首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined whether high levels of circulatory iron may cause iron accumulation in the brain. In particular, we focussed on the substantia nigra and basal ganglia as several papers have indicated that iron may accumulate here and cause death of dopaminergic neurons. Normal mice and a mouse model of hereditary haemochromatosis, the beta2-microglobulin (beta2m) knock out [beta2m (-/-)] mouse, which has high levels of circulating iron due to increased iron absorption, were examined. The iron concentration in livers were: 170+/-15 microg/g (mean +/- SD) in controls and 1010+/-50 microg/g in beta2m (-/-) mice (p<0.001), whereas in the brain the respective values were 47 +/-1 microg/g and 53+/-2 microg/g (p<0.02). Hence, the difference between cerebral iron levels of normal and beta2m (-/-) mice was small. Histological examination of the brains revealed an unequivocal distribution of ferric iron, ferritin, transferrin and divalent metal transporter 1 (DMT1), which were indistinguishable when normal and beta2m (-/-) mice were compared. In the substantia nigra and basal ganglia, ferric iron and the iron-binding proteins were present in identical cell types, which mainly comprised oligodendrocytes and microglia. Neurons were lightly labelled with transferrin and DMT1. The virtual lack of an increase in cerebral iron in beta2m (-/-) mice clearly shows that the blood-brain barrier (BBB) is capable of restricting the transport of excess plasma iron into the brain.  相似文献   

2.
Aluminium, iron and copper are all implicated in the aetiology of neurodegenerative diseases including Alzheimer's disease. However, there are very few large cohort studies of the content of these metals in aged human brains. We have used microwave digestion and TH GFAAS to measure aluminium, iron and copper in the temporal, frontal, occipital and parietal lobes of 60 brains donated to the Cognitive Function and Ageing Study. Every precaution was taken to reduce contamination of samples and acid digests to a minimum. Actual contamination was estimated by preparing a large number of (170+) method blanks which were interspersed within the full set of 700+ tissue digests. Subtraction of method blank values (MBV) from tissue digest values resulted in metal contents in all tissues in the range, MBV to 33 μg g(-1) dry wt. for aluminium, 112 to 8305 μg g(-1) dry wt. for iron and MBV to 384 μg g(-1) dry wt. for copper. While the median aluminium content for all tissues was 1.02 μg g(-1) dry wt. it was informative that 41 brains out of 60 included at least one tissue with an aluminium content which could be considered as potentially pathological (> 3.50 μg g(-1) dry wt.). The median content for iron was 286.16 μg g(-1) dry wt. and overall tissue iron contents were generally high which possibly reflected increased brain iron in ageing and in neurodegenerative disease. The median content for copper was 17.41 μg g(-1) dry wt. and overall tissue copper contents were lower than expected for aged brains but they were commensurate with aged brains showing signs of neurodegenerative disease. In this study we have shown, in particular, the value of carrying out significant numbers of method blanks to identify unknown sources of contamination. When these values are subtracted from tissue digest values the absolute metal contents could be considered as conservative and yet they may still reflect aspects of ageing and neurodegenerative disease in individual brains.  相似文献   

3.
Iron status was assessed in a representative sample of 188 adolescents living in a medium-sized city in Poland. Dietary intakes were evaluated using records of diet over a period of seven consecutive days. Subjects were considered to be iron deficient when two or more of the following parameters were abnormal: serum ferritin, transferrin saturation or mean corpuscular haemoglobin concentration. Based on this definition, the prevalence of iron deficiency in the investigated sample of children aged from ten to twelve years was 12.7%. Iron deficiency anaemia was defined using the following criteria: haemoglobin values less than 12.0 g. dl (-1) in girls or less than 12.2 g. dl(-1) in boys, combined with an iron deficiency. With such a definition, the prevalence of iron deficiency anaemia in all subjects was 6.3%. Four boys (3.9%) and six girls (6.8%) were diagnosed as anaemic. The values for Hb in the anaemic boys ranged from 10.9 to 12.2 g. dl (-1) and in anaemic girls from 8.7 to 12.0 g. (-1). It was found that the majority of the individuals studied had a dietary haem-iron intake lower than that recommended. No relationship was found between the level of serum ferritin and total iron and vitamin C dietary intake, but there was positive correlation between serum ferritin and intake of haem iron. A seven-day dietary history questionnaire correctly identified children at risk of iron deficiency anaemia.  相似文献   

