首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the large catabolic IncP plasmid pJP4 on the competitiveness of Pseudomonas chlororaphis SPR044 and on its derivatives SPR244 (GacS deficient), SPR344 (phenazine-1-carboxamide overproducer), and SPR644 (phenazine-1-carboxamide deficient) in the Arabidopsis thaliana rhizosphere was assessed. Solitary rhizosphere colonization by the wild type, SPR244, and SPR644 was not affected by the plasmid. The size of the population of SPR344 carrying pJP4, however, was significantly reduced compared to the size of the population of the plasmid-free derivative. The abiotic stress caused by phenazine-1-carboxamide overproduction probably resulted in a selective disadvantage for cells carrying pJP4. Next, the effect of biotic stress caused by coinoculation of other bacteria was analyzed. Cells carrying pJP4 had a selective disadvantage compared to plasmid-free cells in the presence of the efficient colonizer Pseudomonas fluorescens WCS417r. This effect was not observed after coinoculation with a variety of other bacteria, and it was independent of quorum sensing and phenazine-1-carboxamide production. Thus, the presence of large catabolic plasmids imposes a detectable metabolic burden in the presence of biotic stress. Plasmid transfer in the A. thaliana rhizosphere from P. chlororaphis and its derivatives to Ralstonia eutropha was determined by using culture-dependent and culture-independent techniques. With the cultivation-independent technique we detected a significantly higher portion of exconjugants, but pJP4 transfer was independent of the quorum-sensing system and of phenazine-1-carboxamide production.  相似文献   

2.
IncP plasmid r68.45, which carries several antibiotic resistance genes, and IncP plasmid pJP4, which contains genes for mercury resistance and 2,4-dichlorophenoxyacetic acid degradation, were evaluated for their ability to transfer to soil populations of rhizobia. Transfer of r68.45 was detected in nonsterile soil by using Bradyrhizobium japonicum USDA 123 as the plasmid donor and several Bradyrhizobium sp. strains as recipients. Plasmid transfer frequencies ranged up to 9.1 × 10-5 in soil amended with 0.1% soybean meal and were highest after 7 days with strain 3G4b4-RS as the recipient. Transconjugants were detected in 7 of 500 soybean nodules tested, but the absence of both parental strains in these nodules suggests that plasmid transfer had occurred in the soil, in the rhizosphere, or on the root surface. Transfer of degradative plasmid pJP4 was also evaluated in nonsterile soil by using B. japonicum USDA 438 as the plasmid donor and several Bradyrhizobium sp. strains as recipients. Plasmid pJP4 was transferred only when strains USDA 110-ARS and 3G4b4-RS were the recipients. The plasmid transfer frequency was highest for strain 3G4b4-RS (up to 7.4 × 10-6). Mercury additions to soil, ranging from 10 to 50 μg/g of soil, did not affect population levels of parental strains or the plasmid transfer frequency.  相似文献   

3.
The effect of the large catabolic IncP plasmid pJP4 on the competitiveness of Pseudomonas chlororaphis SPR044 and on its derivatives SPR244 (GacS deficient), SPR344 (phenazine-1-carboxamide overproducer), and SPR644 (phenazine-1-carboxamide deficient) in the Arabidopsis thaliana rhizosphere was assessed. Solitary rhizosphere colonization by the wild type, SPR244, and SPR644 was not affected by the plasmid. The size of the population of SPR344 carrying pJP4, however, was significantly reduced compared to the size of the population of the plasmid-free derivative. The abiotic stress caused by phenazine-1-carboxamide overproduction probably resulted in a selective disadvantage for cells carrying pJP4. Next, the effect of biotic stress caused by coinoculation of other bacteria was analyzed. Cells carrying pJP4 had a selective disadvantage compared to plasmid-free cells in the presence of the efficient colonizer Pseudomonas fluorescens WCS417r. This effect was not observed after coinoculation with a variety of other bacteria, and it was independent of quorum sensing and phenazine-1-carboxamide production. Thus, the presence of large catabolic plasmids imposes a detectable metabolic burden in the presence of biotic stress. Plasmid transfer in the A. thaliana rhizosphere from P. chlororaphis and its derivatives to Ralstonia eutropha was determined by using culture-dependent and culture-independent techniques. With the cultivation-independent technique we detected a significantly higher portion of exconjugants, but pJP4 transfer was independent of the quorum-sensing system and of phenazine-1-carboxamide production.  相似文献   

