首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new hexa-coordinated ruthenium(III) complexes of the type [Ru(X)(2-atmp-ba)(EPh3)] (where H2-2-atmp-ba=N,N'-bis(2-aminothiophenol)benzoylacetone; X=Cl or Br; E=P or As) have been prepared by reacting [RuX3(EPh3)3] (where X=Cl or Br; E=P or As) with tetradentate Schiff base ligand (H2-2-atmp-ba) in 1:1 molar ratio. The complexes have been characterized by elemental analyses, Infra red, electronic, electron paramagnetic resonance spectroscopy and cyclic voltammetry. In order to confirm the coordination and structure of the complexes extended X-ray absorption fine structure spectroscopy (EXAFS) studies have been carried out. Based on the above data, an octahedral structure has been confirmed for the complexes. The new complexes were also screened for their antibacterial properties.  相似文献   

2.
Kang YN  Tanabe A  Adachi M  Utsumi S  Mikami B 《Biochemistry》2005,44(13):5106-5116
Two different conformations of the inner loop (residues 340-346) have been found in the soybean beta-amylase structures. In the "product form", the Thr 342 residue creates hydrogen bonds with Glu 186 (catalytic acid) and with the glucose residues at subsites -1 and +1, whereas most of those interactions are lost in the "apo form". To elucidate the relationship between the structural states of the inner loop and the catalytic mechanism, Thr 342 was mutated to Val, Ser, and Ala, respectively, and their crystal structures complexed with maltose were determined together with that of the apo enzyme at 1.27-1.64 A resolutions. The k(cat) values of the T342V, T342S, and T342A mutants decreased by 13-, 360-, and 1700-fold, respectively, compared to that of the wild-type enzyme. Whereas the inner loops in the wild-type/maltose and T342V/maltose complexes adopted the product form, those of the T342S/maltose and T342A/maltose complexes showed the apo form. Structural analyses suggested that the side chain of Thr 342 in product form plays an important role in distorting the sugar ring at subsite -1, stabilizing the deprotonated form of Glu 186, and grasping the glucose residue of the remaining substrate at subsite +1. The third hypothesis was proved by the fact that T342V hydrolyzes maltoheptaose following only multichain attack in contrast to multiple attack of the wild-type enzyme.  相似文献   

3.
A novel bioactive Schiff base (HL) named 3-methyl-1-phenyl-5-((5-nitrosalicylidene)amino)pyrazole was prepared by condensing 5-amino-3-methyl-1-phenylpyrazole with 5-nitrosalicyldehyde in methanol on a heating mantle in refluxing condition for 1 h. Some transition metal complexes of the ligand in (1 : 1) and (1 : 2) have also been prepared by condensing the metal acetate salt with the synthesized Schiff base. The Schiff base and metal complexes were characterized by different physiochemical techniques, i. e., 1H-NMR, InfraRed, mass spectroscopy, elemental analysis, Ultraviolet-Visible, Cyclic voltammetry, electronic spectra and Electron spin resonance. The presence of water molecules in the complexes have been calculated with the help of thermogravimetric analysis. Kinetic parameters such that entropy change, enthalpy change and activation energy have been calculated with the help of Coats-Redfern equations. Fluorescence spectra showed enhancement in the fluorescence signal of the metal complexes. Square planar geometry for the copper complexes and octahedral geometry for the other metal complexes have been proposed with help of various methods. Biological activities of all the compounds have been carried out and the results disclosed that the metal complexes have high biological activity than the Schiff base having MIC value in the range 25–3.12 μg/mL and mycelial growth inhibition 60.82–96.98 %.  相似文献   

4.
The syntheses of nine palladium(II) complexes of type [Pd(phen)(AA)]+ (where AA is an anion of glycine, L-alanine, L-leucine, L-phenylalanine, L-tyrosine, L-tryptophan, L-valine, L-proline, or L-serine) have been achieved. These palladium(II) complexes have been characterized by ultraviolet-visible, infrared, and 1H NMR spectroscopy. The binding studies of several complexes [M(NN)(AA)]+ (where M is Pd(II) as Pt(II), NN is 2,2'-bipyridine or 1,10-phenanthrodine, and AA is an anion of amino acid) with calf thymus DNA have been carried out using UV difference absorption and fluorescence spectroscopy. The mode of binding of the above complexes to DNA suggests the involvement of the hydrogen bonding between them. Several complexes [M(phen)(AA)]+ (where M is Pd(II) or Pt(II) and AA is an anion of amino acid) have also been screened for cytotoxicity in P388 lymphocytic cells. Of them, only two complexes, [Pd(Phen)(Gly)]+ and [Pd(phen)(Val)]+, show comparable cytotoxicity, as cisplatin does.  相似文献   

