首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycationic ferritin, a multivalent ligand, was used as a visual probe to determine the distribution and density of anionic sites on the surfaces of rat liver mitochondrial membranes. Both the distribution of bound polycationic ferritin and the topography of the outer surface of the inner mitochondrial membrane were studied in depth by utilizing thin sections and critical-point dried, whole mount preparations for transmission electron microscopy and by scanning electron microscopy. Based on its relative affinity for polycationic ferritin, the surface of the inner membrane contains discrete regions of high density and low density anionic sites. Whereas the surface of the cristal membrane contains a low density of anionic sites, the surface of the inner boundary membrane contains patches of high density anionic sites. The high density anionic sites on the inner boundary membrane were found to persist as stable patches and did not dissociate or randomize freely when the membrane was converted osmotically to a spherical configuration. The observations suggest that the inner mitochondrial membrane is composed of two major regions of anionic macromolecular distinction. It is well-known that an intermembrane space exists between the two membranes of the intact mitochondrion; however, a number of contact sites occur between the two membranes. We determined that the outer membrane, partially disrupted by treatment with digitonin, remains attached to the inner membrane at these contact sites as inverted vesicles. Such attached vesicles show that the inner surface of the outer membrane contains anionic sites, but of decreased density, surrounding the contact sites. Thus, the intermembrane space in the intact mitochondrion may be maintained by electronegative surfaces of the two mitochondrial membranes. The distribution of anionic sites on the outer surface of the outer membrane is random. The nature and function of fixed anionic surface charges and membrane contact sites are discussed with regard to recent reports relating to calcium transport, protein assembly into mitochondrial membranes, and membrane fluidity.  相似文献   

2.
The outer membrane of the mitochondrion contains thousands of copies of a pore-forming protein called VDAC or porin. Considerable progress has been made towards elucidating the molecular structure of this channel. Moreover, mounting evidence that the permeability of VDAC may be regulated is challenging the textbook notion of the outer membrane as a simple sieve. Numerous other channel activities have been detected by electrophysiol approaches in both the outer and inner mitochondrial membranes. The inner-membrane channels do not appear to be open under normal physiological conditions and so should not dissipate energy-transducing ion gradients. The biological functions of the different classes of mitochondrial channels are uncertain, but several possibilities (including protein translocation) are being explored.  相似文献   

3.
The structure of neuronal mitochondria from chick and rat was examined using electron microscope tomography of chemically fixed tissue embedded in plastic and sliced in ≈500-nm-thick sections. Three-dimensional reconstructions of representative mitochondria were made from single-axis tilt series acquired with an intermediate voltage electron microscope (400 kV). The tilt increment was either 1° or 2° ranging from −60° to +60°. The mitochondrial ultrastructure was similar across species and neuronal regions. The outer and inner membranes were each ≈7 nm thick. The inner boundary membrane was found to lie close to the outer membrane, with a total thickness across both membranes of ≈22 nm. We discovered that the inner membrane invaginates to form cristae only through narrow, tubular openings, which we call crista junctions. Sometimes the cristae remain tubular throughout their length, but often multiple tubular cristae merge to form lamellar compartments. Punctate regions, ≈14 nm in diameter, were observed in which the inner and outer membranes appeared in contact (total thickness of both membranes ≈14 nm). These contact sites are known to a play a key role in the transport of proteins into the mitochondrion. It has been hypothesized that contact sites may be proximal to crista junctions to facilitate transport of proteins destined for the cristae. However, our statistical analyses indicated that contact sites are randomly located with respect to these junctions. In addition, a close association was observed between endoplasmic reticulum membranes and the outer mitochondrial membrane, consistent with the reported mechanism of transport of certain lipids into the mitochondrion.  相似文献   