4.
TrbC propilin is the precursor of the pilin subunit TrbC of IncP conjugative pili in Escherichia coli. Likewise, its homologue, VirB2 propilin, is processed into T pilin of the Ti plasmid T pilus in Agrobacterium tumefaciens. TrbC and VirB2 propilin are truncated post-translationally at the N terminus by the removal of a 36/47-residue leader peptide, respectively. TrbC propilin undergoes a second processing step by the removal of 27 residues at the C terminus by host-encoded functions followed by the excision of four additional C-terminal residues by a plasmid-borne serine protease. The final product TrbC of 78 residues is cyclized via an intramolecular covalent head-to-tail peptide bond. The T pilin does not undergo additional truncation but is likewise cyclized. The circular structures of these pilins, as verified by mass spectrometry, represent novel primary configurations that conform and assemble into the conjugative apparatus.  相似文献   

5.
The diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative plasmids in the microbial community of an agricultural soil was examined by complementation. This technique involved mixing a suitable Alcaligenes eutrophus (Rifr) recipient strain with the indigenous microbial populations extracted from soil. After incubation of this mixture, Rifr recipient strains which grow with 2,4-D as the only C source were selected. Two A. eutrophus strains were used as recipients: JMP228 (2,4-D-), which was previously derived from A. eutrophus JMP134 by curing of the 2,4-D-degradative plasmid pJP4, and JMP228 carrying pBH501aE (a plasmid derived from pJP4 by deletion of a large part of the tfdA gene which encodes the first step in the mineralization of 2,4-D). By using agricultural soil that had been treated with 2,4-D for several years, transconjugants were obtained with both recipients. However, when untreated control soil was used, no transconjugants were isolated. The various transconjugants had plasmids with seven different EcoRI restriction patterns. The corresponding plasmids are designated pEMT1 to pEMT7. Unlike pJP4, pEMT1 appeared not to be an IncP1 plasmid, but all the others (pEMT2 to pEMT7) belong to the IncP1 group. Hybridization with individual probes for the tfdA to tfdF genes of pJP4 demonstrated that all plasmids showed high degrees of homology to the tfdA gene. Only pEMT1 showed a high degree of homology to tfdB, tfdC, tfdD, tfdE, and tfdF, while the others showed only moderate degrees of homology to tfdB and low degrees of homology to tfdC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
One-tenth of Escherichia coli transconjugants resulting from the transfer of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 to E. coli XL1Blue, contained pJP4 derivatives with deletions (approximately 15-30 kb). The occurrence of these deletions is probably associated with the presence of Tn10 in the recipient. DNA endonuclease restriction analysis of the pJP4 deletion derivatives showed the absence of SphI and EcoRI fragments previously reported to hybridize with IncP Tra DNA probes. Moreover, these pJP4 deletion derivatives are not able to self-transfer, nor are they able to be mobilized. Accordingly, these pJP4 deletion derivatives lack transfer functions.  相似文献   

7.
J Haase  E Lanka 《Journal of bacteriology》1997,179(18):5728-5735
TraF, an essential component of the conjugative transfer apparatus of the broad-host-range plasmid RP4 (IncP), which is located at the periplasmic side of the cytoplasmic membrane, encodes a specific protease. The traF gene products of IncP and Ti plasmids show extensive similarities to prokaryotic and eukaryotic signal peptidases. Mutational analysis of RP4 TraF revealed that the mechanism of the proteolytic cleavage reaction resembles that of signal and LexA-like peptidases. Among the RP4 transfer functions, the product of the Tra2 gene, trbC, was identified as a target for the TraF protease activity. TrbC is homologous to VirB2 of Ti plasmids and thought to encode the RP4 prepilin. The maturation of TrbC involves three processing reactions: (i) the removal of the N-terminal signal peptide by Escherichia coli signal peptidase I (Lep), (ii) a proteolytic cleavage at the C terminus by an as yet unidentified host cell enzyme, and (iii) C-terminal processing by TraF. The third reaction of the maturation process is critical for conjugative transfer, pilus synthesis, and the propagation of the donor-specific bacteriophage PRD1. Thus, cleavage of TrbC by TraF appears to be one of the initial steps in a cascade of processes involved in export of the RP4 pilus subunit and pilus assembly mediated by the RP4 mating pair formation function.  相似文献   

