首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
成骨细胞对梯度拉伸应变的响应   总被引:2,自引:0,他引:2  
采用四点弯曲加载装置对原代的大鼠颅盖骨细胞施加周期性的拉伸刺激,并设计了应变呈梯度增加的加载方式,使成骨细胞受到的拉伸应变为500-1500με,每隔2h增加500με,以考察成骨细胞对变化的力学环境的响应。结果表明,在500με下拉伸2-6h促进了成骨细胞的增殖、碱性磷酸酶活力增强和胞外钙基质沉积。对细胞施加应变呈梯度增加的拉伸刺激,则发现当应变从有利于细胞的生长分化水平(500με)变化为不利于细胞生长分化的水平(1000με,1500με)后,细胞的增殖指数、碱性磷酸酶活力和胞外钙基质分泌量都迅速降低,以适应新的力学环境。说明成骨细胞能够分辨不同的应变水平,并相应地调节自身的生理功能,从而表现出对变化的力学环境的适应。  相似文献   

2.
Three triple-element rosette strain gages were attached to the equine third metacarpal midshaft to record site-specific strains engendered by locomotion. The distribution of strains acting upon the midshaft cross section were characterized using a combined beam theory and finite element model analysis that did not presume the manner by which the bone was inertially loaded. A medium-speed trot (3.6 ms-1) was chosen as a representative speed and gait, with normal and shear strains, and strain energy density (SED) distributions determined throughout the stance and subsequent swing phase. Importantly, the sites of maximum compression (-2400 mu epsilon), tension (810 mu epsilon), shear (1500 mu epsilon), and SED (54 kPa) were not located at any of the gage attachment sites, emphasizing that a minimum of three rosette gages are necessary to resolve the peaks and locations of functionally induced normal and shear strains. Considering the nonuniform strain distributions across the cortex, we conclude that the third metacarpal is subject to a complex loading milieu comprised of bending, axial compression, end shear, and torsion. As this complex manner of loading was consistent through the entire stance phase, it would appear that, at least during the trot, specific sites within the same cross section are subject to vastly different magnitudes of strain stimulus.  相似文献   

3.
We hypothesized that a 10-s rest interval (at zero load) inserted between each load cycle would increase the osteogenic effects of mechanical loading near previously identified thresholds for strain magnitude and cycle numbers. We tested our hypothesis by subjecting the right tibiae of female C57BL/6J mice (16 wk, n = 70) to exogenous mechanical loading within a peri-threshold physiological range of strain magnitudes and load cycle numbers using a noninvasive murine tibia loading device. Bone responses to mechanical loading were determined via dynamic histomorphometry. More specifically, we contrasted bone formation induced by cyclic vs. rest-inserted loading (10-s rest at zero load inserted between each load cycle) by first varying peak strains (1,000, 1,250, or 1,600 micro epsilon) at fixed cycle numbers (50 cycles/day, 3 days/wk for 3 wk) and then varying cycle numbers (10, 50, or 250 cycles/day) at a fixed strain magnitude (1,250 micro epsilon). Within the range of strain magnitudes tested, the slope of periosteal bone formation rate (p.BFR/BS) with increasing strain magnitudes was significantly increased by rest-inserted compared with cyclical loading. Within the range of load cycles tested, the slope of p.BFR/BS with increasing load cycles of rest-inserted loading was also significantly increased by rest-inserted compared with cyclical loading. In sum, the data of this study indicate that inserting a 10-s rest interval between each load cycle amplifies bone's response to mechanical loading, even within a peri-threshold range of strain magnitudes and cycle numbers.  相似文献   

