首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutant strains of Escherichia coli have been isolated in which the synthesis of 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetase (phe) is derepressed, in addition to those enzymes of tyrosine biosynthesis previously shown to be controlled by the gene tyrR. The major enzyme of the terminal pathway of phenylalanine biosynthesis chorismate mutase-prephenate dehydratase is not derepressed in these strains. Genetic analysis of the mutants shows that the mutation or mutations causing derepression map close to previously reported tyrR mutations. A study of one of the mutations has shown it to be recessive to the wild-type allele in a diploid strain. It is proposed that the tyrR gene product is involved in the regulation of the synthesis of DAHP synthetase (phe) as well as the synthesis of DAHP synthetase (tyr), chorismate mutase-prephenate dehydrogenase, and transaminase A.  相似文献   

3.
4.
Both in vivo and in vitro experiments on wild-type Escherichia coli K-12 and mutant strains possessing only single 3-deoxy-d-arabino-heptulosonic 7-phosphate acid (DAHP) synthetase isoenzymes indicated that, under conditions when all three isoenzymes are fully repressed, sufficient chorismate is still formed for the synthesis of aromatic vitamins. Under repressed conditions both DAHP synthetase (phe) and (trp), but not DAHP synthetase (tyr), were shown to contribute to vitamin production.  相似文献   

5.
Enterochelin synthetase activity is controlled by both repression and feed-back inhibition mechanisms. Inclusion of iron in growth media results in synthesis of all four (D, E, F and G) components of enterochelin synthetase being repressed. The specific inhibition of L-serine activation (partial reaction catalyzed by the F component) by the end products, ferric-enterochelin and 2,3-dihydroxybenzoylserine, is shown to inhibit overall enterochelin synthetase activity.  相似文献   

6.
7.
Repression of aromatic amino acid biosynthesis in Escherichia coli K-12   总被引:4,自引:20,他引:4  
Mutants of Escherichia coli K-12 were isolated in which the synthesis of the following, normally repressible enzymes of aromatic biosynthesis was constitutive: 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetases (phe and tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A. In the wild type, DAHP synthetase (phe) was multivalently repressed by phenylalanine plus tryptophan, whereas DAHP synthetase (tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A were repressed by tyrosine. DAHP synthetase (tyr) and chorismate mutase T-prephenate dehydrogenase were also repressed by phenylalanine in high concentration (10(-3)m). Besides the constitutive synthesis of DAHP synthetase (phe), the mutants had the same phenotype as strains mutated in the tyrosine regulatory gene tyrR. The mutations causing this phenotype were cotransducible with trpA, trpE, cysB, and pyrF and mapped in the same region as tyrR at approximately 26 min on the chromosome. It is concluded that these mutations may be alleles of the tyrR gene and that synthesis of the enzymes listed above is controlled by this gene. Chorismate mutase P and prephenate dehydratase activities which are carried on a single protein were repressed by phenylalanine alone and were not controlled by tyrR. Formation of this protein is presumed to be controlled by a separate, unknown regulator gene. The heat-stable phenylalanine transaminase and two enzymes of the common aromatic pathway, 5-dehydroquinate synthetase and 5-dehydroquinase, were not repressible under the conditions studied and were not affected by tyrR. DAHP synthetase (trp) and tryptophan synthetase were repressed by tryptophan and have previously been shown to be under the control of the trpR regulatory gene. These enzymes also were unaffected by tyrR.  相似文献   

8.
Mutants of Escherichia coli in which the lysine-sensitive aspartokinase is feedback-resistant are described. In these strains, as well as in the wild type, aspartic semialdehyde dehydrogenase is subject to multivalent repression by lysine, threonine, and methionine. When these amino acids were added to a culture in minimal medium, the differential rate of synthesis of the enzyme dropped to zero and remained there for about one generation.  相似文献   