8.
Specific and sensitive detection of indigenous and introduced degradative organisms is an essential prerequisite to their use in remediation of toxic waste and soil systems. Procedures were employed for the use of polymerase chain reaction and gene probes for sensitive detection of the 2,4-dichlorophenoxyacetic-acid-degrading bacterium, Alcaligenes eutrophus JMP134(pJP4). Two 20-mer oligonucleotide primers were identified for amplification of a 205-bp region of the tfdB gene of pJP4, and optimum conditions for amplification were determined. Both the polymerase chain reaction amplification process and hybridization with the 5'-end-labelled probe were found to be specific to organisms containing plasmid pJP4 or its derivative pRO103. Detection limits were determined for the template supplied either as bacterial cells or purified plasmid DNA. The detection was sensitive up to an initial inoculum of 3,000 CFU or 156 pg of total plasmid DNA. However, when the amplified product was transferred to a nylon membrane and hybridized with the 5'-end-labelled probe, the detection sensitivity increased to 300 CFU or 15.6 pg of plasmid DNA. This sensitive detection method is more specific than use of traditional indicator media (M. A. Loos, Can. J. Microbiol. 21:104-107, 1975). An oligonucleotide (20 bases) complementary to a sequence internal to the 205-bp region was synthesized and utilized as a probe to confirm the specificity of the detection.  相似文献   

9.
This study evaluated the potential for gene transfer of a large catabolic plasmid from an introduced organism to indigenous soil recipients. The donor organism Alcaligenes eutrophus JMP134 contained the 80-kb plasmid pJP4, which contains genes that code for mercury resistance. Genes on this plasmid plus chromosomal genes also allow degradation of 2,4-dichloruphenoxyacetic acid (2,4-D). When JMP134 was inoculated into a nonsterile soil microcosm amended with 1,000 micrograms of 2,4-D g-1, significant (10(6) g of soil-1) populations of indigenous recipients or transconjugants arose. These transconjugants all contained an 80-kb plasmid similar in size to pJP4, and all degraded 2,4-D. In addition, all transconjugants were resistant to mercury and contained the tfdB gene of pJP4 as detected by PCR. No mercury-resistant, 2,4-D-degrading organisms with large plasmids or the tfdB gene were found in the 2,4-D-amended but uninoculated control microcosm. These data clearly show that the plasmid pJP4 was transferred to indigenous soil recipients. Even more striking is the fact that not only did the indigenous transconjugant population survive and proliferate but also enhanced rates of 2,4-D degradation occurred relative to microcosms in which no such gene transfer occurred. Overall, these data indicate that gene transfer from introduced organisms is an effective means of bioaugmentation and that survival of the introduced organism is not a prerequisite for biodegradation that utilizes introduced biodegradative genes.  相似文献   

10.
The pilus subunit, the pilin, of conjugative IncP pili is encoded by the trbC gene. IncP pilin is composed of 78 amino acids forming a ring structure (R. Eisenbrandt, M. Kalkum, E.-M. Lai, C. I. Kado, and E. Lanka, J. Biol. Chem. 274:22548-22555, 1999). Three enzymes are involved in maturation of the pilin: LepB of Escherichia coli for signal peptide removal and a yet-unidentified protease for removal of 27 C-terminal residues. Both enzymes are chromosome encoded. Finally, the inner membrane-associated IncP TraF replaces a four-amino-acid C-terminal peptide with the truncated N terminus, yielding the cyclic polypeptide. We refer to the latter process as "prepilin cyclization." We have used site-directed mutagenesis of trbC and traF to unravel the pilin maturation process. Each of the mutants was analyzed for its phenotypes of prepilin cyclization, pilus formation, donor-specific phage adsorption, and conjugative DNA transfer abilities. Effective prepilin cyclization was determined by matrix-assisted laser desorption-ionization-mass spectrometry using an optimized sample preparation technique of whole cells and trans-3-indolyl acrylic acid as a matrix. We found that several amino acid exchanges in the TrbC core sequence allow prepilin cyclization but disable the succeeding pilus assembly. We propose a mechanism explaining how the signal peptidase homologue TraF attacks a C-terminal section of the TrbC core sequence via an activated serine residue. Rather than cleaving and releasing hydrolyzed peptides, TraF presumably reacts as a peptidyl transferase, involving the N terminus of TrbC in the aminolysis of a postulated TraF-acetyl-TrbC intermediate. Under formal loss of a C-terminal tetrapeptide, a new peptide bond is formed in a concerted action, connecting serine 37 with glycine 114 of TrbC.  相似文献   