4.
A feedback controlled loading apparatus for the rat tail vertebra was developed to deliver precise mechanical loads to the eighth caudal vertebra (C8) via pins inserted into adjacent vertebrae. Cortical bone strains were recorded using strain gages while subjecting the C8 in four cadaveric rats to mechanical loads ranging from 25 to 100 N at 1 Hz with a sinusoidal waveform. Finite element (FE) models, based on micro computed tomography, were constructed for all four C8 for calculations of cortical and trabecular bone tissue strains. The cortical bone strains predicted by FE models agreed with strain gage measurements, thus validating the FE models. The average measured cortical bone strain during 25-100 N loading was between 298 +/- 105 and 1210 +/- 297 microstrain (muepsilon). The models predicted average trabecular bone tissue strains ranging between 135 +/- 35 and 538 +/- 138 mu epsilon in the proximal region, 77 +/- 23-307 +/- 91 muepsilon in the central region, and 155 +/- 36-621 +/- 143 muepsilon in the distal region for 25-100 N loading range. Although these average strains were compressive, it is also interesting that the trabecular bone tissue strain can range from compressive to tensile strains (-1994 to 380 mu epsilon for a 100 N load). With this novel approach that combines an animal model with computational techniques, it could be possible to establish a quantitative relationship between the microscopic stress/strain environment in trabecular bone tissue, and the biosynthetic response and gene expression of bone cells, thereby study bone adaptation.  相似文献   

5.
Elastic properties and masticatory bone stress in the macaque mandible   总被引:4,自引:0,他引:4  
One important limitation of mechanical analyses with strain gages is the difficulty in directly estimating patterns of stress or loading in skeletal elements from strain measurements. Because of the inherent anisotropy in cortical bone, orientation of principal strains and stresses do not necessarily coincide, and it has been demonstrated theoretically that such differences may be as great as 45 degrees (Cowin and Hart, 1990). Likewise, relative proportions of stress and strain magnitudes may differ. This investigation measured the elastic properties of a region of cortical bone on both the buccal and lingual surfaces of the lower border of the macaque mandible. The elastic property data was then combined with macaque mandibular strain data from published and a new in vivo strain gage experiment to determine directions and magnitudes of maximum and minimum principal stresses. The goal was to compare the stresses and strains and assess the differences in orientation and relative magnitude between them. The main question was whether these differences might lead to different interpretations of mandibular function. Elastic and shear moduli, and Poisson's ratios were measured using an ultrasonic technique from buccal and lingual cortical surfaces in 12 macaque mandibles. Mandibular strain gage data were taken from a published set of experiments (Hylander, 1979), and from a new experiment in which rosette strain gauges were fixed to the buccal and lingual cortices of the mandibular corpus of an adult female Macaca fascicularis, after which bone strain was recorded during mastication. Averaged elastic properties were combined with strain data to calculate an estimate of stresses in the mandibular corpus. The elastic properties were similar to those of the human mandibular cortex. Near its lower border, the macaque mandible was most stiff in a longitudinal direction, less stiff in an inferosuperior direction, and least stiff in a direction normal to the bone's surface. The lingual aspect of the mandible was slightly stiffer than the buccal aspect. Magnitudes of stresses calculated from average strains ranged from a compressive stress of -16.00 GPa to a tensile stress of 8.84 GPa. The orientation of the principal stresses depended on whether the strain gage site was on the working or balancing side. On the balancing side of the mandibles, maximum principal stresses were oriented nearly perpendicular to the lower border of the mandible. On the working side of the mandibles, the orientation of the maximum principal stresses was more variable than on the balancing side, indicating a larger range of possible mechanisms of loading. Near the lower border of the mandible, differences between the orientation of stresses and strains were 12 degrees or less. Compared to ratios between maximum and minimum strains, ratios between maximum and minimum stresses were more divergent from a ratio of 1.0. Results did not provide any major reinterpretations of mandibular function in macaques, but rather confirmed and extended existing work. The differences between stresses and strains on the balancing side of the mandible generally supported the view that during the power stroke the mandible was bent and slightly twisted both during mastication and transducer biting. The calculated stresses served to de-emphasize the relative importance of torsion. On the working side, the greater range of variability in the stress analysis compared to the strain analysis suggested that a more detailed examination of loadings and stress patterns in each individual experiment would be useful to interpret the results. Torsion was evident on the working side; but in a number of experiments, further information was needed to interpret other superimposed regional loading patterns, which may have included parasagittal bending and reverse parasagittal bending.  相似文献   

