首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of diadenosine 5', 5"'-P1,P4-tetraphosphate (Ap4A) on the time course and acceptors of poly(ADP-ribose) synthesis was studied in undamaged and N-methyl-N'-nitro-N-nitrosoguanidine-treated human lymphocytes. Analysis of protein acceptors of poly(ADP-ribose) revealed that treatment with Ap4A stimulated ADP-ribosylation of bands at molecular weights of 96,000, 79,000, and 62,000. Pulse-chase studies showed that these bands were produced as a result of an effect of Ap4A on the processing of ADP-ribosylated proteins rather than on the synthesis of newly ADP-ribosylated proteins. By incubating permeabilized cells in the absence or presence of Ap4A and purified poly(ADP-ribose) polymerase auto-ADP-ribosylated with [32P]NAD+, we showed that the Mr = 96,000, 79,000, and 62,000 bands were derivatives of the prelabeled enzyme. Our results indicate that normal human lymphocytes process auto-ADP-ribosylated poly(ADP-ribose) polymerase to specific lower molecular weight products and that this processing is stimulated by Ap4A.  相似文献   

2.
Sea urchin embryos were labeled with [3H]adenosine at two developmental stages (morula and prism) and the labeled acid-soluble nucleotides were fractionated successively by column chromatography with DEAE-Sephadex and DEAE-cellulose, and by thin-layer chromatography on a PEI-cellulose plate. Significant radioactivity was detected on the PEI-cellulose plate at the region of diadenosine 5',5'-P1,P4-tetraphosphate (AP4A). After treatment of this fraction with phosphodiesterase, the radioactivity was all recovered in the AMP region, while alkaline phosphatase had no effect on the AP4A fraction. The present result suggests that AP4A is actively synthesized in the sea urchin embryos.  相似文献   

3.
Enzymatic activity which hydrolyzes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) yielding ADP has been identified in extracts of eubacteria, Escherichia coli and Acidaminococcus fermentans, and of a highly thermophilic archaebacterium, Pyrodictum occultum. Specific Ap4A (symmetric) pyrophosphohydrolase from Escherichia coli K12 has been purified almost 400-fold. The preparation was free of phosphatase, ATPase, phosphodiesterase, AMP-nucleosidase, and adenylate kinase. The Ap4A pyrophosphohydrolase molecular weight estimated by gel filtration is 27,000 +/- 1,000. Activity maximum is at pH 8.3. The Km value computed for Ap4A is 25 +/- 3 microM. The sulfhydryl group(s) is essential for enzyme activity. Metal chelators, EDTA, and o-phenanthroline, inhibit Ap4A hydrolysis; I0.5 values are 3 and 50 microM, respectively. Co2+ is a strong stimulator with an almost 100-fold increase in rate of Ap4A hydrolysis and a plateau in the range of 100-500 microM Co2+, when compared with the nonstimulated hydrolysis. Other transition metal ions, Mn2+, Cd2+, and Ni2+, stimulate by factors of 8, 3.5, and 3.5, respectively, with optimal concentrations in the range 200-500, 2-5, and 4-8 microM, respectively. Zn2+, Cu2+, and Fe2+, up to 30 microM, are without effect and they inhibit at higher concentrations. Mg2+ or Ca2+, in the absence of other divalent metal ions, are weak stimulators (1.5-fold stimulation occurs at 1-2 mM concentration), but act synergistically with Co2+ at its suboptimal concentrations. Stimulation in the presence of 10 microM Co2+ and either 1 mM MgCl2 or CaCl2 increases up to 75-fold. The same degree of synergy is found at 10 microM Co2+ and either 2-5 mM spermidine or 0.5-1.5 mM spermine. Besides Ap4A, bacterial Ap4A pyrophosphohydrolase hydrolyzes effectively Ap5A and Gp4G, and, to some extent, p4A, Ap6A, and Ap3A yielding in each case corresponding nucleoside diphosphate as one of the products.  相似文献   