4.
The protist parasite Trypanosoma brucei has a single mitochondrion with a single unit genome termed kinetoplast DNA (kDNA). Faithfull segregation of replicated kDNA is ensured by a complicated structure termed tripartite attachment complex (TAC). The TAC physically links the basal body of the flagellum with the kDNA spanning the two mitochondrial membranes. Here, we characterized p166 as the only known TAC subunit that is anchored in the inner membrane. Its C-terminal transmembrane domain separates the protein into a large N-terminal region that interacts with the kDNA-localized TAC102 and a 34 aa C-tail that binds to the intermembrane space-exposed loop of the integral outer membrane protein TAC60. Whereas the outer membrane region requires four essential subunits for proper TAC function, the inner membrane integral p166, via its interaction with TAC60 and TAC102, would theoretically suffice to bridge the distance between the OM and the kDNA. Surprisingly, non-functional p166 lacking the C-terminal 34 aa still localizes to the TAC region. This suggests the existence of additional TAC-associated proteins which loosely bind to non-functional p166 lacking the C-terminal 34 aa and keep it at the TAC. However, binding of full length p166 to these TAC-associated proteins alone would not be sufficient to withstand the mechanical load imposed by the segregating basal bodies.  相似文献   

5.
Nucleus-encoded tRNAs are selectively imported into the mitochondrion of Leishmania, a kinetoplastid protozoan. An oligoribonucleotide constituting the D stem-loop import signal of tRNA(Tyr)(GUA) was efficiently transported into the mitochondrial matrix in organello as well as in vivo. Transfer through the inner membrane could be uncoupled from that through the outer membrane and was resistant to antibody against the outer membrane receptor TAB. A number of mutations in the import signal had differential effects on outer and inner membrane transfer. Some mutants which efficiently traversed the outer membrane were unable to enter the matrix. Conversely, restoration of the loop-closing GC pair in reverse resulted in reversion of transfer through the inner, but not the outer, membrane, and binding of the RNA to the inner membrane was restored. These experiments indicate the presence at the two membranes of receptors with distinct specificities which mediate stepwise transfer into the mitochondrial matrix. The combination of oligonucleotide mutagenesis and biochemical fractionation may provide a general tool for the identification of tRNA transport factors.  相似文献   

6.
Eggs of the turtle Trionyx spiniferus are rigid, calcareous spheres averaging 2.5 cm in diameter. The eggshell is morphologically very similar to avian eggshells. The outer crystalline layer is composed of roughly columnar aggregates, or shell units, of calcium carbonate in the aragonite form. Each shell unit tapers to a somewhat conical tip at its base. Interior to the crystalline layer are two tertiary egg membranes: the outer shell membrane and the inner shell membrane. The outer shell membrane is firmly attached to the inner surface of the shell, and the two membranes are in contact except at the air cell, where the inner shell membrane separates from the outer shell membrane. Both membranes are multi-layered, with the inner shell membrane exhibiting a more fibrous structure than the outer shell membrane. Numerous pores are found in the eggshell, and these generally occur at the intersection of four or more shell units.  相似文献   

7.
The surface charge of intact mitochondria and submitochondrial particles was examined by the technique of preparative free flow electrophoresis. When submitochondrial preparations obtained by a swelling-contraction procedure were examined with this technique, two fractions were observed. One of these fractions exhibited the same electrophoretic properties as intact mitochondria, which indicated that it was derived from the outer limiting membrane of the mitochondrion. This fraction was found to contain the enzymes monoamine oxidase and rotenone-insensitive NADH-cytochrome c reductase which have been reported to be localized in the outer mitochondrial membrane. The other fraction exhibited an electrophoretic mobility which was different from that of intact mitochondria, and this fraction contained enzymes characteristic of the inner membrane-matrix fraction such as soluble and particulate enzymes of the Krebs cycle. Microsomes exhibited an electrophoretic mobility which was almost identical with that of the outer mitochondrial membrane. In addition to resolving the localization of enzymes in mitochondrial membranes, these data indicate that the outer limiting membrane of the mitochondrion is the sole determinant of the surface charge of mitochondria.  相似文献   