6.
This paper describes a technique for characterizing strains and stresses induced in vivo in the rat tibia during application of an external four-point bending load. An external load was applied through the muscle and soft tissue with a four-point bending device, to induce strain in a 11 mm section of the right tibiae of ten adult female Sprague-Dawley rats. Induced strains were measured in vivo on the lateral surface of the tibia. Inter-rat difference, leg positioning and strain gage placement were evaluated as sources of variability of applied strains. Beam bending theory was used to predict externally induced in vivo strains. Finite element analysis was used to quantify the magnitude of shear stresses induced by this type of loading. There was a linear relationship between applied load and induced in vivo strains. In vivo strains induced by external loading were linearly correlated (R2 = 0.87) with the strains calculated using beam bending theory. The finite element analysis predicted shear stresses at less than 10% of the longitudinal stresses resulting from four-point bending. Strains predicted along the tibia by finite element analysis and beam bending theory were well-correlated. Inter-rat variability due to tibia size and shape difference was the most important source of variation in induced strain (CV = 21.6%). Leg positioning was less important (CV = 9.5%).  相似文献   

7.
The human facet joint capsule is one of the structures in the lumbar spine that constrains motions of vertebrae during global spine loading (e.g., physiological flexion). Computational models of the spine have not been able to include accurate nonlinear and viscoelastic material properties, as they have not previously been measured. Capsules were tested using a uniaxial ramp-hold protocol or a haversine displacement protocol using a commercially available materials testing device. Plane strain was measured optically. Capsules were tested both parallel and perpendicular to the dominant orientation of the collagen fibers in the capsules. Viscoelastic material properties were determined. Parallel to the dominant orientation of the collagen fibers, the complex modulus of elasticity was E*=1.63MPa, with a storage modulus of E'=1.25MPa and a loss modulus of: E" =0.39MPa. The mean stress relaxation rates for static and dynamic loading were best fit with first-order polynomials: B(epsilon) = 0.1110epsilon-0.0733 and B(epsilon)= -0.1249epsilon + 0.0190, respectively. Perpendicular to the collagen fiber orientation, the viscous and elastic secant moduli were 1.81 and 1.00 MPa, respectively. The mean stress relaxation rate for static loading was best fit with a first-order polynomial: B (epsilon) = -0.04epsilon - 0.06. Capsule strength parallel and perpendicular to collagen fiber orientation was 1.90 and 0.95 MPa, respectively, and extensibility was 0.65 and 0.60, respectively. Poisson's ratio parallel and perpendicular to fiber orientation was 0.299 and 0.488, respectively. The elasticity moduli were nonlinear and anisotropic, and capsule strength was larger aligned parallel to the collagen fibers. The phase lag between stress and strain increased with haversine frequency, but the storage modulus remained large relative to the complex modulus. The stress relaxation rate was strain dependent parallel to the collagen fibers, but was strain independent perpendicularly.  相似文献   

8.
The effect of loading rate on specimen calibration was investigated for an implantable force sensor of the two-point loading variety. This variety of sensor incorporates a strain gage to measure the compressive load applied to the sensor due to tensile loading in a soft tissue specimen. The Achilles tendon in each of four human cadaveric lower extremities was instrumented with a force sensor and then loaded in tension using a materials testing machine. Each specimen was tensile tested at three different displacement rates, 0.25, 2.5 and 12.7 cm s(-1), corresponding with mean loading rates of 33.8, 513.2, and 2838.6 N s(-1), respectively. A calibration curve relating the force sensor signal and applied tendon tension was generated for each specimen/ displacement rate combination. For each specimen, calibration curves were compared by calculating an RMS error for the entire data set (eRMS = 1.6% of the full load value) and a coefficient of determination, R2, of a curve fit through all of the data (R2 = 99.6%). Over the range of rates tested, no measurable change in sensor sensitivity due to loading rate was observed. Hysteresis for all displacement rates was on the order of 2.4%.  相似文献   