9.
The pentose-phosphate pathway ofEscherichia coli K-12, in addition to its role as a route for the breakdown of sugars such as glucose or pentoses, provides the cell with intermediates for the anabolism of amino acids, vitamins, nucleotides, and cell wall constituents. Through its oxidative branch, it is a major source of NADPH. The expression of the gene for NADP-dependent 6-phospho-gluconate dehydrogenase (gnd) is regulated by the growth rate inE. coli. The recently identified gene for ribulose-5-phosphate 3-epimerase (rpe) is part of a large operon that comprises among others genes for the biosynthesis of aromatic amino acids. In recent years, genes for all enzymes of the pathway have been cloned and sequenced. Isoenzymes have been found for transketolase (genestktA andtktB), ribose-5-phosphate isomerase (rpiA andrpiB) and transaldolase (talA andtalB).  相似文献   

10.
11.
1. Co2+ is not a cofactor for 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase(phe). 2. The following analogues of phosphoenolpyruvate were tested as inhibitors of 3-deoxy-D-arabinoheptolosonate-7-phosphate synthetase(phe): pyruvate, lactate, glycerate, 2-phosphoglycerate, 2,3-bisphosphoglycerate, 3-methylphosphoenolpyruvate, 3-ethylphosphoenolpyruvate and 3,3-demethylphosphoenolpyruvate. The rusults obtained indicate that the binding of phosphoenolpyruvate to the enzyme requires a phosphoryl group on the C-2 position of the substrate and one free hydrogen atom at the C-3 position. 3. The dead-end inhibition pattern observed with the substrate analogue 2-phosphoglycerate when either phosphoenolpyruvate or erythrose 4-phosphate was the variable substrate is inconsistent with a ping-pong mechanism and indicates that the reaction mechanism for this enzyme must be sequential. The following kinetic constants were determined:Km for phosphoenolpyruvate, 0.08 +/- 0.04 mM; Km for erythrose 4-phosphate, 0.9 +/- 0.3 mM; K is for competitive inhibition by 2-phosphoglycerate with respect to phosphoenolpyruvate, 1.0 +/- 0.1 mM. 4. The enzyme was observed to have a bell-shaped pH PROFILE WITH A PH OPTIMUM OF 7.0. The effects of pH ON V and V/(Km for phosphoenolpyruvate) indicated that an ionizing group of pKa 8.0-8.1 is involved in the catalytic activity of the enzyme. The pKa of this group is unaffected by the binding of phosphoenolpyruvate.  相似文献   

12.
13.
Map location of arginyl-tRNA synthetase mutations in Escherichia coli K-12   总被引:10,自引:0,他引:10  
Summary Mutants of Escherichia coli K-12 previously isolated in the authors' laboratory have reduced arginyl-tRNA synthetase activity. The mutants fall into two classes. All mutants grow slowly on arginine-free medium. On arginine-supplemented medium some mutants grow at a normal rate (Class I) while others still grow slowly (Class II). Matings were performed to located a Class I and a Class II mutation on the E. coli chromosome map, and on the basis of our results we have assigned both to one locus, argS.  相似文献   

14.
15.
A mutant was isolated from Escherichia coli K-12 which requires glucosamine or N-acetylglucosamine for growth. Depriving the mutant of glucosamine resulted in a rapid loss of viability of the cells, followed by a decrease in the turbidity of the culture. When the mutant cells were resuspended in broth media containing 10% sucrose, the rod-shaped cells became spheroplasts. However, the presence of sucrose in the media did not prevent the cells from losing their viability. This mutant was shown to be deficient in the activity of l-glutamine:d-fructose-6-phosphate aminotransferase (EC 2.6.1.16). The activity of the deaminating enzyme, 2-amino-2-deoxy-d-glucose-6-phosphate ketol-isomerase (EC 5.3.1.10), appeared to be normal in this mutant. The position of the mutation has been determined to be at the 74th min of the Taylor and Trotter map, as shown by cotransduction with phoS (90%) and ilv (25%) by using bacteriophage P1.  相似文献   

16.
17.
18.
19.
The metabolic pathway of glutamate in Escherichia coli K-12   总被引:13,自引:0,他引:13  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号