4.
The aims of this work were to develop a high-rate fluidized-bed bioprocess for ferric sulfate production, to characterize biomass retention, and to determine the phylogeny of the enrichment culture. After 7 months of continuous enrichment and air aeration at 37 degrees C, the iron oxidation rate of 8.2 g Fe(2+) L(-1)h(-1) (4.5.10(-12) g Fe(2+) cell(-1) h(-1)) was obtained at a hydraulic retention time (HRT) of 0.6 h. However, oxygen supply became the rate-limiting factor. With gas mixture (99.5% O(2)/0.5% CO(2) (vol/vol)) aeration and HRT of 0.2 h, the iron oxidation rate was 26.4 g Fe(2+) L(-1)h(-1) (1.0.10(-11) g Fe(2+) cell(-1) h(-1)). Leptospirillum sp. was predominant in the mesophilic fluidized-bed reactor (FBR) enrichment culture as determined by fluorescent in situ hybridization, while Acidithiobacillus ferrooxidans was not detected. Denaturing gradient gel electrophoresis (DGGE) of the amplified partial 16S rDNA showed only three bands, indicating a simple microbial community. DGGE fragment excision and sequencing showed that the populations were related to L. ferriphilum (100% similarity in sequence) and possibly to the genus Ferroplasma (96% similarity to F. acidiphilum). Jarosite precipitates accumulated on the top of the activated carbon biomass carrier material, increasing the rate of iron oxidation. The activated carbon carrier material, jarosite precipitates, and reactor liquid contained 59% (or 3.71.10(9) cells g(-1)), 31% (or 3.12.10(10) cells g(-1)) and 10% (or 1.24.10(8) cells mL(-1)) of the total FBR microbes, respectively, demonstrating that the jarosite precipitates played an important role in the FBR biomass retention.  相似文献   

5.
Mining-impacted sediments of Lake Coeur d'Alene, Idaho, contain more than 10% metals on a dry weight basis, approximately 80% of which is iron. Since iron (hydr)oxides adsorb toxic, ore-associated elements, such as arsenic, iron (hydr)oxide reduction may in part control the mobility and bioavailability of these elements. Geochemical and microbiological data were collected to examine the ecological role of dissimilatory Fe(III)-reducing bacteria in this habitat. The concentration of mild-acid-extractable Fe(II) increased with sediment depth up to 50 g kg(-1), suggesting that iron reduction has occurred recently. The maximum concentrations of dissolved Fe(II) in interstitial water (41 mg liter(-1)) occurred 10 to 15 cm beneath the sediment-water interface, suggesting that sulfidogenesis may not be the predominant terminal electron-accepting process in this environment and that dissolved Fe(II) arises from biological reductive dissolution of iron (hydr)oxides. The concentration of sedimentary magnetite (Fe(3)O(4)), a common product of bacterial Fe(III) hydroxide reduction, was as much as 15.5 g kg(-1). Most-probable-number enrichment cultures revealed that the mean density of Fe(III)-reducing bacteria was 8.3 x 10(5) cells g (dry weight) of sediment(-1). Two new strains of dissimilatory Fe(III)-reducing bacteria were isolated from surface sediments. Collectively, the results of this study support the hypothesis that dissimilatory reduction of iron has been and continues to be an important biogeochemical process in the environment examined.  相似文献   

