polymerization tendencies of the truncation mutants. Static laser light scattering and 3,3'-dithiobis sulfosuccinimidyl-propionate cross-linking indicated that wild-type protein exhibited an initial Ca(2+)-induced dimerization, followed by additional oligomerization as the Ca(2+) concentration was raised or as the K(+) concentration was lowered. None of the truncation mutants exhibited clear stepwise oligomerization that depended on increasing Ca(2+) concentration. Comparison of the three-dimensional structure of rabbit skeletal calsequestrin with a homology model of canine cardiac calsequestrin from the point of view of our coupled Ca(2+) binding and polymerization mechanism leads to a possible explanation for the 2-fold reduced Ca(2+) binding capacity of cardiac calsequestrin despite very similar overall net negative charge for the two proteins.  相似文献   

4.
The aim of this study is to investigate the molecular events associated with the deleterious effects of acidosis on the contractile properties of cardiac muscle as in the ischemia of heart failure. We have conducted a study of the effects of increasing acidity on the Ca(2+) induced conformational changes of pyrene labelled cardiac troponin C (PIA-cTnC) in isolation and in complex with porcine cardiac or chicken pectoral skeletal muscle TnI and/or TnT. The pyrene label has been shown to serve as a useful fluorescence reporter group for conformational and interaction events of the N-terminal regulatory domain of TnC with only minimal fluorescence changes associated with C-terminal domain. Results obtained show that the significant decreases at pH 6.0 of site II Ca(2+) affinity of PIA-cTnC when complexed as a binary complex with either cTnI or cTnT are significantly reduced when cTnI is replaced with sTnI or cTnT with sTnT. However, this effect is appreciably diminished when the cTnI and cTnT in the ternary complex are replaced by sTnI and sTnT. The smaller effects in the ternary complex of replacing both cTnI and cTnT by their skeletal counterparts on depressing the Ca(2+) affinity from pH 7.0 to 6.0 arise from TnI replacement. Thus, changes in TnC conformation resulting from isoform-specific interactions with TnI and TnT could be an integral part of the effect of pH on myofilament Ca(2+)sensitivity.  相似文献   

5.
The time course of changes in the intravesicular Ca2+ concentration ([Ca2+]i) in terminal cisternal sarcoplasmic reticulum vesicles upon the induction of Ca2+ release was investigated by using tetramethylmurexide (TMX) as an intravesicular Ca2+ probe. Upon the addition of polylysine at the concentration that led to the maximum rate of Ca2+ release, [Ca2+]i decreased monotonically in parallel with Ca2+ release. Upon induction of Ca2+ release by lower concentrations of polylysine, [Ca2+]i first increased above the resting level, followed by a decrease well below it. The release triggers polylysine, and caffeine brought about dissociation of calcium that bound to a nonvesicular membrane segment consisting of the junctional face membrane and calsequestrin bound to it, as monitored with TMX. No Ca2+ dissociation from calsequestrin-free junctional face membranes or from the dissociated calsequestrin was produced by release triggers, but upon reassociation of the dissociated calsequestrin and the junctional face membrane, Ca2+ dissociation by triggers was restored. On the basis of these results, we propose that the release triggers elicit a signal in the junctional face membrane, presumably in the foot protein moiety, which is then transmitted to calsequestrin, leading to the dissociation of the bound calcium; and in SR vesicles, to the transient increase of [Ca2+]i, and subsequently release across the membrane.  相似文献   

6.
We found that Zn(2+) conspicuously inactivated tyrosinase in a mixed-type inhibition manner: the final level of residual activity was abolished at the equilibrium state with concentration of 0.25 mM Zn(2+). Changes of both K(m) and V(max) by various concentrations of Zn(2+) in Lineweaver-Burk plot were observed. To see whether Zn(2+) also induced conformational change of tyrosinase and how thermodynamical changes by ligand binding were occurred, the intrinsic fluorescence studies as well as calorimetric measurements were conducted. The results showed that the Zn(2+) binding to tyrosinase directly induced conformational change of tyrosinase, and the changes of thermodynamic parameters such as enthalpy (DeltaH), Gibbs free-energy (DeltaG), and entropy (DeltaS) were obtained as 60+/-7.0 kJ/mol, -14.54 kJ/mol and 248.53 J/(K mol), respectively. The inactivating effect of Zn(2+) on tyrosinase was completely prevented by incubation with bovine serum albumin, which has a Zn(2+) binding motif in its structure. We suggested that Zn(2+) ligand-binding affected the substrate's accessibility due to the conformational changes and thus, the complex type of inhibition has occurred with the calorimetric changes.  相似文献   

