共查询到20条相似文献,搜索用时 8 毫秒
1.
Glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) from Dunaliella tertiolecta. I. Purification and kinetic properties 总被引:1,自引:0,他引:1
A rapid purification procedure for glycerol-3-phosphate dehydrogenase from Dunaliella tertiolecta (strain 19-6 of the algal collection of the Univ. of Göttingen), the initial enzyme in the glycerol cycle, has been developed on the basis of affinity chromatography on Blue Sepharose and subsequent desalting by Sephadex G-50. The achieved purification was 126-fold. The pH optimum of dihydroxyacetone phosphate reduction is 7, that of glycerol-3-phosphate oxidation is about 9. The in vitro enzymatic activity obtained from cell extracts is higher than the required activity for the observed glycerol production rates under osmotic stress in vivo. 相似文献
2.
Cloning and characterization of a plastidic glycerol 3-phosphate dehydrogenase cDNA from Dunaliella salina 总被引:3,自引:0,他引:3
A cDNA encoding a nicotinamide adenine dinucleotide (NAD+) -dependent glycerol 3-phosphate dehydrogenase (GPDH) has been cloned by rapid amplification of cDNA ends from Dunaliella salina. The cDNA is 3032 base pairs long with an open reading frame encoding a polypeptide of 701 amino acids. The polypeptide shows high homology with published NAD+ -dependent GPDHs and has at its N-terminal a chloroplast targeting sequence. RNA gel blot analysis was performed to study GPDH gene expression under different conditions, and changes of the glycerol content were monitored. The results indicate that the cDNA may encode an osmoregulated isoform primarily involved in glycerol synthesis. The 701-amino-acid polypeptide is about 300 amino acids longer than previously reported plant NAD+ -dependent GPDHs. This 300-amino-acid fragment has a phosphoserine phosphatase domain. We suggest that the phosphoserine phosphatase domain functions as glycerol 3-phosphatase and that, consequently, NAD+ -dependent GPDH from D. salina can catalyze the step from dihydroxyacetone phosphate to glycerol directly. This is unique and a possible explanation for the fast glycerol synthesis found in D. salina. 相似文献
3.
R. Spencer Wells 《Journal of molecular evolution》1995,41(6):886-893
The Gpdh genomic region has been cloned and sequenced in Drosophila pseudoobscura. A total of 6.8 kb of sequence was obtained, encompassing all eight exons of the gene. The exons have been aligned with the sequence from D. melanogaster, and the rates of synonymous and nonsynonymous substitution have been compared to those of other genes sequenced in these two species. Gpdh has the lowest rate of nonsynonymous substitution yet seen in genes sequenced in both D. pseudoobscura and D. melanogaster. No insertion/deletion events were observed, and the overall architecture of the gene (i.e., intron sites, etc.) is conserved. An interesting amino acid reversal was noted between the D. melanogaster Fast allele and the D. pseudoobscura gene. 相似文献
4.
The activities and kinetics of the enzymes G6PDH (glucose-6-phosphate dehydrogenase) and 6PGDH (6-phosphogluconate dehydrogenase) from the mesophilic cyanobacterium Synechococcus 6307 and the thermophilic cyanobacterium Synechococcus 6716 are studied in relation to temperature. In Synechococcus 6307 the apparent K
m's are for G6PDH: 80M (substrate) and 20M (NADP+); for 6PGDH: 90M (substrate) and 25M (NADP+). In Synechococcus 6716 the apparent K
m's are for G6PDH: 550M (substrate) and 30M (NADP+); for 6PGDH: 40M (substrate) and 10M (NADP+). None of the K
m's is influenced by the growth temperature and only the K
m's of G6PDH for G6P are influenced by the assay temperature in both organisms. The idea that, in general, thermophilic enzymes possess a lower affinity for their substrates and co-enzymes than mesophilic enzymes is challenged.Although ATP, ribulose-1,5-bisphosphate, NADPH and pH can all influence the activities of G6PDH and 6PGDH to a certain extent (without any difference between the mesophilic and the thermophilic strain), they cannot be responsible for the total deactivation of the enzyme activities observed in the light, thus blocking the pentose phosphate pathway.Abbreviations G6PDH
glucose-6-phosphate, dehydrogenase
- 6PGDH
6-phosphogluconate dehydrogenase
- G6P
glucose-6-phosphate
- 6PG
6-phosphogluconate
- RUDP
ribulose-1,5-bisphosphate
- Tricine
N-Tris (hydroxymethyl)-methylglycine 相似文献
5.