8.
We derive an analytical model of the potential differences induced across plasma and internal organelle membranes in suspended cells exposed to oscillatory electric fields. Multiple shells are modeled using iterative applications of the single-shell calculation with mobile charges. This work is motivated, in part, by recent results suggesting the ability to use alternating current (ac) fields to noninvasively monitor enzyme activity within internal membranes, particularly the mitochondrial electron transport chain. Previous work, on induced transmembrane voltages in cells subjected to ac fields, has mainly been limited to oscillatory potentials across the plasma membrane. Here we first develop a three-membrane model, consisting of a plasma membrane surrounding inner and outer membranes representing an internal organelle, such as a mitochondrion. Frequency-dependent transmembrane potentials are modeled for spherical, weakly conducting membrane shells enclosing a conductive cytoplasm surrounding an idealized internal organelle. We then use a two-shell model to simulate induced ac membrane potentials of a suspended isolated mitochondrion in which the outer membrane is usually much more permeable than the inner membrane.  相似文献   

9.
The first and rate-limiting step of steroidogenesis is the transfer of cholesterol from the outer mitochondrial membrane to the inner membrane where it is converted to pregnenolone by cytochrome P450 side-chain cleavage (P450scc). This reaction is modulated in the gonads and adrenals by the steroidogenic acute regulatory protein (StAR), however, the mechanism used by StAR is not understood. The outer and inner mitochondrial membranes are joined at contact sites that are thought to be held in place by protein complexes that bridge the two membranes. While it is generally accepted that proteins are imported into the mitochondrion via contact sites, it is not clear whether cholesterol takes the same conduit to the inner membrane. Strategies to combat diseases caused by interrupted cholesterol transfer will rely on a full understanding of the steroidogenic mechanism. The challenge for the future is to determine whether StAR relies on the molecular architecture that spans the mitochondrial intermembrane space to deliver its cargo.  相似文献   

10.
Herpesvirus envelopment is assumed to follow an uneconomical pathway including primary envelopment at the inner nuclear membrane, de-envelopment at the outer nuclear membrane, and reenvelopment at the trans-Golgi network. In contrast to the hypothesis of de-envelopment by fusion of the primary envelope with the outer nuclear membrane, virions were demonstrated to be transported from the perinuclear space to rough endoplasmic reticulum (RER) cisternae. Here we show by high-resolution microscopy that herpes simplex virus 1 envelopment follows two diverse pathways. First, nuclear envelopment includes budding of capsids at the inner nuclear membrane into the perinuclear space whereby tegument and a thick electron dense envelope are acquired. The substance responsible for the dense envelope is speculated to enable intraluminal transportation of virions via RER into Golgi cisternae. Within Golgi cisternae, virions are packaged into transport vacuoles containing one or several virions. Second, for cytoplasmic envelopment, capsids gain direct access from the nucleus to the cytoplasm via impaired nuclear pores. Cytoplasmic capsids could bud at the outer nuclear membrane, at membranes of RER, Golgi cisternae, and large vacuoles, and at banana-shaped membranous entities that were found to continue into Golgi membranes. Envelopes originating by budding at the outer nuclear membrane and RER membrane also acquire a dense substance. Budding at Golgi stacks, designated wrapping, results in single virions within small vacuoles that contain electron-dense substances between envelope and vacuolar membranes.  相似文献   

11.
Summary Freeze substitution proved to be a valuable technique for studying the early stages of ascosporogenesis inAscodesmis nigricans. Our observations indicate that the ascus vesicle originated from the ascus plasma membrane. Invaginations of the plasma membrane produced ascus vesicle initials consisting of two closely spaced unit membranes. The appearance of the outer leaflet of each of these membranes was identical to that of the inner leaflet of the ascus plasma membrane. Apparent points of continuity between ascus vesicle initials and the plasma membrane were observed. Ascus vesicle initials accumulated in the ascus cytoplasm near the plasma membrane and then coalesced to form the ascus vesicle, a peripheral, cylinder-like structure consisting of two closely spaced unit membranes that extended from the ascus apex to the ascus base. The ascus vesicle then became invaginated in a number of regions and subsequently gave rise to eight sheet-like segments, or ascosporedelimiting membranes, that encircled uninucleate segments of cytoplasm forming ascospore initials. Like the ascus vesicle, each ascospore-delimiting membrane consisted of two closely spaced unit membranes, the inner of which became the ascospore plasma membrane. The ascospore wall then developed between the spore plasma membrane and the outer membrane. Many details of ascospore maturation were clearly visible in freeze substituted samples.  相似文献   