5.
Four new water soluble complexes of the formula [Pt(DA)(DDTC)]NO3 (where DA is 2,2'-bipyridine, 1,10-phenanthroline, 1,2-diaminopropane, or 1,2-diaminocyclohexane, and DDTC is diethyldithiocarbamate anion) have been synthesized by reaction of platinum-diamine/diimine diaqua complex with sodium diethyldithiocarbamate in molar ratio of 1:1. These complexes have been characterized by the chemical analysis, and ultraviolet-visible, infra-red and 1H NMR spectroscopy. The infrared and 1H NMR spectral studies of these complexes have ascertained the modes of binding of diamine/diimine and diethyldithiocarbamate to platinum. The molar conductance values of these platinum complexes in conductivity water suggest them to be 1:1 electrolytes. These four complexes and two other complexes containing ethylenediamine and 1,3-diaminopropane ligands have been tested against P-388 lymphocytic leukemic cells. Out of them only 2,2'-bipyridine and 1,10-phenanthroline complexes show 1.D.50 values less than cisplatin.  相似文献   

6.
The stability constants for the formation of complexes between Ca(II), Mg(II), Cu(II), Zn(II) and Ni(II) with nystatin and amphotericin-B (polyene antibiotics) have been determined by both a potentiometric and a solubility method. The structures of the complexes have been investigated by NMR, ESR and CD spectroscopy. The transition metal stability constants are consistent with the Irving- Williams series. The structural results are discussed and related to the importance of such complexes in mode of action theories.  相似文献   

7.
Tritium-labeled alpha- and beta-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR spectroscopy of the labeled sugars showed large upfield chemical shift changes upon binding and strong anomeric specificity. At 10 degrees C, MBP bound alpha-maltose with 2.7 +/- 0.5-fold higher affinity than beta-maltose, and, for longer maltodextrins, the ratio of affinities (KD beta/KD alpha) was even larger (between 10 and 30). The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound alpha-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound beta-maltotriose resonances in rapid exchange. We interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the beta-maltodextrin is bound by its reducing end, and, in the other complex, the beta-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins.  相似文献   

8.
Oxovanadium(IV) complexes of the monosaccharides D- and L-arabinose, D-galactose, D-mannose, D-lyxose, D-xylose and the disaccharide maltose were obtained in aqueous solutions at pH 13. Their sodium salts were precipitated with absolute ethanol and characterized by UV-vis spectroscopy (absorption and reflectance), thermo-analytical (TG and DTA) data, magnetic susceptibility measurements and IR-spectroscopy. All the complexes were found to be mononuclear, possessing the VO2+ moiety. The IR spectra were analyzed and discussed in detail allowing one to determine the characteristics of the metal-to-ligand interactions.  相似文献   

9.
In this work, we used fluorescence spectroscopy, molecular dynamics simulation, and Fourier transform infrared spectroscopy for investigating the effect of trehalose binding and maltose binding on the structural properties and the physical parameters of the recombinant D-trehalose/D-maltose binding protein (TMBP) from the hyperthermophilic archaeon Thermococcus litoralis. The binding of the two sugars to TMBP was studied in the temperature range 20 degrees-100 degrees C. The results show that TMBP possesses remarkable temperature stability and its secondary structure does not melt up to 90 degrees C. Although both the secondary structure itself and the sequence of melting events were not significantly affected by the sugar binding, the protein assumes different conformations with different physical properties depending whether maltose or trehalose is bound to the protein. At low and moderate temperatures, TMBP possesses a structure that is highly compact both in the absence and in the presence of two sugars. At about 90 degrees C, the structure of the unliganded TMBP partially relaxes whereas both the TMBP/maltose and the TMBP/trehalose complexes remain in the compact state. In addition, Fourier transform infrared results show that the population of alpha-helices exposed to the solvent was smaller in the absence than in the presence of the two sugars. The spectroscopic results are supported by molecular dynamics simulations. Our data on dynamics and stability of TMBP can contribute to a better understanding of transport-related functions of TMBP and constitute ground for targeted modifications of this protein for potential biotechnological applications.  相似文献   

10.
A series of complexes of the type [Pt(phen)(AA)]+ (where AA is the anion of glycine, L-alanine, L-leucine, L-phenylalanine, L-tyrosine, or L-tryptophan) has been synthesized. These complexes have been characterized by electronic absorption, infrared, and 1H NMR spectroscopy. The interaction of these complexes with calf thymus DNA has been studied using fluorescence spectroscopy. They inhibit the intercalation of ethidium bromide in DNA by intercalative binding at low concentrations and show nonintercalative binding at higher concentrations.  相似文献   