6.
Mismanagement of intracellular iron is a key pathological feature of many neurodegenerative diseases. Our long-term goal is to use animal models to investigate the mechanisms of iron neurotoxicity and its relationship to neurodegenerative pathologies. The immediate aim of this experiment was to determine regional distribution of iron and cellular distribution of iron storage proteins (l- and h-ferritin) and an oxidative stress marker (heme oxygenase-1) in brains of mice fed the lipophilic iron compound (3,5,5-trimethylhexanoyl) (TMH)-ferrocene. We fed male and female weanling BALB/cj mice diets either deficient in iron (0 mg Fe/kg diet), adequate in iron (35 mg Fe/kg diet; control mice), or adequate in iron and supplemented with 0.1 or 1.0 g TMH-ferrocene/kg diet for 8 wk. Iron concentrations in cerebrum were higher in mice fed 1.0 g TMH-ferrocene/kg diet than in control mice (p<0.05). Liver iron concentrations were eightfold higher in mice fed 1.0 g TMH-ferrocene/kg diet than in control mice (p<0.0001). l-Ferritin and heme oxygenase-1 expression were elevated in striatum in mice fed 1.0 g TMH-ferrocene/kg diet. We conculde that administration of the lipophilic iron compound TMH-ferrocene leads to subtle perturbations of cellular iron within the brain, potentially representing a model of iron accumulation similar to that seen in various neuropathological conditions.  相似文献   

7.
The terminal electron acceptor of Photosystem II, PSII, is a linear complex consisting of a primary quinone, a non-heme iron(II), and a secondary quinone, Q(A)Fe(2+)Q(B). The complex is a sensitive site of PSII, where electron transfer is modulated by environmental factors and notably by bicarbonate. Earlier studies showed that NO and other small molecules (CN(-), F(-), carboxylate anions) bind reversibly on the non-heme iron in competition with bicarbonate. In the present study, we report on an unusual new mode of transient binding of NO, which is favored in the light-reduced state (Q(A)(-)Fe(2+)Q(B)) of the complex. The related observations are summarized as follows: (i) Incubation with NO at -30 degrees C, following light-induced charge separation, results in the evolution of a new EPR signal at g = 2.016. The signal correlates with the reduced state Q(A)(-)Fe(2+) of the iron-quinone complex. (ii) Cyanide, at low concentrations, converts the signal to a more rhombic form with g values at 2.027 (peak) and 1.976 (valley), while at high concentrations it inhibits formation of the signals. (iii) Electron spin-echo envelope modulation (ESEEM) experiments show the existence of two protein (14)N nuclei coupled to electron spin. These two nitrogens have been detected consistently in the environment of the semiquinone Q(A)(-) in a number of PSII preparations. (iv) NO does not directly contribute to the signals, as indicated by the absence of a detectable isotopic effect ((15)NO vs (14)NO) in cw EPR. (v) A third signal with g values (2.05, 2.03, 2.01) identical to those of an Fe(NO)(2)(imidazole) synthetic complex develops slowly in the dark, or faster following illumination. (vi) In comparison with the untreated Q(A)(-)Fe(2+) complex, the present signals not only are confined to a narrow spectral region but also saturate at low microwave power. At 11 K the g = 2.016 signal saturates with a P(1/2) of 110 microW and the g = 2.027/1.976 signal with a P(1/2) of 10 microW. (vii) The spectral shape and spin concentration of these signals is successfully reproduced, assuming a weak magnetic interaction (J values in the range 0.025-0.05 cm(-)(1)) between an iron-NO complex with total spin of (1)/(2) and the spin, (1)/(2), of the semiquinone, Q(A)(-). The different modes of binding of NO to the non-heme iron are examined in the context of a molecular model. An important aspect of the model is a trans influence of Q(A) reduction on the bicarbonate ligation to the iron, transmitted via H-bonding of Q(A) with an imidazole ligand to the iron.  相似文献   