4.
An 18 S multienzyme complex of aminoacyl-tRNA synthetases is found to be active in the synthesis of diadenosine-5',5'-P1,P4-tetraphosphate (AppppA). Most of the activity is attributed to lysyl-tRNA synthetase in the complex. Free lysyl-tRNA synthetase dissociated from the synthetase complex is about 6-fold more active than the complex in AppppA synthesis, while their apparent Michaelis constants for ATP and lysine are similar. AMP, which reportedly activates AppppA synthesis (Hilderman, R.H. (1983) Biochemistry 22, 4353-4357), has no effect on AppppA synthesis. The higher activity of free Lys-tRNA synthetase is in part due to the higher stimulation of AppppA synthesis by Zn2+. These results suggest that association of aminoacyl-tRNA synthetases may affect AppppA synthesis.  相似文献   

5.
Diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) phosphorylase has been isolated previously using classical protein isolation techniques [A. Guranowski and S. Blanquet (1985) J. Biol. Chem. 260, 3542-3547]. A protein A-Sepharose immunoaffinity column was prepared to simplify the purification procedure. The immunoaffinity column was prepared using specific polyclonal antibodies to Ap4A phosphorylase covalently coupled to protein A-Sepharose with dimethyl pimelimidate by a modification of the procedure of C. Schneider et al. [(1982) J. Biol. Chem. 257, 10,766-10,769]. The specific activity of the immunoaffinity-purified enzyme showed an increase equivalent to the specific activity obtained by chromatography on DEAE-cellulose and hydroxyapatite columns.  相似文献   

6.
Purified phenylalanyl-tRNA synthetases present in chloroplasts, mitochondria and cytoplasm of green and bleached Euglena gracilis strains, respectively, are able to synthesize diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A). Ap4A synthesis is strictly dependent on zinc ions. This is the first evidence that chloroplasts should be able to synthesize Ap4A. Synthesis of Ap4A by phenylalanyl-tRNA synthetases of the three compartments of a plant cell or by other enzymes such as Ap4A phosphorylase is discussed.  相似文献   

7.
We report the development of a synthetic, biotin-conjugated diadenosine tetraphosphate (Ap(4)A)-'molecular hook' attached to magnetic beads enabling the isolation of Ap(4)A-binding proteins from bacterial cells or mammalian tissue lysates. Characterisation and identification of isolated binding proteins is performed sequentially by mass spectrometry. The observation of positive controls suggests that these newly observed proteins are putative Ap(4)A-binding partners, and we have expectations that others can be found with further technical improvements in our methods.  相似文献   

8.
9.
A novel way of enzymatic synthesis of diadenosine 5',5"'-P1,P4-tetraphosphate (AppppA), which does not involve aminoacyl-tRNA synthetases, has been discovered. Yeast AppppA alpha, beta-phosphorylase catalyzes irreversible conversion of adenosine 5'-phosphosulfate (APS) and ATP into AppppA according to the equation APS + ATP----AppppA + sulfate. In this reaction, the enzyme exhibits a broad pH optimum (between 6 and 8) and requires Mn2+, Mg2+, or Ca2+ ions for activity, with Mn2+ being twice as effective as Mg2+ or Ca2+ at optimal concentration (0.5 mM). The Km values computed for APS and ATP are 80 microM and 700 microM, respectively. The rate constant for the AppppA synthesis is 3 s-1 (pH 8.0, 30 degrees C, 0.5 mM MgCl2). Some ATP analogues like ppppA, GTP, adenosine 5'-(alpha, beta-methylenetriphosphate), and adenosine 5'-(beta, gamma-methylenetriphosphate), but not dATP, UTP, or CTP, are also substrates for AppppA phosphorylase and accept adenylate from APS with the formation of AppppA, AppppG, Appp(CH2)pA, and App(CH2)ppA, respectively. Functional versatility of yeast AppppA phosphorylase may provide a link between metabolism of AppppA on one hand and metabolism of APS and phosphate on the other and raises the possibility of participation of AppppA in regulation of metabolism of APS and/or inorganic phosphate in yeast.  相似文献   