Glycollate dehydrogenase of the halotolerant green alga Dunaliella salina, isolated from a brine pond, was found associated with the membrane fraction which exhibited complete photosynthetic activity. Highest enzyme activity was found in cells grown in the presence of 5% NaCl. Any increase in NaCl concentration led to a decrease in specific enzyme activity.Abbreviations PSI(II)
photosystem I(II) 相似文献
6.
Cytosolic glycerol-3-phosphate dehydrogenase was purified from jerboa (Jaculus orientalis) skeletal muscle and its physical and kinetic properties investigated. The purification method consisted of a multi-step procedure and this procedure is presented. The specific activity of the purified enzyme is 53.6 U/mg of protein, representing a 77-fold increase in specific activity. The apparent Michaelis constant (Km) for dihydroxyacetone is 137.39 (± 25.56) M whereas the Km for glycerol-3-phosphate is 468.66 (±27.59) M. The kinetic mechanism of purified enzyme is ordered Bi-Bi and this result is confirmed by the product inhibition pattern. Under the conditions of assay, the pH optimum occurs at pH 7.7 for the reduction of dihydroxyacetone phosphate and at pH 9.0 for glycerol-3-phosphate oxidation. In the direction of dihydroxyacetone phosphate, the optimal temperature is 35°C. The molecular weight of the purified enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 33,000 (±1,000), whereas non-denaturing polyacrylamide gel yields a molecular weight of 72,000 (±2,000), suggesting that the enzyme may exist as a dimer. A polyclonal antiserum raised against the purified enzyme was used to localize the enzyme in different jerboa tissues by Western blot method. The purified enzyme is sensitive to N-ethylmaleimide, and incubation of the enzyme with 20 mm N-ethylmaleimide resulted in a complete loss of catalytic activity. The purified enzyme is inhibited by several metal ions including Zn2+ and by 2,4-dichlorophenoxyacetic acid. 相似文献
7.
Glycerol-3-phosphatase (EC 3.1.3.2.1) was studied by following the release of radioactive glycerol from L-(U-14C)glycerol-3-phosphate in Dunaliella tertiolecta enzyme extracts. The reaction showed a neutral pH optimum and had an absolute requirement for Mg2+. The substrate saturation curve was hyperbolic with an apparent K
m value for glycerol-3-phosphate of 0.7 mM in the absence of phosphate. Inorganic orthophosphate was a competitive inhibitor of the enzyme with an estimated K
j of 0.1 mM. The glycerol-3-phosphatase reaction was blocked nearly completely by millimolar Ca2+ concentrations. Ca2+ inhibition did not depend on the presence of calmodulin in the reaction medium. The characteristics of glycerol-3-phosphatase are discussed in relation to the regulation of the cyclic glycerol metabolism in Dunaliella cells during periods of osmotic stress. 相似文献
8.