11.
Limited work has been done to assess the bioremediation potential of transfer of plasmid-borne degradative genes from introduced to indigenous organisms in the environment. Here we demonstrate the transfer by conjugation of the catabolic plasmid pJP4, using a model system with donor and recipient organisms. The donor organism was Alcaligenes eutrophus JMP134 and the recipient organism was Variovorax paradoxus isolated from a toxic waste site. Plasmid pJP4 contains genes for mercury resistance and 2,4-dichlorophenoxyacetic (2,4-D) acid degradation. A transfer frequency of approximately 1/10(3) donor and recipient cells (parent cells) was observed on solid agar media, decreasing to 1/10(5) parent cells in sterile soil and finally 1/10(6) parent cells in 2,4-D-amended, nonsterile soil. Presumptive transconjugants were confirmed to be resistant to Hg, to be capable of degrading 2,4-D, and to contain a plasmid of size comparable to that of pJP4. In addition, we confirmed the transfer through PCR amplifications of the tfdB gene. Although transfer of pJP4 did occur at a high frequency in pure culture, the rate was significantly decreased by the introduction of abiotic (sterile soil) and biotic (nonsterile soil) stresses. An evaluation of the data from this model system implies that the reliance on plasmid transfer from a donor organism as a remediative strategy has limited potential.  相似文献   

12.
Plasmid RP4 transfer between introduced pseudomonads was studied in non-rhizosphere and rhizosphere soil. The addition of nutrients to the non-rhizosphere soil stimulated plasmid transfers between introduced donor and recipient cells, and no transfer was detected in nonamended soil. Transfer was also detected in soil in a model rhizosphere, but not in corresponding non-rhizosphere soil. Colony hybridization with whole plasmid RP4 DNA as a probe was employed to detect transfers to indigenous organisms in soil. Although transfers to introduced recipient cells were easily detected in parallel controls, no indigenous organisms were identified that had received RP4. Background levels of soil organisms with the RP4 resistance pattern were considerable, and about 10% of these populations contained DNA sequences with homology to RP4. However, no plasmids could be detected in any of 20 isolates, nor was resistance transfer to aPseudomonas fluorescens recipient detected in filter matings.  相似文献   

13.
Plasmid pJP4 is an 80-kilobase, IncP1, broad-host-range conjugative plasmid of Alcaligenes eutrophus encoding resistance to mercuric chloride and phenyl mercury acetate and degradation of 2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, and 3-chlorobenzoate. By the use of cloning, transposon mutagenesis, and restriction endonuclease analysis, a biophysical and genetic map of pJP4 was generated.  相似文献   

14.
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium Achromobacter xylosoxidans subsp. denitrificans strain EST4002 contains plasmid pEST4011. This plasmid ensures its host a stable 2,4-D(+) phenotype. We determined the complete 76,958-bp nucleotide sequence of pEST4011. This plasmid is a deletion and duplication derivative of pD2M4, the 95-kb highly unstable laboratory ancestor of pEST4011, and was self-generated during different laboratory manipulations performed to increase the stability of the 2,4-D(+) phenotype of the original strain, strain D2M4(pD2M4). The 47,935-bp catabolic region of pEST4011 forms a transposon-like structure with identical copies of the hybrid insertion element IS1071::IS1471 at the two ends. The catabolic regions of pEST4011 and pJP4, the best-studied 2,4-D-degradative plasmid, both contain homologous, tfd-like genes for complete 2,4-D degradation, but they have little sequence similarity other than that. The backbone genes of pEST4011 are most similar to the corresponding genes of broad-host-range self-transmissible IncP1 plasmids. The backbones of the other three IncP1 catabolic plasmids that have been sequenced (the 2,4-D-degradative plasmid pJP4, the haloacetate-catabolic plasmid pUO1, and the atrazine-catabolic plasmid pADP-1) are nearly identical to the backbone of R751, the archetype plasmid of the IncP1 beta subgroup. We show that despite the overall similarity in plasmid organization, the pEST4011 backbone is sufficiently different (51 to 86% amino acid sequence identity between individual backbone genes) from the backbones of members of the three IncP1 subgroups (the alpha, beta, and gamma subgroups) that it belongs to a new IncP1subgroup, the delta subgroup. This conclusion was also supported by a phylogenetic analysis of the trfA2, korA, and traG gene products of different IncP1 plasmids.  相似文献   