9.
Mechanical properties of trabecular bone. Dependency on strain rate.   总被引:8,自引:1,他引:7  
The effect of strain rate (epsilon) and apparent density (rho) on stiffness (E), strength (sigma u), and ultimate strain (epsilon u) was studied in 60 human trabecular bone specimens from the proximal tibia. Testing was performed by uniaxial compression to 5% specimen strain. Six different strain rates were used: 0.0001, 0.001, 0.01, 0.1, 1, and 10 s-1. Apparent density ranged between 0.23 and 0.59 g cm-3. Linear and non-linear regression analyses using strength, stiffness and ultimate strain as dependent variables (Y) and strain rate and apparent density as independent variables were performed using the following models: Y = a rho b epsilon c, Y = rho b(a + c epsilon; Y = (a + b rho)epsilon c, Y = a rho 2 epsilon c, E = a rho 3 epsilon c. The variations of strength and stiffness were explained equally well by the linear and the power function relationship to strain rate. The exponent was 0.07 in the power function relationship between strength and strain rate and 0.05 between stiffness and strain rate. The variation of ultimate strain was explained best using a power function relationship to strain rate (exponent = 0.03). The variation of strength and stiffness was explained equally well by the linear, power function and quadratic relationship to apparent density. The cubic relationship between stiffness and apparent density showed a less good fit. Ultimate strain varied independently of apparent density.  相似文献   

10.
Prolonged exposure to micro-gravity causes substantial bone loss (Leblanc et al., Journal of Bone Mineral Research 11 (1996) S323) and treadmill exercise under gravity replacement loads (GRLs) has been advocated as a countermeasure. To date, the magnitudes of GRLs employed for locomotion in space have been substantially less than the loads imposed in the earthbound 1G environment, which may account for the poor performance of locomotion as an intervention. The success of future treadmill interventions will likely require GRLs of greater magnitude. It is widely held that mechanical tissue strain is an important intermediary signal in the transduction pathway linking the external loading environment to bone maintenance and functional adaptation; yet, to our knowledge, no data exist linking alterations in external skeletal loading to alterations in bone strain. In this preliminary study, we used unique cadaver simulations of micro-gravity locomotion to determine relationships between localized tibial bone strains and external loading as a means to better predict the efficacy of future exercise interventions proposed for bone maintenance on orbit. Bone strain magnitudes in the distal tibia were found to be linearly related to ground reaction force magnitude (R(2)>0.7). Strain distributions indicated that the primary mode of tibial loading was in bending, with little variation in the neutral axis over the stance phase of gait. The greatest strains, as well as the greatest strain sensitivity to altered external loading, occurred within the anterior crest and posterior aspect of the tibia, the sites furthest removed from the neutral axis of bending. We established a technique for estimating local strain magnitudes from external loads, and equations for predicting strain during simulated micro-gravity walking are presented.  相似文献   

11.
The two main types of mechanical stimuli used in cellular-level bone mechanotransduction studies are substrate strain and flow-induced shear stress. A subset of studies has investigated which of these stimuli induces the primary mechanotransduction effect on bone cells. The shortcomings of these experiments are twofold. First, in some experiments the magnitude of one loading type is able to be quantitatively measured while the other loading mode is only estimated. Second, the two loading modes are compared using different bioreactors, representing different cellular environments and substrates to which the cells are attached. In addition, none of these studies utilized bioreactors which apply controlled magnitudes of substrate strain and flow-induced shear stress differentially and simultaneously. This study presents the design of a multimodal loading device which can apply substrate stretch and fluid flow simultaneously while allowing for real-time cell imaging. The mechanical performance of the bioreactor is validated in this study by correlating the output levels of flow-induced shear stress and substrate strain with the input levels of displacement and displacement rate. The magnitudes of cross-talk loading (i.e. flow-induced strain, and strain-induced fluid flow) are also characterized and shown to be magnitudes lower than physiological levels of loading estimated to occur in bone in vivo.  相似文献   