A comparison of the effects of ionic stress and an uncoupler on long-term fluorescence transients (the Kautsky effect) in the green alga Dunaliella tertiolecta indicated that the large quenching induced by ionic stress was caused by a pH gradient across the thylakoid membrane. This possiblity was given support by the increase in the slow phase of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-induced fluorescence relaxation in algae subjected to ionic stress. Low-temperature fluorescence emission spectra indicated that salt stress enhanced photosystem-I emission in the dark, and a comparison of simultaneous emissions at 695 and 720 nm at room temperature indicated a further increase in photosystem-I emission during the fluorescence transients. Taken together with the decrease in the fast phase of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-induced fluorescence relaxation in stressed algae, our results indicate that ionic stress stimulates cyclic electron flow, and that non-cyclic flow is inhibited. The effect of sucrose-induced osmotic stress was similar to, but less marked than, the effects of NaCl and KCl; the effect of decreasing the external salinity was small.Abbreviations DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- FCCP
carbonylcyanide p-trifluoromethoxyphenylhydrazone
- PSI, II
photosystem I, II 相似文献
9.
The effects of AMP, ATP, inorganic phosphate and fructose-1, 6-bisphosphate on glycerol-3-phosphate dehydrogenase (NADH) from Dunaliella tertiolecta were investigated. In addition the salt effects and the influence of different anions were studied. The results support the assumption that concentration changes of intermediates and salts by cell shrinkage during osmotic stress can account for the control of glycerol synthesis. 相似文献
10.
Certain pathogenic trypanosomatids are highly dependent on glycolysis for ATP production, and hence their glycolytic enzymes, including glycerol-3-phosphate dehydrogenase (GPDH), are considered attractive drug targets. The ternary complex structure of Leishmania mexicana GPDH (LmGPDH) with dihydroxyacetone phosphate (DHAP) and NAD(+) was determined to 1.9A resolution as a further step towards understanding this enzyme's mode of action. When compared with the apo and binary complex structures, the ternary complex structure shows an 11 degrees hinge-bending motion of the C-terminal domain with respect to the N-terminal domain. In addition, residues in the C-terminal domain involved in catalysis or substrates binding show significant movements and a previously invisible five-residue loop region becomes well ordered and participates in NAD(+) binding. Unexpectedly, DHAP and NAD(+) appear to form a covalent bond, producing an adduct in the active site of LmGPDH. Modeling a ternary complex glycerol 3-phosphate (G3P) and NAD(+) with LmGPDH identified ten active site residues that are highly conserved among all GPDHs. Two lysine residues, Lys125 and Lys210, that are presumed to be critical in catalysis, were mutated resulting in greatly reduced catalytic activity. Comparison with other structurally related enzymes found by the program DALI suggested Lys210 as a key catalytic residue, which is located on a structurally conserved alpha-helix. From the results of site-directed mutagenesis, molecular modeling and comparison with related dehydrogenases, a catalytic mechanism of LmGPDH and a possible evolutionary scenario of this group of dehydrogenases are proposed. 相似文献
11.
Homogenates of Dunaliella primolecta, D. salina and D. tertiolecta were assayed for glycollate oxidase and glycollate dehydrogenase. Both D. primolecta and D. salina but not D. tertiolecta showed substantial glycollate-dependent O2-uptake which is characteristic of glycollate oxidase. L-Lactate was an alternative substrate and both glycollate- and L-lactate-dependent O2 uptake were insensitive to 2 mM cyanide. Glycollate dehydrogenase, measured by following the glycollate-dependent reduction of 2,6-dichlorophenolindophenol under aerobic conditions, was present in D. primolecta, D. salina and D. tertiolecta. In the presence of glycollate and D-lactate, rates were additive so both glycollate and D-lactate dehydrogenases are present in the homogenates. Glycollate and D-lactate oxidation were both inhibited by 2 mM cyanide. Organelles released from phototrophically grown cells of D. primolecta were separated by isopycnic centrifugation on sucrose gradients. Glycollate oxidase was present in the peroxisome fraction at an equilibrium density of 1.25 g/cm3, while the major peak of glycollate dehydrogenase activity was in the mitochondrial fraction at an equilibirium density of 1.22 g/cm3. 相似文献
12.