11.
12.
Four new binuclear complexes of formula [M2(bipy)2(BAA)]Cl2 (where M is Pt(II) or Pd(II), bipy is 2,2'-bipyridine, and BAA is a dianion of meso-alpha-alpha'-diaminoadipic acid (DAA) or meso-alpha,alpha'-diaminosuberic acid (DSA) have been synthesized. These complexes have been characterized by chemical analysis and ultraviolet-visible, infrared, and 1H NMR spectroscopy. The mode of binding of ligands in these complexes has been ascertained by infrared and detailed 1H NMR spectroscopy. These complexes are 1:2 electrolyte in conductivity water. They have also been tested against P388 lymphocytic leukemia cells and their target is DNA molecules. [Pt2(bipy)2(DSA)]Cl2, [Pd2(bipy)2(DSA)Cl2, and [Pd2(bipy)2(DAA)]Cl2 show I.D.50 values comparable or lower than cis-diamminedichloroplatinum(II) and [Pt(bipy)(Ala)]Cl. In addition, binding studies of [Pt2(bipy)2(DSA)]Cl2 and [Pd2(bipy)2(DAA)]Cl2 to calf thymus DNA have been carried out and the mode of binding seems to be hydrogen bonding, as suggested earlier for analogous mononuclear amino acid-DNA complexes.  相似文献   

13.
Five-coordinated oxovanadium(IV) complexes with ciprofloxacin and various uninegative bidentate amino acids have been prepared. The structure of complexes has been investigated using spectral, physicochemical, mass spectroscopy, and elemental analyses. The antimicrobial activities (MIC) of the complexes, ligands, metal salt, and some standard drugs have been evaluated using the doubling dilution technique against Staphylococcus aureus, Bacillus subtilis, Serratia marcescens (gram-positive), and Pseudomonas aeruginosa, and Escherichia coli (gram-negative) bacteria. The result shows the significant increase in the antibacterial activity of the ligand, metal, and ciprofloxacin on complexation. The interaction of the complexes with pBR322 DNA has been investigated using spectroscopic, gel electrophoresis, and viscometric techniques. This shows that the complexes can bind to pBR322 DNA by the intercalative mode. The superoxide dismutase-like activity of the complexes has been determined.  相似文献   

14.
Phosphoenolypyruvate-dependent maltose:phosphotransferase activity was induced in cells of Fusobacterium mortiferum ATCC 25557 during growth on maltose. The disaccharide was rapidly metabolized by washed cells maintained under anaerobic conditions, but fermentation ceased immediately upon exposure of the cell suspension to air. Coincidentally, high levels of a phosphorylated derivative accumulated within the cells. Chemical and enzymatic analyses, in conjunction with data from 1H, 13C, and 31P nuclear magnetic resonance spectroscopy, established the structure of the purified compound as 6-O-phosphoryl-alpha-D-glucopyranosyl-(1-4)-D-glucose (maltose 6-phosphate). A method for the preparation of substrate amounts of this commercially unavailable disaccharide phosphate is described. Permeabilized cells of F. mortiferum catalyzed the phosphoenolpyruvate-dependent phosphorylation of maltose under aerobic conditions. However, the hydrolysis of maltose 6-phosphate (to glucose 6-phosphate and glucose) by permeabilized cells or cell-free preparations required either an anaerobic environment or addition of dithiothreitol to aerobic reaction mixtures. The first step in dissimilation of the phosphorylated disaccharide appears to be catalyzed by an oxygen-sensitive maltose 6-phosphate hydrolase. Cells of F. mortiferum, grown previously on maltose, fermented a variety of alpha-linked glucosides, including maltose, turanose, palatinose, maltitol, alpha-methylglucoside, trehalose, and isomaltose. Conversely, cells grown on the separate alpha-glucosides also metabolized maltose. For this anaerobic pathogen, we suggest that the maltose:phosphotransferase and maltose 6-phosphate hydrolase catalyze the phosphorylative translocation and cleavage not only of maltose but also of structurally analogous alpha-linked glucosides.  相似文献   