12.
The plastid in Plasmodium falciparum asexual stages is a tubular structure measuring about 0.5 micron x 0.15 micron in the merozoite, and 1.6 x 0.35 microns in trophozoites. Each parasite contains a single plastid until this organelle replicates in late schizonts. The plastid always adheres to the (single) mitochondrion, along its whole length in merozoites and early rings, but only at one end in later stages. Regions of the plastid are also closely related to the pigment vacuole, nuclear membrane and endoplasmic reticulum. In merozoites the plastid is anchored to a band of 2-3 subpellicular microtubules. Reconstructions show the plastid wall is characteristically three membranes thick, with regions of additional, complex membranes. These include inner and outer membrane complexes. The inner complex in the interior lumen is probably a rolled invagination of the plastid's inner membrane. The outer complex lies between the outer and middle wall membranes. The interior matrix contains ribosome-like granules and a network of fine branched filaments. Merozoites of P. berghei and P. knowlesi possess plastids similar in structure to those of P. falciparum. A model is proposed for the transfer of membrane lipid from the plastid to other organelles in the parasite.  相似文献   

13.
There are two distinct cyclic AMP phosphodiesterases associated with the liver mitochondrion: one with the outer membrane and one with the inner membrane. No activity is associated with the lysosomal fraction. Both of the enzymes are peripheral proteins and can be released from the membranes by high-ionic-strength treatment. Treatment of intact mitochondria with trypsin and insoluble trypsin localizes these enzymes to the cytosol-facing surface of their respective membranes. The enzymes differ in regard to sedimentation coefficient, thermostability and susceptibility to inactivation by trypsin. Both enzymes degrade cyclic AMP and cyclic GMP. Whereas the outer-membrane enzyme displays Michaelis kinetics and appears to be a low-affinity enzyme, the inner-membrane enzyme displays kinetics indicative of apparent negative co-operativity.  相似文献   

14.
Mitochondria are enveloped by two closely apposed boundary membranes with different properties and functions. It is known that they undergo fusion and fission, but it has remained unclear whether outer and inner membranes fuse simultaneously, coordinately or separately. We set up assays for the study of inner and outer membrane fusion in living human cells. Inner membrane fusion was more sensitive than outer membrane fusion to inhibition of glycolysis. Fusion of the inner membrane, but not of the outer membrane, was abolished by dissipation of the inner membrane potential with K+ (valinomycin) or H+ ionophores (cccp). In addition, outer and inner membrane fusion proceeded separately in the absence of any drug. The separate fusion of outer and inner membranes and the different requirements of these fusion reactions point to the existence of fusion machineries that can function separately.  相似文献   

15.
Only a few mitochondrial proteins are encoded by the organellar genome. The majority of mitochondrial proteins are nuclear encoded and thus have to be transported into the organelle from the cytosol. Within the mitochondrion proteins have to be sorted into one of the four sub-compartments: the outer or inner membranes, the intermembrane space or the matrix. These processes are mediated by complex protein machineries within the different compartments that act alone or in concert with each other. The translocation machinery of the outer membrane is formed by a multi-subunit protein complex (TOM complex), that is built up by signal receptors and the general import pore (GIP). The inner membrane houses two multi-subunit protein complexes that each handles special subsets of mitochondrial proteins on their way to their final destination. According to their primary function these two complexes have been termed the pre-sequence translocase (or TIM23 complex) and the protein insertion complex (or TIM22 complex). The identification of components of these complexes and the analysis of the molecular mechanisms underlying their function are currently an exciting and fast developing field of molecular cell biology.  相似文献   

16.
Transfer of phosphatidic acid from the outer to the inner membrane within intact rat liver mitochondria was assessed by measuring the ratio of lipid 32P to the marker enzyme of the outer membrane, rotenone-insensitive NADH-cytochrome c reductase, in the outer and inner membrane fractions obtained after incubation of mitochondria under conditions for net synthesis of [32P]phosphatidic acid. This transfer was found to proceed with time, to occur only under high ionic strength of the external medium and to be insensitive to N-ethylmaleimide and factors reducing the number of contact sites between the two mitochondrial membranes. These results are interpreted as supporting the idea that phosphatidic acid transport within the mitochondrion occurs as free diffusion through the aqueous phase and not being mediated by phospholipid transfer protein(s).  相似文献   