Sakasegawa S Hagemeier CH Thauer RK Essen LO Shima S 《Protein science : a publication of the Protein Society》2004,13(12):3161-3171
NAD(+)-dependent glycerol-3-phosphate dehydrogenase (G3PDH) is generally absent in archaea, because archaea, unlike eukaryotes and eubacteria, utilize glycerol-1-phosphate instead of glycerol-3-phosphate for the biosynthesis of membrane lipids. Surprisingly, the genome of the hyperthermophilic archaeon Archaeoglobus fulgidus comprises a G3PDH ortholog, gpsA, most likely due to horizontal gene transfer from a eubacterial organism. Biochemical characterization proved G3PDH-like activity of the recombinant gpsA gene product. However, unlike other G3PDHs, the up to 85 degrees C thermostable A. fulgidus G3PDH exerted a 15-fold preference for NADPH over NADH. The A. fulgidus G3PDH bears the hallmarks of adaptation to halotolerance and thermophilicity, because its 1.7-A crystal structure showed a high surface density for negative charges and 10 additional intramolecular salt bridges compared to a mesophilic G3PDH structure. Whereas all amino acid residues required for dihydroxyacetone phosphate binding and reductive catalysis are highly conserved, the binding site for the adenine moiety of the NAD(P) cosubstrate shows a structural variation that reflects the observed NADPH preference, for example, by a putative salt bridge between R49 and the 2'-phosphate. 相似文献
13.
大丽轮枝菌可侵染棉花、马铃薯、番茄等660余种寄主植物,引致黄萎病,造成严重的经济损失。为了深入了解大丽轮枝菌的致病机制,本研究在前期棉花提取物诱导大丽轮枝菌转录组分析的基础上,选择上调差异表达的线粒体甘油-3-磷酸脱氢酶基因VdGut2(VD592_6958_Chr4)和非差异表达的胞质甘油-3-磷酸脱氢酶基因VdGpd(VD592_10256_Chr2),进行了功能分析。结果表明,两个VdGut2敲除突变体菌株的产孢量较野生型菌株分别下降了32%和41%,病情指数分别下降了70%和51%,菌落生长速率也显著下降;VdGpd过表达菌株产孢量和病情指数较野生型菌株显著下降,但在甘油为唯一碳源的培养基上其菌落生长速率显著上升。因此,VdGut2促进了大丽轮枝菌分生孢子的形成、碳源的利用以及对寄主植物的致病过程,VdGpd抑制了大丽轮枝菌分生孢子的形成和对寄主植物的致病力,却促进了甘油的代谢。 相似文献
14.
Laila Oukhattar Tarik Baibai Adnane Moutaouakkil Omar Assobhei Abdelaziz Soukri 《Reviews in Fish Biology and Fisheries》2008,18(3):263-271
The NAD+ dependent cytosolic Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) from arms of Octopus vulgaris, Cuvier, 1787, (Octopoda, Cephalopoda) was purified to homogeneity and its kinetic properties investigated. The purification
method consisted of ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography resulting in a 26-fold
increase in specific activity and a final yield of approximately 16%. The apparent molecular weight of the purified native
enzyme was 153 kDa. The protein is an homotetramer, composed of identical subunits with an apparent molecular weight of approximately
36 kDa. The Michaelis constants Km for both NAD+ and d-G3P were 66 μM and 320 μM, respectively. The maximal velocity Vmax of the purified enzyme was estimated to be 21.8 U/mg. Only one GAPDH isoform (pI 6.6) was obtained by isoelectrofocusing in polyacrylamide slab gels holding ampholyte generated pH gradients. Under the conditions
of assay, the optimum activity occurs at pH 7.0 and at temperature of 35°C. Polyclonal antibodies raised in rabbits against
the purified GAPDH immunostained a single 36 kDa GAPDH band on crude extract protein preparations blotted onto nitrocellulose. 相似文献
15.
Xianzhong Chen Huiying Fang Bin Zhuge Zhengxiang Wang Algasan Govender Jian Zhuge 《Process Biochemistry》2013,48(10):1469-1475
16.