7.
Equilibrium experiments with bone powder, at pH values ranging from 6.3 to 3.5, show a linear relation between log([Ca2+]/[Ca2+]0) (where [Ca2+]0 = 1 M-Ca2+) and pH, indicating that [Ca2+] could reach levels of 25 mM at pH 5 and 90 mM at pH 4. These elevated Ca2+ concentrations stimulated the lysis of insoluble bone collagen in vitro by purified lysosomes and by mouse bone collagenase, whose activities were additive at acid pH. At neutral pH, the addition of 10-100 mM-CaCl2 did not influence the susceptibility of acid-soluble skin collagen in solution towards bone collagenase, but increased it markedly towards collagen in the fibrillar form. Increasing the [Ca2+] did not influence the susceptibility of collagen to trypsin. Elevated [Ca2+] and a co-operation between lysosomal cysteine proteinases and matrix collagenase could thus participate in the osteoclastic breakdown of bone collagen.  相似文献   

8.
Annexin 2 belongs to the annexin family of proteins that bind to phospholipid membranes in a Ca(2+)-dependent manner. Here we show that, under mild acidic conditions, annexin 2 binds to and aggregates membranes containing anionic phospholipids, a fact that questions the mechanism of its interaction with membranes via Ca(2+) bridges only. The H(+) sensitivity of annexin 2-mediated aggregation is modulated by lipid composition (i.e. cholesterol content). Cryo-electron microscopy of aggregated liposomes revealed that both the monomeric and the tetrameric forms of the protein form bridges between the liposomes at acidic pH. Monomeric annexin 2 induced two different organizations of the membrane junctions. The first resembled that obtained at pH 7 in the presence of Ca(2+). For the tetramer, the arrangement was different. These bridges seemed more flexible than the Ca(2+)-mediated junctions allowing the invagination of membranes. Time-resolved fluorescence analysis at mild acidic pH and the measurement of Stokes radius revealed that the protein undergoes conformational changes similar to those induced by Ca(2+). Labeling with the lipophilic probe 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine indicated that the protein has access to the hydrophobic part of the membrane at both acidic pH in the absence of Ca(2+) and at neutral pH in the presence of Ca(2+). Models for the membrane interactions of annexin 2 at neutral pH in the presence of Ca(2+) and at acidic pH are discussed.  相似文献   

9.
Christova P  Cox JA  Craescu CT 《Proteins》2000,40(2):177-184
Nereis sarcoplasmic Ca(2+)-binding protein (NSCP) is a calcium buffer protein that binds Ca(2+) ions with high affinity but is also able to bind Mg(2+) ions with high positive cooperativity. We investigated the conformational and stability changes induced by the two metal ions. The thermal reversible unfolding, monitored by circular dichroism spectroscopy, shows that the thermal stability is maximum at neutral pH and increases in the order apo < Mg(2+) < Ca(2+). The stability against chemical denaturation (urea, guanidinium chloride) studied by circular dichroism or intrinsic fluorescence was found to have a similar ion dependence. To explore in more detail the structural basis of stability, we used the fluorescent probes to evaluate the hydrophobic surface exposure in the different ligation states. The apo-NSCP exhibits accessible hydrophobic surfaces, able to bind fluorescent probes, in clear contrast with denatured or Ca(2+)/Mg(2+)-bound states. Gel filtration experiments showed that, although the metal-bound NSCP has a hydrodynamic volume in agreement with the molecular mass, the volume of the apo form is considerably larger. The present results demonstrate that the apo state has many properties in common with the molten globule. The possible factors of the metal-dependent structural changes and stability are discussed.  相似文献   