17.
《The Journal of cell biology》1989,109(6):2603-2616
To identify the membrane regions through which yeast mitochondria import proteins from the cytoplasm, we have tagged these regions with two different partly translocated precursor proteins. One of these was bound to the mitochondrial surface of ATP-depleted mitochondria and could subsequently be chased into mitochondria upon addition of ATP. The other intermediate was irreversibly stuck across both mitochondrial membranes at protein import sites. Upon subfraction of the mitochondria, both intermediates cofractionated with membrane vesicles whose buoyant density was between that of inner and outer membranes. When these vesicles were prepared from mitochondria containing the chaseable intermediate, they internalized it upon addition of ATP. A non-hydrolyzable ATP analogue was inactive. This vesicle fraction contained closed, right-side-out inner membrane vesicles attached to leaky outer membrane vesicles. The vesicles contained the mitochondrial binding sites for cytoplasmic ribosomes and contained several mitochondrial proteins that were enriched relative to markers of inner or outer membranes. By immunoelectron microscopy, two of these proteins were concentrated at sites where mitochondrial inner and outer membranes are closely apposed. We conclude that these vesicles contain contact sites between the two mitochondrial membranes, that these sites are the entry point for proteins into mitochondria, and that the isolated vesicles are still translocation competent.  相似文献   

18.
The mitochondrial complex condition of continuous CEMT4 cell line infected by the human immunodeficiency virus has been investigated. The mitochondrial morphology of these and of intact cells was similar in great extent, though several changes were observed. For example, mitochondrial profiles with multiple dichotomous branches and anastomosis cristae were noted in the former. These changes resulted in the augmentation of the inner membrane square of mitochondrion. The formation of mitochondrial clusters connected with special junctions was a very characteristic part of the infected cell. Contacts were seen to be formed between the outer membranes neighboring profiles. These contacts look as X-like little bridges, or net-like or plate-like structures. The mutual transition of all these structures was observed using goniometer adapter. As has been shown by the three-dimensional reconstruction of mitochondrial junction zones, this area is presented by a single mitochondrion being structurally very complicated and very large in size compared to the neighbouring ones.  相似文献   

19.
The outer membrane of Campylobacter coli, C. jejuni and C. fetus cell envelopes appeared as three fractions after sucrose gradient centrifugation. Each outer membrane fraction was contaminated with succinate dehydrogenase activity from the cytoplasmic membrane fraction. Similarly the inner membrane fraction was contaminated with 2-ketodeoxyoctonate and outer membrane proteins including the porin(s). The separation of these two membranes was not facilitated by variations in lysozyme treatment, cell age, presence or absence of flagella, or longer lipopolysaccharide chain length. Sodium lauroyl sarcosinate extraction resulted in an outer membrane fraction which contained some inner membrane contamination and produced multiple bands upon sucrose gradient centrifugation. Triton X-100 extraction removed the inner membrane from the outer membrane and Triton X-100/EDTA treatment extracted lipopolysaccharide-rich regions of the outer membrane which contained almost exclusively the Campylobacter porin(s). These data indicated that the inner and outer membranes of the Campylobacter cell envelope were very difficult to separate, possibly because of extensive fusions between these two membranes.  相似文献   

20.
Recently, our knowledge of yeast mitochondrial biogenesis has considerably progressed. This concerns the import machinery that guides preproteins synthesized on the cytoplasmic ribosomes through the mitochondrial outer and inner membranes, as well as the inner membrane insertion machinery of mitochondrially encoded polypeptides, or the proteins participating in the assembly and quality control of the respiratory complexes and ATP synthase. More recently, two new fields have emerged, biosynthesis of the iron-sulfur clusters and dynamics of the mitochondrion. Many of the newly discovered yeast proteins have homologues in human mitochondria. Thus, Saccharomyces cerevisiae has proven a particularly suitable simple organism for approaching the molecular bases of a growing number of human mitochondrial diseases caused by mutations in nuclear genes identified by positional cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号