10.
The diadenosine 5',5'-P1,P4-tetraphosphate alpha,beta-phosphorylase (Ap4A phosphorylase), recently observed in yeast [Guaranowski, A., & Blanquet, S. (1985) J. Biol. Chem. 260, 3542-3547], is shown to be capable of catalyzing the synthesis of Ap4A from ATP + ADP, i.e., the reverse reaction of the phosphorolysis of Ap4A. The synthesis of Ap4A markedly depends on the presence of a divalent cation (Ca2+, Mn2+, or Mg2+). In vitro, the equilibrium constant K = ([Ap4A][Pi])/[(ATP][ADP]) is very sensitive to pH. Ap4A synthesis is favored at low pH, in agreement with the consumption of one to two protons when ATP + ADP are converted into Ap4A and phosphate. Optimal activity is found at pH 5.9. At pH 7.0 and in the presence of Ca2+, the Vm for Ap4A synthesis is 7.4 s-1 (37 degrees C). Ap4A phosphorylase is, therefore, a valuable candidate for the production of Ap4A in vivo. Ap4A phosphorylase is also capable of producing various Np4N' molecules from NTP and N'DP. The NTP site is specific for purine ribonucleotides (N = A, G), whereas the N'DP site has a broader specificity (N' = A, C, G, U, dA). This finding suggests that the Gp4N' nucleotides, as well as the Ap4N' ones, could occur in yeast cells.  相似文献   

11.
1. A 5'-nucleotidase was purified from pig lung to apparent homogeneity. 2. Its kinetic properties were similar to those of the previously reported cytoplasmic 5'-nucleotidase, which preferentially hydrolyses IMP and GMP. 3. It was a tetramer composed of 69 kDa subunit. 4. It was effectively stimulated by diadenosine tetraphosphate and glycerate 2,3-bisphosphate.  相似文献   

12.
13.
Asymmetrically cleaving diadenosine 5',5"'-P(1),P(4)-tetraphosphate (Ap4A) hydrolase activity has been detected in extracts of adult Caenorhabditis elegans and the corresponding cDNA amplified and expressed in Escherichia coli. As expected, sequence analysis shows the enzyme to be a member of the Nudix hydrolase family. The purified recombinant enzyme behaves as a typical animal Ap4A hydrolase. It hydrolyses Ap4A with a K(m) of 7 microM and k(cat) of 27 s(-1) producing AMP and ATP as products. It is also active towards other adenosine and diadenosine polyphosphates with four or more phosphate groups, but not diadenosine triphosphate, always generating ATP as one of the products. It is inhibited non-competitively by fluoride (K(i)=25 microM) and competitively by adenosine 5'-tetraphosphate with Ap4A as substrate (K(i)=10 nM). Crystals of diffraction quality with the morphology of rectangular plates were readily obtained and preliminary data collected. These crystals diffract to a minimum d-spacing of 2 A and belong to either space group C222 or C222(1). Phylogenetic analysis of known and putative Ap4A hydrolases of the Nudix family suggests that they fall into two groups comprising plant and Proteobacterial enzymes on the one hand and animal and archaeal enzymes on the other. Complete structural determination of the C. elegans Ap4A hydrolase will help determine the basis of this grouping.  相似文献   