12.
The craniofacial haft resists forces generated in the face during feeding, but the importance of these forces for the form of the craniofacial haft remains to be determined. In vivo bone strain data were recorded from the medial orbital wall in an owl monkey (Aotus), rhesus macaques (Macaca mulatta), and a galago (Otolemur) during feeding. These data were used to determine whether: the interorbital region can be modeled as a simple beam under bending or shear; the face is twisting on the brain case during unilateral biting or mastication; the interorbital "pillar" is being axially compressed during incisor loading and both axially compressed and laterally bent during mastication; and the interorbital "pillar" transmits axial compressive forces from the toothrow to the braincase. The strain data reveal that the interorbital region cannot be modeled as a anteroposteriorly oriented beam bent superiorly in the sagittal plane during incision or mastication. The strain orientations recorded in the majority of experiments are concordant with those predicted for a short beam under shear, although the anthropoids displayed evidence of multiple loading regimes in the medial orbital wall. Strain orientation data corroborate the hypothesis that the strepsirrhine face is twisted during mastication. The hypothesis that the interorbital region is a member in a rigid frame subjected to axial compression during mastication receives some support. The hypothesis that the interorbital region is a member in a rigid frame subjected to lateral bending during mastication is supported by the epsilon1/absolute value epsilon2 ratio data but not by the strain orientation data. The timing of peak shear strains in the medial orbital wall of anthropoids does not bear a consistent relationship to the timing of peak shear strain in the mandibular corpus, suggesting that bite force is not the only external force influencing the medial orbital wall. Strain orientation data suggest the existence of two distinct loading regimes, possibly associated with masseter or medial pterygoid contraction. Regardless of the loading regime, all taxa showed low strain magnitudes in the medial orbital wall relative to the anterior root of the zygoma and the mandibular corpus. The strain gradients documented here and elsewhere suggest that, in anthropoids at least, local effects of external forces are more important than a single global loading regime. The low strain magnitudes in the medial orbital wall and in other thin bony plates around the orbit suggest that these structures are not optimally designed for resisting feeding forces. It is hypothesized that their function is to provide rigid support and protection for soft-tissue structures such as the nasal epithelium, the brain, meninges, and the eye and its adnexa. In contrast with the face of Otolemur, which appears to be subjected to a single predominant loading regime, anthropoids may experience different loading regimes in different parts of the face. This implies that the anthropoid and strepsirrhine facial skulls might be optimized for different functions.  相似文献   

13.
Single element foil strain gages were bonded to mandibular cortical bone in eight specimens of Galago crassicaudatus. The gage was bonded below the Pm4 or M2 adjacent to the lower border of the mandible. The bonded strain gage was connected to form one arm of a Wheatstone bridge. Following recovery from the general anesthetic, the restrained Galago bit either a piece of wood, a food object, or a bite force transducer. During these biting episodes, mandibular bone strain deformed the strain gage and the resulting change in electrical resistance of the gage caused voltage changes across the Wheatstone bridge. These changes, directly proportional to the amount of bone strain along the gage site, were recovered by a strip chart recorder. Bone strain was measured on both the working and balancing sides of the jaws. Maximum values of bone strain and bite force were 435 microstrain (compression) and 8.2 kilograms respectively. During bending of the mandible, the correlation between bone strain (tension or compression) and bite force ranged from -0.893 (tension) to 0.997 (compression). The experiments reported here demonstrate that only a small percentage of the Galago bite force is due to balancing side muscle force during isometric unilateral molar biting. In addition, these experiments demonstrate that the Galago mandible is bent in a predictable manner during biting. The amount of apparent mandibular bone strain is dependent on (1) the magnitude of the bite force and (2) the position of the bite point.  相似文献   