15.
Specific and sensitive detection of indigenous and introduced degradative organisms is an essential prerequisite to their use in remediation of toxic waste and soil systems. Procedures were employed for the use of polymerase chain reaction and gene probes for sensitive detection of the 2,4-dichlorophenoxyacetic-acid-degrading bacterium, Alcaligenes eutrophus JMP134(pJP4). Two 20-mer oligonucleotide primers were identified for amplification of a 205-bp region of the tfdB gene of pJP4, and optimum conditions for amplification were determined. Both the polymerase chain reaction amplification process and hybridization with the 5'-end-labelled probe were found to be specific to organisms containing plasmid pJP4 or its derivative pRO103. Detection limits were determined for the template supplied either as bacterial cells or purified plasmid DNA. The detection was sensitive up to an initial inoculum of 3,000 CFU or 156 pg of total plasmid DNA. However, when the amplified product was transferred to a nylon membrane and hybridized with the 5'-end-labelled probe, the detection sensitivity increased to 300 CFU or 15.6 pg of plasmid DNA. This sensitive detection method is more specific than use of traditional indicator media (M. A. Loos, Can. J. Microbiol. 21:104-107, 1975). An oligonucleotide (20 bases) complementary to a sequence internal to the 205-bp region was synthesized and utilized as a probe to confirm the specificity of the detection.  相似文献   

16.
Bacteria released in large numbers for biocontrol or bioremediation purposes might exchange genes with other microorganisms. Two model systems were designed to investigate the likelihood of such an exchange and some factors which govern the conjugative exchange of chromosomal genes between root-colonizing pseudomonads in the rhizosphere of wheat. The first model consisted of the biocontrol strain CHA0 of Pseudomonas fluorescens and transposon-facilitated recombination (Tfr). A conjugative IncP plasmid loaded with transposon Tn5, in a CHA0 derivative carrying a chromosomal Tn5 insertion, promoted chromosome transfer to auxotrophic CHA0 recipients in vitro. A chromosomal marker (pro) was transferred at a frequency of about 10(sup-6) per donor on wheat roots under gnotobiotic conditions, provided that the Tfr donor and recipient populations each contained 10(sup6) to 10(sup7) CFU per g of root. In contrast, no conjugative gene transfer was detected in soil, illustrating that the root surface stimulates conjugation. The second model system was based on the genetically well-characterized strain PAO of Pseudomonas aeruginosa and the chromosome mobilizing IncP plasmid R68.45. Although originally isolated from a human wound, strain PAO1 was found to be an excellent root colonizer, even under natural, nonsterile conditions. Matings between an auxotrophic R68.45 donor and auxotrophic recipients produced prototrophic chromosomal recombinants at 10(sup-4) to 10(sup-5) per donor on wheat roots in artificial soil under gnotobiotic conditions and at about 10(sup-6) per donor on wheat roots in natural, nonsterile soil microcosms after 2 weeks of incubation. The frequencies of chromosomal recombinants were as high as or higher than the frequencies of R68.45 transconjugants, reflecting mainly the selective growth advantage of the prototrophic recombinants over the auxotrophic parental strains in the rhizosphere. Although under field conditions the formation of chromosomal recombinants is expected to be reduced by several factors, we conclude that chromosomal genes, whether present naturally or introduced by genetic modification, may be transmissible between rhizosphere bacteria.  相似文献   

17.
Abstract: Escherichia coli recipient and E. coli donor strains carrying streptothricin-resistance genes were inoculated together into different soil microcosms. These genes were localized on the narrow host range plasmids of incompatibility (Inc) groups FII, Il, and on the broad host range plasmids of IncP1, IncN, IncW3, and IncQ. The experiments were intended to study the transfer of these plasmids in sterile and non-sterile soil with and without antibiotic selective pressure and in planted soil microcosms. Transfer of all broad host range plasmids from the introduced E. coli donor into the recipient was observed in all microcosm experiments. These results indicate that broad host range plasmids encoding short and rigid pili might spread in soil environments by conjugative transfer. In contrast, transfer of the narrow host range plasmids of IncFII and IncI1, into E. coli recipients was not found in sterile or non-sterile soil. These plasmids encoded flexible pili or flexible and rigid pili, respectively. In all experiments highest numbers of transconjugants were detected for the IncP1-plasmid (pTH16). There was evidence with plasmids belonging to IncP group transferred by conjugation into a variety of indigenous soil bacteria at detectable frequencies. Significantly higher numbers of indigenous transconjugants were obtained for the IncP-plasmid under antibiotic selection pressure, and a greater diversity of transconjugants was detected. Availability of nutrients and rhizosphere exudates stimulated transfer in soil. Furthermore, transfer of the IncN-plasmid (pIE1037) into indigenous bacteria of the rhizosphere community could be detected. The transconjugants were determined by BIOLOG as Serratia liquefaciens . Despite the known broad host range of IncW3 and IncQ-plasmids, transfer into indigenous soil bacteria could not be detected.  相似文献   