10.
We previously showed that A23187 in high ionophore/protein ratios almost completely inhibits the sarcoplasmic reticulum Ca(2+)-ATPase [Hara, H. & Kanazawa, T. (1986) J. Biol. Chem. 261, 16584-16590]. In an attempt to obtain information on the mechanism of this inhibition, the effects of A23187 on conformational changes involved in the Ca(2+)-induced activation of the enzyme were investigated. The purified enzyme from sarcoplasmic reticulum of rabbit skeletal muscle as well as the purified enzyme labeled with fluorescein 5-isothiocyanate (FITC) were preincubated with A23187 in the absence of Ca2+ at pH 7.0 and 0 degrees C for 45 min. The activation of the enzyme following addition of CaCl2 was assessed by determining the capacity for rapid formation of phosphoenzyme from ATP. This activation was strongly inhibited by the preincubation with A23187. This indicates that the previously observed inhibition of the Ca(2+)-ATPase is mostly due to hindrance of the Ca(2+)-induced activation of the enzyme. In the control, in which the FITC-labeled enzyme was preincubated without A23187, the fluorescence intensity of the bound FITC decreased in a biphasic manner upon addition of CaCl2. The first rapid phase of this fluorescence drop was unaffected by A23187, whereas its second slow phase was almost completely inhibited by this drug. These results show that the Ca(2+)-dependent conformational change is biphasic and that the second slow phase (but not the first rapid phase) of this conformational change is inhibited by A23187. This suggests that the observed inhibition of Ca2+ activation is attributed to hindrance of the second slow phase of the Ca(2+)-dependent conformational change.  相似文献   

11.
The changes in fluorescence of 1-anilino-8-naphthalenesulfonate (ANS-) have been used to determine binding of ligands to the (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles, isolated from rabbit skeletal muscle. ANS- binds to sarcoplasmic reticulum membranes with an apparent Kd of 3.8 X 10(-5) M. The binding of ANS- had no effect on Ca2+ transport or Ca2+-dependent ATPase activity. EGTA, by binding endogenous Ca2+, increased the fluorescence intensity of bound ANS- by 10-12%. Subsequent addition of ATP, ADP, or Ca2+, in the presence or absence of Mg2+, reversed this change of fluorescence. The binding parameters, as determined by these decreases in fluorescence intensity, were as follows: for ATP, Kd = 1.0 X 10(-5) M, nH = 0.80; for ADP, Kd = 1.2 X 10(-5) M, nH = 0.89; and for Ca2+, Kd = 3.4 X 10(-7) M, nH = 1.8. The binding parameters for ITP and for the nonhydrolyzable analogue, adenyl-5'-yl-beta, gamma-methylene)diphosphate, were similar to those of ATP, but GDP, IDP, CDP, AMP, and cAMP had lower apparent affinities. Millimolar concentrations of pyrophosphate also decreased the fluorescence of bound ANS-, whereas orthophosphate caused a small (2-3%) increase in fluorescence in Ca2+-free media. Vanadate, in the presence of EGTA, decreased the fluorescence of bound ANS-with half-maximal effect at 4 X 10(-5) M. The changes of fluorescence intensity of bound ANS- appear to reflect conformational changes of the (Ca2+, Mg2+)-ATPase, consequent to ligand binding, with the low and high fluorescence intensity species corresponding to the E1 and E2 conformations, respectively. These appear to reflect similar conformational states of the (Ca2+, Mg2+)-ATPase to those reported by changes in intrinsic tryptophan fluorescence (DuPont, Y. (1976) Biochem, Biophys. Res. Commun. 71, 544-550).  相似文献   

12.
The rise of intrinsic fluorescence due to calcium binding to sarcoplasmic reticulum ATPase occurs with a kobs of approximately 2 s-1 at pH 6.0, which is much lower than that observed at neutral pH. This is consistent with a H+-Ca2+ competition for the high-affinity sites. An accelerating effect of ATP on the calcium-induced transition can be clearly demonstrated at that pH. Nonhydrolyzable nucleotides, such as AMP-PNP, do not elicit the same response. Acetylphosphate also accelerates the calcium-induced fluorescence rise, demonstrating that this effect is limited to substrates that are able to form the phosphorylated enzyme intermediate. This effect, which is attributed to occupancy of the phosphorylation domain of the catalytic site, is distinct from the known secondary activation of enzyme turnover which is produced by ATP and by inactive nucleotide analogs, but not by acetylphosphate.  相似文献   