14.
In vivo bone strain experiments were performed on the ulnae of three female rhesus macaques to test how the bone deforms during locomotion. The null hypothesis was that, in an animal moving its limbs predominantly in sagittal planes, the ulna experiences anteroposterior bending. Three rosette strain gauges were attached around the circumference of the bone slightly distal to midshaft. They permit a complete characterization of the ulna's loading environment. Strains were recorded during walking and galloping activities. Principal strains and strain directions relative to the long axis of the bone were calculated for each gauge site. In all three animals, the lateral cortex experienced higher tensile than compressive principal strains during the stance phase of walking. Compressive strains predominated at the medial cortex of two animals (the gauge on this cortex of the third animal did not function). The posterior cortex was subject to lower strains; the nature of the strain was highly dependent on precise gauge position. The greater principal strains were aligned closely with the long axis of the bone in two animals, whereas they deviated up to 45° from the long axis in the third animal. A gait change from walk to gallop was recorded for one animal. It was not accompanied by an incremental change in strain magnitudes. Strains are at the low end of the range of strain magnitudes recorded for walking gaits of nonprimate mammals. The measured distribution of strains in the rhesus monkey ulna indicates that mediolateral bending, rather than anteroposterior bending, is the predominant loading regime, with the neutral axis of bending running from anterior and slightly medial to posterior and slightly lateral. A variable degree of torsion was superimposed over this bending regime. Ulnar mediolateral bending is apparently caused by a ground reaction force vector that passes medial to the forearm. The macaque ulna is not reinforced in the plane of bending. The lack of buttressing in the loaded plane and the somewhat counterintuitive bending direction recommend caution with regard to conventional interpretations of long bone cross-sectional geometry. Am J Phys Anthropol 106:87–100, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Although stiffness and strength of lower limb bones have been investigated in the past, information is not complete. While the femur has been extensively investigated, little information is available about the strain distribution in the tibia, and the fibula has not been tested in vitro. This study aimed at improving the understanding of the biomechanics of lower limb bones by: (i) measuring the stiffness and strain distributions of the different low limb bones; (ii) assessing the effect of viscoelasticity in whole bones within a physiological range of strain-rates; (iii) assessing the difference in the behaviour in relation to opposite directions of bending and torsion. The structural stiffness and strain distribution of paired femurs, tibias and fibulas from two donors were measured. Each region investigated of each bone was instrumented with 8–16 triaxial strain gauges (over 600 grids in total). Each bone was subjected to 6–12 different loading configurations. Tests were replicated at two different loading speeds covering the physiological range of strain-rates. Viscoelasticity did not have any pronounced effect on the structural stiffness and strain distribution, in the physiological range of loading rates explored in this study. The stiffness and strain distribution varied greatly between bone segments, but also between directions of loading. Different stiffness and strain distributions were observed when opposite directions of torque or opposite directions of bending (in the same plane) were applied. To our knowledge, this study represents the most extensive collection of whole-bone biomechanical properties of lower limb bones.  相似文献   

16.
We present the first measurements of the tensile properties of embryonic epithelia, data that are crucial to understanding the mechanics of morphogenetic movements. Fine wires were glued to the surface of an intact, live embryo using cyanoacrylate glue, after which the epithelium between the wires was separated from the remainder of the embryo by microsurgery. The wires were then separated from each other in 0.1 microm steps under computer control in order to elongate the tissue at a constant true strain rate. Force was determined from the degree of bending in the wires, and a real-time, image-based feedback system corrected for reductions in elongation that would otherwise have been caused by wire flexure. The instrument was used to determine the tensile properties of epidermis and neuroepithelia from early-stage embryos of the axolotl (Ambystoma mexicanum), a type of amphibian. Monolayer specimens as small as 300 by 500 microm were elongated at physiological strain rates of 5-30% per hour, and the effects of developmental stage, epithelium type, specimen origin, direction of elongation and strain rate were investigated. True strains as high as 50% were observed before tearing began and equivalent moduli for the initial, linear portion of the load resultant versus strain curves ranged from 1 x 10(-3) to 8 x 10(-3) N/m.  相似文献   

17.
High-energy synchrotron X-ray scattering (>60 keV) allows noninvasive quantification of internal strains within bone. In this proof-of-principle study, wide angle X-ray scattering maps internal strain vs position in cortical bone (murine tibia, bovine femur) under compression, specifically using the response of the mineral phase of carbonated hydroxyapatite. The technique relies on the response of the carbonated hydroxyapatite unit cells and their Debye cones (from nanocrystals correctly oriented for diffraction) to applied stress. Unstressed, the Debye cones produce circular rings on the two-dimensional X-ray detector while applied stress deforms the rings to ellipses centered on the transmitted beam. Ring ellipticity is then converted to strain via standard methods. Strain is measured repeatedly, at each specimen location for each applied stress. Experimental strains from wide angle X-ray scattering and an attached strain gage show bending of the rat tibia and agree qualitatively with results of a simplified finite element model. At their greatest, the apatite-derived strains approach 2500 με on one side of the tibia and are near zero on the other. Strains maps around a hole in the femoral bone block demonstrate the effect of the stress concentrator as loading increased and agree qualitatively with the finite element model. Experimentally, residual strains of approximately 2000 με are present initially, and strain rises to approximately 4500 με at 95 MPa applied stress (about 1000 με above the strain in the surrounding material). The experimental data suggest uneven loading which is reproduced qualitatively with finite element modeling.  相似文献   