8.
The addition of the antioxidants (+)-cyanidanol-3, butylated hydroxyanisole and ascorbate to the perfused rat liver resulted in a decrease in the rate of oxygen consumption. This basal antioxidant-sensitive respiration of 110-130nmol X min-1 X (g of liver)-1 represents 5-7% of total respiration. Increased antioxidant-sensitive respiratory rates are found after the infusion of increasing concentrations of ethanol (1.8-72.2mM) or iron (35.5-248.5 microM). This respiratory component exhibits a dependence on ethanol or iron concentration, with maximal rates of 200-255 and 330nmol X min-1 X (g of liver)-1 respectively. After the addition of 100 microM-2,4-dinitriphenol, an antioxidant-sensitive respiratory component of 230nmol X min-1 X (g of liver)-1 is found, which is not observed at lower concentrations of the uncoupler (5-50 microM). The lack of effect of the antioxidants used on mitochondrial respiration [the preceding paper, Videla, Villena, Donoso, Giulivi & Boveris (1984) Biochem. J. 223, 879-883] and on the glycolytic rate of the perfused liver suggests that the basal and chemically induced antioxidant-sensitive respiration observed are related to oxygen required for one-electron transfer reactions associated with the generation of active species of oxygen and lipid peroxidation in the liver cell.  相似文献   

9.
During continuous cultivation of Yarrowia lipolytica N 1, oxygen requirements for growth and citric acid synthesis were found to depend on the iron concentration in the medium. A coupled effect of oxygen and iron concentrations on the functioning of the mitochondrial electron transport chain in Y. lipolytica N 1 was established. Based on the results obtained in continuous culture, conditions for citric acid production in a batch culture of Y. lipolytica N 1 were proposed. At relatively low pO(2) value and a high iron concentration, citric acid accumulation was as high as 120 g l(-1); the specific rate of citric acid synthesis reached 120 mg citric acid (g cells h)(-1). The mass yield coefficient was 0.87 and the energy yield coefficient was 0.31.  相似文献   

10.
Iron transport into the CNS is still not completely understood. Using a brain perfusion technique in rats, we have shown a significant brain capillary uptake of circulating transferrin (Tf)-bound and free 59Fe (1 nm) at rates of 136 +/- 26 and 182 +/- 23 microL/g/min, respectively, while their respective transport rates into brain parenchyma were 1.68 +/- 0.56 and 1.52 +/- 0.48 microL/g/min. Regional Tf receptor density (Bmax) in brain endothelium determined with 125I-holo-Tf correlated well with 59Fe-Tf regional brain uptake rates reflecting significant vascular association of iron. Tf-bound and free circulating 59Fe were sequestered by the choroid plexus and transported into the CSF at low rates of 0.17 +/- 0.01 and 0.09 +/- 0.02 microL/min/g, respectively, consistent with a 10-fold brain-CSF concentration gradient for 59Fe, Tf-bound or free. We conclude that transport of circulating Tf-bound and free iron could be equally important for its delivery to the CNS. Moreover, data suggest that entry of Tf-bound and free iron into the CNS is determined by (i) its initial sequestration by brain capillaries and choroid plexus, and (ii) subsequent controlled and slow release from vascular structures into brain interstitial fluid and CSF.  相似文献   

11.
The iron storage protein ferritin is a member of the non-heme iron protein family. It can store and release iron, therefore it prevents the cell from damage caused by iron-dioxygen reactions as well as it provides iron for biological processing. To study whether the human ferritin heavy chain (FTH1) can be expressed in Hansenula polymorpha, we integrated an expression cassette for FTH1 and analyzed the protein expression. We found very efficient expression of FTH1 and obtained yields up to 1.9 g/L under non-optimized conditions. Based on this result we designed a FTH1-PTH fusion protein to successfully express the parathyroid hormone fragment 1-34 (PTH) for the first time intracellular in H. polymorpha.  相似文献   

12.
We have quantitatively measured nitric oxide production in the leaves of Arabidopsis thaliana and Vicia faba by adapting ferrous dithiocarbamate spin tapping methods previously used in animal systems. Hydrophobic diethyldithiocarbamate complexes were used to measure NO interacting with membranes, and hydrophilic N-methyl-d-glucamine dithiocarbamate was used to measure NO released into the external solution. Both complexes were able to trap levels of NO, readily detectable by EPR spectroscopy. Basal rates of NO production (in the order of 1 nmol g(-) (1) h(-1)) agreed with previous studies. However, use of methodologies that corrected for the removal of free NO by endogenously produced superoxide resulted in a significant increase in trapped NO (up to 18 nmol g(-) (1) h(-1)). Basal NO production in leaves is therefore much higher than previously thought, but this is masked by significant superoxide production. The effects of nitrite (increased rate) and nitrate (decreased rate) are consistent with a role for nitrate reductase as the source of this basal NO production. However, rates under physiologically achievable nitrite concentrations never approach that reported following pathogen induction of plant nitric-oxide synthase. In Hibiscus rosa sinensis, the addition of exogenous nitrite generated sufficient NO such that EPR could be used to detect its production using endogenous spin traps (forming paramagnetic dinitrosyl iron complexes). Indeed the levels of this nitrosylated iron pool are sufficiently high that they may represent a method of maintaining bioavailable iron levels under conditions of iron starvation, thus explaining the previously observed role of NO in preventing chlorosis under these conditions.  相似文献   