Glucose-6-phosphate dehydrogenase (d-glucose-6-phosphate: NADP+
l-oxidoreductase EC 1.1.1.49) isolated from Paracoccus denitrificans grown on glucose/nitrate exhibits both NAD+-and NADP+-linked activities. Both activities have a pH optimum of pH 9.6 (Glycine/NaOH buffer) and neither demonstrates a Mg2+ requirement. Kinetics for both NAD(P)+ and glucose-6-phosphate were investigated. Phosphoenolpyruvate inhibits both activities in a competitive manner with respect to glucose-6-phosphate. ATP inhibits the NAD+-linked activity competitively with respect to glucose-6-phosphate but has no effect on the NADP+-linked activity. Neither of the two activities are inhibited by 100 M NADH but both are inhibited by NADPH. The NAD+-linked activity is far more sensitive to inhibition by NADPH than the NADP+-linked activity. 相似文献
17.
18.
We examined the effects of heterologous expression of the open reading frames (ORF) of two genes on salt tolerance and glycerol production in a Saccharomyces cerevisiae strain deficient in glycerol synthesis (gpd1Deltagpd2Delta). When the ORF of the Zygosaccharomyces rouxii glycerol 3-phosphate dehydrogenase gene (ZrGPD1) was expressed under the control of the GAL10 promoter, salt tolerance and glycerol production increased; when the ORF of the glycerol dehydrogenase gene (ZrGCY1) was expressed under the control of the GAL1 promoter, no such changes were observed. Zrgcy1p had a weak effect on glycerol production. These results suggest that Zrgpd1p is the primary enzyme involved in Z. rouxii glycerol production, following a mechanism similar to that of S. cerevisiae (Gpd1p). When the ORFs of the S. cerevisiae glycerol 3-phosphatase gene (GPP2) and ZrGPD1 were simultaneously expressed, glycerol production increased, compared with that in yeast expressing only ZrGPD1. 相似文献
19.
Villamón E Villalba V Nogueras MM Tomás JM Gozalbo D Gil ML 《Antonie van Leeuwenhoek》2003,84(1):31-38
This is the first report describing the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a protein
associated with the cell envelope of a gram-negative bacterium (Aeromonas hydrophila). Dose-dependent GAPDH activity was detected in whole bacterial cells from exponentially growing cultures, indicating that
an active form of GAPDH is located outside the plasma membrane. This activity represents roughly 10–20% of total cell activity,
and it is not reduced by pretreatment of the cells with trypsin. Assays with soluble GAPDH indicate that the activity measured
in intact cells does not originate by rebinding to intact cells of cytosolic enzyme released following cell lysis. GAPDH activity
levels detected in intact cells varied during the growth phase. The relationship between GAPDH activity and cell culture density
was not linear, showing this activity as a major peak in the late-logarithmic phase (A600 = 1.1–1.3), and a decrease when cells entered the stationary phase. The late exponential growing cells showed a GAPDH activity
3 to 4-fold higher than early growing or stationary cells. No activity was detected in culture supernatants. Enzymatic and
Western-immunoblotting analysis of subcellular fractions (cytosol, whole and outer membranes, and periplasm) showed that GAPDH
is located in the cytosol, as expected, and also in the periplasm. These results place the periplasmic GAPDH of A. hydrophila into the family of multifunctional microbial cell wall-associated GAPDHs which retain their catalytic activity.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
20.
Summary NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (NAD-dependent GAPDH) was purified to homogeneity and injected into a rabbit to induce a polyclonal antibody. The antibody was judged to be of high specificity and high affinity. This antibody was used to probe sections ofArabidopsis leaf, stem or roots which were fixed using either paraformaldehyde or a high-pressure freezing method. Our results show that the NAD-dependent GAPDH localizes in the nucleus as well as in the cytosol. In phloem tissue, the NAD-dependent GAPDH was found in companion cells but not in the sieve element. 相似文献