18.
Plasmid pHH502, of molecular weight 70 X 10(6), determined resistance to tetracycline, chloramphenicol, trimethoprim, sulphonamides and mercuric chloride and was incompatible with members of IncP and IncI alpha. It resembled other plasmids of IncI alpha in the following properties: it determined pili that were morphologically and serologically I alpha pili, whose production was repressed in established plasmid-carrying (R+) cultures; its transfer was equally efficient in liquid or on solid medium; it exerted surface exclusion against other IncI alpha plasmids; it was non-transferable to Proteus. In a reproducible, recA-independent event, pHH502 gave rise to pHH502-1, a plasmid of molecular weight 40 X 10(6), lacking determinants for resistance to tetracycline and chloramphenicol and all detectable IncI alpha characteristics. pHH502-1 was incompatible only with IncP plasmids and resembled other IncP plasmids in determining constitutive production of rigid pili, in its surface exclusion, in transferring at greater frequency on solid than in liquid medium and in being transmissible to Proteus mirabilis. It differed from other IncP plasmids in the morphology and serological type of its pili and in failing to transfer to Pseudomonas aeruginosa or Acinetobacter calcoaceticus. Small numbers of pHH502-1 rigid pili were present on bacteria carrying pHH502. Possible mechanisms for the generation of pHH502 and pHH502-1 are discussed.  相似文献   

19.
The transfer of a genetically marked derivative of plasmid RP4, RP4p, from Pseudomonas fluorescens to members of the indigenous microflora of the wheat rhizosphere was studied by using a bacteriophage that specifically lyses the donor strain and a specific eukaryotic marker on the plasmid. Transfer of RP4p to the wheat rhizosphere microflora was observed, and the number of transconjugants detected was approximately 10 transconjugants per g of soil when 10 donor cells per g of soil were added; transfer in the corresponding bulk soil was slightly above the limit of detection. All of the indigenous transconjugants which we analyzed contained a 60-kb plasmid and were able to transfer this plasmid to a Nx RpP. fluorescens recipient strain. The indigenous transconjugants were identified as belonging to Pseudomonas spp., Enterobacter spp., Comamonas spp., and Alcaligenes spp.  相似文献   

20.
Exogenous plasmid isolation method was used to assess conjugative plasmids conferring pesticide tolerance/multiple metal and antibiotic resistance from contaminated soil using bacteria detached from soil samples as a donor and rifampicin resistant E. coli HMS as a recipient strain on mineral salt agar medium supplemented with γ-HCH, and antibiotics ampicillin, tetracycline, chloramphenicol and kanamycin. Transconjugants were obtained on ampicillin (10?μg/ml) and tetracycline (20?μg/ml) amended MSA plates and frequency of ampicillin and tetracycline resistance gene transfer was 7.2?×?10(-6) and 9.2?×?10(-4) transconjugants/recipient, respectively. PCR typing methods were used to assess the presence of plasmids of the incompatibility groups IncP, IncN, IncW, IncQ and rolling circle plasmids of pMV158 type in DNA derived from transconjugants. All transconjugants were PCR amplified for the detection of Inc group plasmids and rolling circle plasmids of pMV158 family in which TM2, 3, 4, 11 and 12 (tet) transconjugants gave PCR products with the IncP-specific primers for both replication and transfer functions (trfA2 (IncP) and oriT (IncP)), while TM 14 (amp) gave an IncP specific PCR product for the replication gene trfA2 (IncP) only. TM15, 16, 18 and 21 (amp) gave a PCR product for the IncW-specific oriT (IncW). Out of 24 transconjugants, only TM 5 (tet) gave a PCR product with the pMV158 specific primer pair for oriT (RC). Our findings indicate that Inc group plasmids and rolling circle plasmids of pMV158 type may be responsible for transferring multiple antibiotic resistance genes among the bacterial soil community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号