13.
High pressure (100-150 MPa) increases the intensity and polarization of fluorescence of FITC-labeled Ca(2+)-ATPase in a medium containing 0.1 mM Ca2+, suggesting a reversible pressure-induced transition from the E1 into an E2-like state with dissociation of ATPase oligomers. Under similar conditions but using unlabeled sarcoplasmic reticulum vesicles, high pressure caused the reversible release of Ca2+ from the high-affinity Ca2+ sites of Ca(2+)-ATPase, as indicated by changes in the fluorescence of the Ca2+ indicator, Fluo-3; this was accompanied by reversible inhibition of the Ca(2+)-stimulated ATPase activity measured in a coupled enzyme system of pyruvate kinase and lactate dehydrogenase, and by redistribution of Prodan in the lipid phase of the membrane, as shown by marked changes in its fluorescence emission characteristics. In a Ca(2+)-free medium where the equilibrium favors the E2 conformation of Ca(2+)-ATPase the fluorescence intensity of FITC-ATPase was not affected or only slightly reduced by high pressure. The enhancement of TNP-AMP fluorescence by 100 mM inorganic phosphate in the presence of EGTA and 20% dimethylsulfoxide was essentially unaffected by 150 MPa pressure at pH 6.0 and was only slightly reduced at pH 8.0. As the enhancement of TNP-AMP fluorescence by Pi is associated with the Mg(2+)-dependent phosphorylation of the enzyme and the formation of Mg.E2-P intermediate, it appears that the reactions of Ca(2+)-ATPase associated with the E2 state are relatively insensitive to high pressure. These observations suggest that high pressure stabilizes the enzyme in an E2-like state characterized by low reactivity with ATP and Ca2+ and high reactivity with Pi. The transition from the E1 to the E2-like state involves a decrease in the effective volume of Ca(2+)-ATPase.  相似文献   

14.
Adjuvant arthritis (AA) was induced by intradermal administration of Mycobacterium butyricum to the tail of Lewis rats. In sarcoplasmic reticulum (SR) of skeletal muscles, we investigated the development of AA. SR Ca(2+)-ATPase (SERCA) activity decreased on day 21, suggesting possible conformational changes in the transmembrane part of the enzyme, especially at the site of the calcium binding transmembrane part. These events were associated with an increased level of protein carbonyls, a decrease in cysteine SH groups, and alterations in SR membrane fluidity. There was no alteration in the nucleotide binding site at any time point of AA, as detected by a FITC fluorescence marker. Some changes observed on day 21 appeared to be reversible, as indicated by SERCA activity, cysteine SH groups, SR membrane fluidity, protein carbonyl content and fluorescence of an NCD-4 marker specific for the calcium binding site. The reversibility may represent adaptive mechanisms of AA, induced by higher relative expression of SERCA, oxidation of cysteine, nitration of tyrosine and presence of acidic phospholipids such as phosphatidic acid. Nitric oxide may regulate cytoplasmic Ca(2+) level through conformational alterations of SERCA, and decreasing levels of calsequestrin in SR may also play regulatory role in SERCA activity and expression.  相似文献   

15.
S Wakabayashi  T Ogurusu  M Shigekawa 《Biochemistry》1990,29(47):10613-10620
The binding of Ca2+ to 4-nitro-2,1,3-benzoxadiazole (NBD)-labeled sarcoplasmic reticulum Ca2(+)-ATPase was accelerated markedly when the pH was changed at 11 degrees C from 6.5 to 8.0 at the time of Ca2+ addition. We examined the effect of pH on the enzyme conformational transition by measuring the kinetics of NBD fluorescence rises induced by a pH jump under various ligand conditions. The fast fluorescence rise following a pH jump from 6.0 or 6.5 to various test pHs in the presence and absence of Ca2+ proceeded monoexponentially. The amplitude of this fluorescence rise in the presence of Ca2+ was independent of the test pH, whereas the observed rate constant (kobs) increased markedly as the test pH increased. In contrast, the amplitude of the fast fluorescence rise in the absence of Ca2+ increased with increasing test pH, whereas kobs decreased. MgATP or Mg2+ influenced the pH dependences of these parameters in a complex way except for the amplitudes measured in the presence of Ca2+. These data could be simulated by using a reaction model in which Ca2+ binding is preceded by a rate-limiting enzyme conformational transition from a low to a high NBD fluorescence state and 1 mol each of H+ is liberated before and after this conformational transition. MgATP or Mg2+ appeared to promote this conformational transition by enhancing deprotonation of the enzyme. These results suggest that deprotonation may be the primary event in the activation of the unphosphorylated enzyme by Ca2+.  相似文献   