13.
To assess the effect of concomitant iron and aluminum loads on bone aluminum accumulation and on the response to the deferoxamine test in rats with the same aluminum surcharge, Wistar rats with chronic renal failure were divided into three groups: iron-overloaded rats (N=6) (intraperitoneal iron); iron-depleted rats (N=6) (blood withdrawal two to three times per week); control rats (N=4) (no manipulation). All groups received intraperitoneal aluminum simultaneously. After 6 wk, a deferoxamine challenge test was performed. Thereafter, bone aluminum and iron were measured. The iron-overloaded rats showed higher bone iron content (iron overloaded: 147.7±55.4 μg/g; iron depleted: 7.9±1.0, and controls 13.3±9.9 μg/g, p<0.010) and lower bone aluminum content (iron overloaded: 14.2±4.0 μg/g; iron depleted: 70.9±35.1 μg/g; controls: 72.7±28.3 μg/g p<0.005). No differences were found between the iron-depleted and control rats. After the deferoxamine infusion, the iron-depleted rats tended to have higher serum aluminum increments (p=NS) and higher urinary aluminum excretion (p<0.012, p<0.020) than control rats despite similar amounts of aluminum in bone of the two groups. Aluminum bone accumulation was minor if iron and aluminum loads were given concomitantly. The iron depletion influenced the results of the deferoxamine challenge test in rats with similar bone aluminum burden.  相似文献   

14.
15.
A novel iron-sulfur protein was purified from the extract of Desulfovibrio desulfuricans (ATCC 27774) to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a monomer of 57 kDa molecular mass. It contains comparable amounts of iron and inorganic labile sulfur atoms and exhibits an optical spectrum typical of iron-sulfur proteins with maxima at 400, 305, and 280 nm. M?ssbauer data of the as-isolated protein show two spectral components, a paramagnetic and a diamagnetic, of equal intensity. Detailed analysis of the paramagnetic component reveals six distinct antiferromagnetically coupled iron sites, providing direct spectroscopic evidence for the presence of a 6Fe cluster in this newly purified protein. One of the iron sites exhibits parameters (delta EQ = 2.67 +/- 0.03 mm/s and delta = 1.09 +/- 0.02 mm/s at 140 K) typical for high spin ferrous ion; the observed large isomer shift indicates an iron environment that is distinct from the tetrahedral sulfur coordination commonly observed for the iron atoms in iron-sulfur clusters and is consistent with a penta- or hexacoordination containing N and/or O ligands. The other five iron sites are most probably high spin ferric. Three of them show parameters characteristic for tetrahedral sulfur coordination. In correlation with the EPR spectrum of the as-purified protein which shows a resonance signal at g = 15.3 and a group of signals between g = 9.8 and 5.4, this 6Fe cluster is assigned to an unusual spin state of 9/2 with zero field splitting parameters D = -1.3 cm-1 and E/D = 0.062. Other EPR signals attributable to minor impurities are also observed at the g = 4.3 and 2.0 regions. The diamagnetic M?ssbauer component represents a second iron cluster, which, upon reduction with dithionite, displays an intense S = 1/2 EPR signal with g values at 2.00, 1.83, and 1.31. In addition, an EPR signal of the S = 3/2 type is also observed for the dithionite-reduced protein.  相似文献   