15.
M R Sierks  K Bock  S Refn  B Svensson 《Biochemistry》1992,31(37):8972-8977
The specificity constants, kcat/KM, were determined for glucose oxidase and glucose dehydrogenase using deoxy-D-glucose derivatives and for glucoamylase using deoxy-D-maltose derivatives as substrates. Transition-state interactions between the substrate intermediates and the enzymes were characterized by the observed kcat/Km values and found to be very similar. The binding energy contributions of individual sugar hydroxyl groups in the enzyme/substrate complexes were calculated using the relationship delta(delta G) = -RT ln [(kcat/KM)deoxy/(kcat/KM)hydroxyl] for the series of analogues. The activity of all three enzymes was found to depend heavily on the 4- and 6-OH groups (4'- and 6'-OH in maltose), where changes in binding energies from 10 to 18 kJ/mol suggested strong hydrogen bonds between the enzymes and these substrate OH groups. The 3-OH (3'-OH in maltose) was involved in weaker interactions, while the 2-OH (2'-OH in maltose) had a very small if any role in transition-state binding. The three enzyme-substrate transition-state interactions were compared using linear free energy relationships (Withers, S. G., & Rupitz, K. (1990) Biochemistry 29, 6405-6409) in which the set of kcat/KM values obtained with substrate analogues for one enzyme is plotted against the corresponding values for a second enzyme. The high linear correlation coefficients (rho) obtained, 0.916, 0.958, and 0.981, indicate significant similarity in transition-state interactions, although the three enzymes lack overall sequence homology.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A new class of surfactant-cobalt(III) complex ions of the type, cis-[Co(X)(2)(C(14)H(29)NH(2))Cl](2+) (where X=ethylenediamine (en), or 2,2'-bipyridyl (bpy), or 1,10-phenanthroline (phen)) and cis-[Co(trien)(C(14)H(29)NH(2))Cl](2+) (trien=triethylenetetramine) were synthesized and characterized by IR, NMR, UV-visible electronic absorption spectra, elemental analysis and metal analysis. The critical micelle concentration (CMC) values of these surfactant-cobalt(III) complexes in aqueous solution were obtained from conductance measurements. Specific conductivity data (at 298, 308, 318 and 328 K) served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (DeltaG(0)(m), DeltaH(0)(m) and DeltaS(0)(m)). Interactions between calf thymus DNA and the surfactant-cobalt(III) complexes in aqueous solution have been investigated by electronic absorption spectroscopy, emission spectroscopy and viscosity measurements. The electrostatic interactions, van der Waals interactions and/or partial intercalative binding have been observed in these systems. The surfactant-cobalt(III) complexes were screened for their antibacterial and antifungal activities against various microorganisms. The results were compared with the standard drugs, Ciprofloxacin and Fluconazole respectively.  相似文献   

17.
The expression of heteroligomeric protein complexes for structural studies often requires a special coexpression strategy. The reason is that the solubility and proper folding of each subunit of the complex requires physical association with other subunits of the complex. The genomes of pathogenic mycobacteria encode many small protein complexes, implicated in bacterial fitness and pathogenicity, whose characterization may be further complicated by insolubility upon expression in Escherichia coli, the most common heterologous protein expression host. As protein fusions have been shown to dramatically affect the solubility of the proteins to which they are fused, we evaluated the ability of maltose binding protein fusions to produce mycobacterial Esx protein complexes. A single plasmid expression strategy using an N-terminal maltose binding protein fusion to the CFP-10 homolog proved effective in producing soluble Esx protein complexes, as determined by a small-scale expression and affinity purification screen, and coupled with intracellular proteolytic cleavage of the maltose binding protein moiety produced protein complexes of sufficient purity for structural studies. In comparison, the expression of complexes with hexahistidine affinity tags alone on the CFP-10 subunits failed to express in amounts sufficient for biochemical characterization. Using this strategy, six mycobacterial Esx complexes were expressed, purified to homogeneity, and subjected to crystallization screening and the crystal structures of the Mycobacterium abscessus EsxEF, M. smegmatis EsxGH, and M. tuberculosis EsxOP complexes were determined. Maltose binding protein fusions are thus an effective method for production of Esx complexes and this strategy may be applicable for production of other protein complexes.  相似文献   

18.
《Inorganica chimica acta》1988,153(4):255-259
A series of complexes of the type [Pd(O O(DACH)] (O O = dicarboxylate ligand, DACH = 1,2-diaminocyclohexane) has been prepared. These complexes have been characterized by elemental analysis and infrared spectroscopy. The complexes have been screened in vivo for antitumor activity against the L1210 leukemia cell line. These palladium complexes lack antitumor activity, which may be due to (1) lack of solubility and/or (2) lack of stability of the complexes in solution.  相似文献   

19.
Adducts with MoO42− tetrahedra coordinated to Cr(III) or Co(III) complexes have been synthesized and studied by IR and high resolution 95Mo NMR spectroscopy. The 95Mo chemical shifts of the adducts with cobalt(III) lie in the range −33.2 to + 49.4 ppm. This may be compared with an overall known chemical shift range in excess of 7000 ppm and implies a similarity in the molybdenum environment in all cases. For adducts with chelated cobalt(III) complexes several rather broad 95Mo singnals are obtained with linewidths up to 260 Hz.  相似文献   

20.
Reactions of RhCl(cod)(THP) (cod = 1,5-cyclooctadiene; THP = P(CH2OH)3) with PMePh2 or PCyPh2 (Cy = cyclohexyl) in acetone/MeOH solution under H2 surprisingly form the complexes cismer-Rh(H)2Cl(PRPh2)3 (R = Me or Cy); both complexes are characterized by crystallography (the first structures in which the hydride ligands of such dihydrido-chloro-trisphosphine complexes have been located), and by detailed 1H and 31P NMR spectroscopy. The key role of the THP in the observed chemistry is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号