16.
Calsequestrin is a high capacity Ca(2+)-binding protein in the junctional sarcoplasmic reticulum that forms a quaternary complex with junctin, triadin, and the ryanodine receptor. Transgenic mice with cardiac-targeted calsequestrin overexpression show marked suppression of Ca(2+)-induced Ca(2+) release, myocyte hypertrophy, and premature death by 16 weeks of age (Jones, L. R., Suzuki, Y. J., Wang, W., Kobayashi, Y. M., Ramesh, V., Franzini-Armstrong, C., Cleemann, L., and Morad, M. (1998) J. Clin. Invest. 101, 1385-1393). To investigate whether alterations in intracellular Ca(2+) trigger changes in the beta-adrenergic receptor pathway, we studied calsequestrin overexpressing transgenic mice at 7 and 14 weeks of age. As assessed by echocardiography, calsequestrin mice at 7 weeks showed mild left ventricular enlargement, mild decreased fractional shortening with increased wall thickness. By 14 weeks, the phenotype progressed to marked left ventricular enlargement and severely depressed systolic function. Cardiac catheterization in calsequestrin mice revealed markedly impaired beta-adrenergic receptor responsiveness in both 7- and 14- week mice. Biochemical analysis in 7- and 14-week mice showed a significant decrease in total beta-adrenergic receptor density, adenylyl cyclase activity, and the percent high affinity agonist binding, which was associated with increased beta-adrenergic receptor kinase 1 levels. Taken together, these data indicate that alterations in beta-adrenergic receptor signaling precede the development of overt heart failure in this mouse model of progressive cardiomyopathy.  相似文献   

17.
Neuronal calcium sensor-1 (NCS-1), a Ca(2+)-binding protein, plays an important role in the modulation of neurotransmitter release and phosphatidylinositol signaling pathway. It is known that the physiological activity of NCS-1 is governed by its myristoylation. Here, we present the role of myristoylation of NSC-1 in governing Ca(2+) binding and Ca(2+)-induced conformational changes in NCS-1 as compared with the role in the nonmyristoylated protein. The (45)Ca binding and isothermal titration calorimetric data show that myristoylation increases the degree of cooperativity; thus, the myristoylated NCS-1 binds Ca(2+) more strongly (with three Ca(2+) binding sites) than the non-myristoylated one (with two Ca(2+) binding sites). Both forms of protein show different conformational features in far-UV CD when titrated with Ca(2+). Large conformational changes were seen in the near-UV CD with more changes in the case of nonmyristoylated protein than the myristoylated one. Although the changes in the far-UV CD upon Ca(2+) binding were not seen in E120Q mutant (disabling EF-hand 3), the near-UV CD changes in conformation also were not influenced by this mutation. The difference in the binding affinity of myristoylated and non-myristoylated proteins to Ca(2+) also was reflected by Trp fluorescence. Collisional quenching by iodide showed more inaccessibility of the fluorophore in the myristoylated protein. Mg(2+)-induced changes in near-UV CD are different from Ca(2+)-induced changes, indicating ion selectivity. 8-Anilino-1-naphthalene sulfonic acid binding data showed solvation of the myristoyl group in the presence of Ca(2+), which could be attributed to the myristoyl-dependent conformational changes in NCS-1. These results suggest that myristoylation influences the protein conformation and Ca(2+) binding, which might be crucial for its physiological functions.  相似文献   