16.
Oxidation of cytochrome c, a key protein in mitochondrial electron transport and a mediator of apoptotic cell death, by reactive halogen species (HOX, X2), i.e., metabolites of activated neutrophils, was investigated by stopped-flow. The fast initial reactions between FeIIIcytc and HOX species, with rate constants (at pH 7.6) of k > 3 x 10(6) M(-1) s(-1) for HOBr, k > 3 x 10(5) M(-1) s(-1) for HOCl, and k = (6.1+/-0.3) x 10(2) M(-1) s(-1) for HOI, are followed by slower intramolecular processes. All HOX species lead to a blue shift of the Soret absorption band and loss of the 695-nm absorption band, which is an indicator for the intact iron to Met-80 bond, and of the reducibility of FeIIIcytc. All HOX species do, in fact, persistently impair the ability of FeIIIcytc to act as electron acceptor, e.g., in reaction with ascorbate or O2*-. I2 selectively oxidizes the iron center of FeIIcytc, with a stoichiometry of 2 per I2, and with k(FeIIcytc + I2) approximately 4.6 x 10(4) M(-1) s(-1) and k(FeIIcytc + I2*-) = (2.9+/-0.4) x 10(8) M(-1) s(-1). Oxidation of FeIIcytc by HOX species is not selectively directed toward the iron center; HOBr and HOCl are considered to react primarily by N-halogenation of side chain amino groups, and HOI mainly by sulfoxidation. There is some evidence for the generation of HO* radicals upon reaction of HOCl with FeIIcytc. Chloramines (e.g., NH2Cl), bromamine (NH2Br), and cyclo-Gly2 chloramide oxidize FeIIcytc slowly and unselectively, but iodide efficiently catalyzes reactions of these N-halogens to yield fast selective oxidation of the iron center; this is due to generation of I2 by reaction of I- with the N-halogen and recycling of I- by reaction of I2 with FeIIcytc. Iodide also catalyzes methionine sulfoxidation and thiol oxidation by NH2Cl. The possible biological relevance of these findings is discussed.  相似文献   

17.
In vitro assays of washed, excised roots revealed maximum potential ferric iron reduction rates of >100 micromol g (dry weight)(-1) day(-1) for three freshwater macrophytes and rates between 15 and 83 micromol (dry weight)(-1) day(-1) for two marine species. The rates varied with root morphology but not consistently (fine root activity exceeded smooth root activity in some but not all cases). Sodium molybdate added at final concentrations of 0.2 to 20 mM did not inhibit iron reduction by roots of marine macrophytes (Spartina alterniflora and Zostera marina). Roots of a freshwater macrophyte, Sparganium eurycarpum, that were incubated with an analog of humic acid precursors, anthroquinone disulfate (AQDS), reduced freshly precipitated iron oxyhydroxide contained in dialysis bags that excluded solutes with molecular weights of >1,000; no reduction occurred in the absence of AQDS. Bacterial enrichment cultures and isolates from freshwater and marine roots used a variety of carbon and energy sources (e.g., acetate, ethanol, succinate, toluene, and yeast extract) and ferric oxyhydroxide, ferric citrate, uranate, and AQDS as terminal electron acceptors. The temperature optima for a freshwater isolate and a marine isolate were equivalent (approximately 32 degrees C). However, iron reduction by the freshwater isolate decreased with increasing salinity, while reduction by the marine isolate displayed a relatively broad optimum salinity between 20 and 35 ppt. Our results suggest that by participating in an active iron cycle and perhaps by reducing humic acids, iron reducers in the rhizoplane of aquatic macrophytes limit organic availability to other heterotrophs (including methanogens) in the rhizosphere and bulk sediments.  相似文献   