18.
A technique is described for measuring load magnitude and resultant load contact location in the facet joint in response to applied loads and moments, and the technique applied to the canine lumbar spine motion segment. Due to the cantilever beam geometry of the cranial articular process, facet joint loads result in surface strains on the lateral aspect of the cranial articular process. Strains were quantified by four strain gages cemented to the bony surface of the process. Strain measured at any one gage depended on the loading site on the articular surface of the caudal facet and on the magnitude of the facet load. Determination of facet loads during in vitro motion segment testing required calibration of the strains to known loads of various magnitudes applied to multiple sites on the caudal facet. The technique is described in detail, including placement of the strain gages. There is good repeatability of strains to applied facet loads and the strains appear independent of load distribution area. Error in the technique depends on the location of the applied facet loads, but is only significant in nonphysiologic locations. The technique was validated by two independent methods in axial torsion. Application of the technique to five in vitro canine L2-3 motion segments testing resulted in facet loads (in newtons, N) of 74+ / -23 N (mean + / -STD) in 2 newton-meter, Nm, extension, to unloaded in flexion. Lateral bending resulted in loads in the right facet of 40+ / -32 N for 1 Nm right lateral bending and 54+ / -29 N for 1 Nm left lateral bending. 4 Nm Torsion with and without 100 N axial compression resulted in facet loads of 92+ / -27 N and 69+ / -19 N, respectively. The technique is applicable to dynamic and in vivo studies.  相似文献   

19.
Cortical bone is a composite material composed of hydroxyapatite (HAp) and collagen. As HAp is a crystalline structure, an X-ray diffraction method is available to measure the strain of HAp crystals. However, HAp crystals in bone tissue have been known to have the low degree of crystallization. Authors have proposed an X-ray diffraction method to measure the lattice strain of HAp crystals from the diffusive intensity profile due to low crystallinity. The precision of strain measurement was greatly improved by this method. In order to confirm the possibility of estimating the bone tissue strain with measurements of the strain of HAp crystals, this work investigates the relationship between bone tissue strain on a macroscopic scale and the lattice strain of HAp crystals on a microscopic scale. The X-ray diffraction experiments were performed under tensile loading. Strip bone specimens of 40x6x0.8mm in size were cut from the cortical region of a shaft of bovine femur. A stepwise tensile load was applied in the longitudinal direction of the specimen. By detecting the diffracted X-ray beam transmitted through the specimen, the lattice strain was directly measured in the loading direction. As a result, the lattice strain of HAp crystals showed lower value than the bone tissue strain measured by a strain gage. The bone tissue strain was described with the mean lattice strain of the HAp crystals and the elastic modulus.  相似文献   

20.
The development of a novel instrumented implant for ulnar head replacement is presented in this study. This implant was instrumented with strain gauges to quantify bending moments about the anatomic axes of the distal ulna, and subsequently the distal radioulnar joint (DRUJ) reaction force magnitude. The implant was surgically inserted in seven cadaveric upper extremities, which were subsequently mounted in a custom joint simulator. Simulated active unresisted pronation and supination motion trials were conducted using computer-controlled pneumatic actuators to simulate forearm musculature. Passive (unloaded) trials were also conducted. The reaction force across the DRUJ ranged from 2 to 10 N in magnitude during this unresisted motion. Increased bending moment magnitudes were measured when the forearm was positioned in supination compared to pronation. The magnitude of joint bending moments showed a consistent pattern with forearm position, regardless of simulated active or passive rotation, or supination and pronation motion trials. This result illustrates that the primary influence on joint load is likely the position and contact with the radial articulation. This study of DRUJ loading should be useful for biomechanical modeling, implant design considerations and improved knowledge of articular mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号