18.
Xu XL  Liu XH  Wu B  Liu Y  Liu WQ  Xie YS  Liu QL 《Biopolymers》2004,74(4):336-344
Acutolysin D isolated from the venom of Agkistrodon acutus is a protein of 44 kDa with marked hemorrhagic and proteolytic activities. The metal-ion- and pH-induced conformational changes of acutolysin D have been studied by following fluorescence and activity measurements. Here we provide evidence for the fact that native holo-acutolysin D adopts two different conformations, native state a, stable in the weak acidic pH range from 5.5 to 7.0 with low activity, and native state b, stable in the weak alkaline pH range from 8.0 to 9.0 with high activity. Holo-acutolysin D has an optimum pH of 9.0 for caseinolytic activity and a maximum fluorescence at pH 9.0. The protein adopts the most stable conformation at pH 9.0. The addition of 1 mM Zn(2+) shifts both the alkali-induced unfolding transition curve and the alkali-induced inactivation curve toward higher pH value but has little effect on the acid-induced unfolding transition curve. No obvious effects on the pH-induced unfolding transition curve and the pH-dependent activity curve have been observed after the addition of 1 mM Ca(2+) to holo-acutolysin D. The results indicate that Zn(2+) is essential for its CA, while Ca(2+) is not essential for its CA. Removal of Ca(2+) and Zn(2+) from the protein enhances its sensitivity to pH and significantly reduces its overall stability during acid-induced denaturation. The kinetic results of the demetalization of holo-acutolysin D show that the demetalization rate constant K(1) for a slower reaction linearly decreases with the pH increase from 5.0 to 9.0, while K(2) for the faster reaction linearly increases with the pH change from 5.0 to 7.0. It is also evident from the present work that the free Zn(2+)-induced inactivation in the pH range from 8.0 to 9.0 should be attributed to the effect of Zn(OH)(2) precipitation on the protein.  相似文献   

19.
Calsequestrin is by far the most abundant Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. It allows the Ca2+ required for contraction to be stored at total concentrations of up to 20mM, while the free Ca2+ concentration remains at approximately 1mM. This storage capacity confers upon muscle the ability to contract frequently with minimal run-down in tension. Calsequestrin is highly acidic, containing up to 50 Ca(2+)-binding sites, which are formed simply by clustering of two or more acidic residues. The Kd for Ca2+ binding is between 1 and 100 microM, depending on the isoform, species and the presence of other cations. Calsequestrin monomers have a molecular mass of approximately 40 kDa and contain approximately 400 residues. The monomer contains three domains each with a compact alpha-helical/beta-sheet thioredoxin fold which is stable in the presence of Ca2+. The protein polymerises when Ca2+ concentrations approach 1mM. The polymer is anchored at one end to ryanodine receptor (RyR) Ca2+ release channels either via the intrinsic membrane proteins triadin and junctin or by binding directly to the RyR. It is becoming clear that calsequestrin has several functions in the lumen of the SR in addition to its well-recognised role as a Ca2+ buffer. Firstly, it is a luminal regulator of RyR activity. When triadin and junctin are present, calsequestrin maximally inhibits the Ca2+ release channel when the free Ca2+ concentration in the SR lumen is 1mM. The inhibition is relieved when the Ca2+ concentration alters, either because of small changes in the conformation of calsequestrin or its dissociation from the junctional face membrane. These changes in calsequestrin's association with the RyR amplify the direct effects of luminal Ca2+ concentration on RyR activity. In addition, calsequestrin activates purified RyRs lacking triadin and junctin. Further roles for calsequestrin are indicated by the kinase activity of the protein, its thioredoxin-like structure and its influence over store operated Ca2+ entry. Clearly, calsequestrin plays a major role in calcium homeostasis that extends well beyond its ability to buffer Ca2+ ions.  相似文献   

20.
Calmodulin (CaM) is an intracellular cooperative calcium-binding protein essential for activating many diverse target proteins. Biophysical studies of the calcium-induced conformational changes of CaM disagree on the structure of the linker between domains and possible orientations of the domains. Molecular dynamics studies have predicted that Ca4(2+)CaM is in equilibrium between an extended and compact conformation and that Arg74 and Arg90 are critical to the compaction process. In this study gel permeation chromatography was used to resolve calcium-induced changes in the hydrated shape of CaM at pH 7.4 and 5.6. Results showed that mutation of Arg 74 to Ala increases the R(s) as predicted; however, the average separation of domains in Ca4(2+)-CaM was larger than predicted by molecular dynamics. Mutation of Arg90 to Ala or Gly affected the dimensions of apo-CaM more than those of Ca4(2+)-CaM. Calcium binding to CaM and mutants (R74A-CaM, R90A-CaM, and R90G-CaM) lowered the Stokes radius (R(s)). Differences between R(s) values reported here and Rg values determined by small-angle x-ray scattering studies illustrate the importance of using multiple techniques to explore the solution properties of a flexible protein such as CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号