18.
Iron overload of the liver by trimethylhexanoylferrocene in rats.   总被引:3,自引:0,他引:3  
Iron-deficient female Wistar rats were fed a diet, which contained 0.5% trimethylhexanoylferrocene, over a 56-week period. This dietary iron loading resulted in a progressive siderosis and enlargement of the liver with a maximum iron content of 947.0 +/- 148.0 mg (vs. 0.07 +/- 0.04 mg in iron deficiency) and a maximum organ weight of 39.4 +/- 6.6 g (vs. 6.9 +/- 1.4 g in iron-deficient control rats). Up to 43 weeks, whole liver iron rose by increase in iron concentration (max. 28.0 +/- 6.1 mg/g wet weight, w.w.) as well as by enlargement of the organ. Afterwards whole liver iron increased solely by ongoing hepatomegaly. At the commencement of iron loading, stainable iron was almost exclusively stored by hepatocytes equally throughout all areas of the liver lobule. Later, the distribution of iron-loaded hepatocytes became strikingly periportal, and, in addition, Kupffer cells as well as sinus-lining endothelia began to store iron. Animals with a liver iron concentration of more than 10.4 +/- 0.75 mg/g w.w. showed no further increase in ferritin and haemosiderin within hepatocytes. Iron-burdened Kupffer cells/macrophages, however, accumulated permanently, hereby forming intrasinusoidal and portal siderotic nodules and areas. First signs of liver damage such as necrosis of single hepatocytes and mild fibrosis began at a liver iron concentration of 14.7 +/- 1.4 mg/g w.w. With advancement of iron loading, focal necrosis of hepatocytes and iron-burdened macrophages took place, and significant perisinusoidal as well as portal fibrosis developed. Cirrhosis, however, the final stage of impairment in iron overload of the liver in humans, could not be induced in this animal model up to now.  相似文献   

19.
Female guinea pigs were injected intraperitoneally with 0.083 g/kg iron dextran (Fe-D) to achieve progressively increasing levels of iron load; controls received dextran. Delayed and blocked cardiac conductivity at the Purkinje fiber-papillary muscle junction was initially observed with Fe-D loads of 0.33 g/kg. Serial magnetic resonance relaxation time measurements obtained from livers of live animals showed a decrease (8.1 +/- 0.86 vs. 14.8 +/- 1.03 ms in controls, P < 0.001) that was first observed in animals loaded with 0.25 g/kg Fe-D. Iron concentrations in hearts and livers were significantly increased (P < 0.001). Left ventricular pressure measurements on 1.5 g/kg Fe-D animals failed to demonstrate a defect in contractility, but 27% (9/33) (P < 0.050) of the animals died without warning signs. We conclude that 1) initial decreases in liver magnetic resonance-relaxation time occur in the same range of iron excess as the threshold of iron load that induces delay or blockade of cardiac conduction and 2) a high incidence of sudden death, presumably from cardiac arrhythmias, was observed with large doses of iron that did not decrease left ventricular contractility.  相似文献   

20.
Iron(II)-dithiocarbamate complexes are used to trap nitrogen monoxide in biological samples, and the resulting nitrosyliron(II)-dithiocarbamate is detected and quantified by ESR. As the chemical properties of these compounds have been little studied, we investigated whether iron dithiocarbamate complexes can redox cycle. The electrode potentials of iron complexes of N-(dithiocarboxy)sarcosine (dtcs) and N-methyl-d-glucamine dithiocarbamate (mgd) are 56 and -25 mV at pH 7.4, respectively, as measured by cyclic voltammetry. The autoxidation and Fenton reaction of iron(II)-dtcs and iron(II)-mgd were studied by stopped-flow spectrophotometry with both iron(II) complexes and dioxygen or hydrogen peroxide in excess. In the case of excess iron(II)-dtcs and -mgd complexes, the rate constants of the autoxidation and the Fenton reaction are (1.6-3.2) x 10(4) and (0.7-1.1) x 10(5) M(-1) s(-1), respectively. In the presence of nitrogen monoxide, the oxidation of iron(II)-dtcs and iron(II)-mgd by hydrogen peroxide is significantly slower (ca. 10-15 M(-1) s(-1)). The physiological reductants ascorbate, cysteine, and glutathione efficiently reduce iron(III)-dtcs and iron(III)-mgd. Therefore, iron bound to dtcs and mgd can redox cycle between iron(II) and iron(III). The ligands dtcs and mgd are slowly oxidized by hydrogen peroxide with rate constants of 5.0 and 3.8 M(-1) s(-1), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号