14.
15.
The synthesis of diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) can be catalyzed in vitro by a tetrameric tRNA synthetase complex from rat liver containing two lysyl-tRNA synthetase and two arginyl-tRNA synthetase subunits. This reaction required ATP, AMP, 50-100 microM zinc, and inorganic pyrophosphatase. We show here that AMP can be omitted from the reaction and that the zinc levels can be markedly reduced provided catalytic amounts of tRNA(Lys) are added to the reaction mixture. Ap4A synthesis with purified tRNA(Lys) isoacceptors showed that the minor species, tRNA(4Lys), was 3-fold more active than either of the two major tRNA(Lys) species, tRNA(2Lys) and tRNA(5Lys). No activity could be demonstrated with tRNA(Lys) from Escherichia coli or with tRNA(Lys) or tRNA(Phe) from yeast. Aminoacylation of tRNA(4Lys) was strictly required as determined by the fact that Ap4A synthesis was not observed until aminoacylation was nearly complete, inhibitors of aminoacylation blocked Ap4A synthesis, and there was a strict requirement for added lysine. None of the above observations could be demonstrated, however, when lysyl-tRNA(Lys) was directly supplied to the reaction mixture. Optimum Ap4A synthesis was obtained by the addition of 1 mol of tRNA(Lys)/mol of the synthetase complex. This reaction is unique because it does not require the prior formation of an aminoacyl-AMP intermediate and because it can actively synthesize Ap4A at physiological zinc concentrations. The preferential role for tRNA(4Lys) in Ap4A synthesis is consistent with its prior implication in cell division.  相似文献   

16.
The substrate specificity of procaryotic and eucaryotic AppppA-degrading enzymes was investigated with phosphonate analogues of diadenosine 5',5'-P1,P4-tetraphosphate (AppppA). App(CH2)ppA (I), App(CHBr)ppA (II), and Appp(CH2)pA (III), but not Ap(CH2)pp(CH2)pA (IV), are substrates for lupin AppppA hydrolase (EC 3.6.1.17) and phosphodiesterase I (EC 3.1.4.1). None of the four analogues is hydrolyzed by bacterial AppppA hydrolase (EC 3.6.1.41), and only analogue III is degraded by yeast AppppA phosphorylase (EC 2.7.7.53). The analogues are competitive inhibitors of all four enzymes. The affinity of analogue IV is 3-40-fold lower than that of analogues I-III for all four enzymes. Introduction of one methylene (as in I and III) [or bromomethylene (as in II)] group into AppppA results in a 3-15-fold increase of its affinity for lupin and Escherichia coli AppppA hydrolases. The same modifications only negligibly (10-30%) affect its affinity for yeast AppppA phosphorylase and decrease its affinity for lupin phosphodiesterase I about 2.5-fold. The data provide further evidence for the heterogeneity among catalytic sites of all four AppppA-degrading enzymes.  相似文献   

17.
The effective length and the hard core radius were calculated by scaled particle theory for high molecular weight calf thymus DNA in the presence of varying concentrations of diadenosine 5',5'-P1, P4-tetraphosphate and of adenosine 5'-triphosphate in aqueous millimolar NaCl. DNA became slightly more flexible in the presence of diadenosine 5',5'-P1, P4-tetraphosphate at concentrations of 10(-9)-10(-7) M. DNA was denatured in the presence of 5 X 10(-5) M adenosine triphosphate.  相似文献   

18.
The levels or diadenosine 5', 5'-p1, p4, tetraphosphate (Ap4A), a putative signal molecule associated with DNA synthesis, has been measured in murine T lymphocytes. The level or Ap4A detected correlated with the stimulation of DNA synthesis in murine T lymphocytes. In interleukin-2 (IL-2) dependent cells previously deprived of IL-2, new DNA synthesis can be induced by adding IL-2; the synthesis of DNA is preceded by an increase in Ap4A levels. A significant increase in DNA synthesis was observed after the Ap4A concentration exceeded the Kd of DNA polymerase alpha for Ap4A. Similarly, in cells blocked from synthesizing DNA by hydroxyurea, the levels or Ap4A are maintained only in the presence of IL-2. Once IL-2 is removed, the potential to synthesize DNA decreases and is preceded by decreases in the level or Ap4A. The DNA synthesis potential decreases rapidly after the Ap4A concentration fell below the Kd of DNA polymerase alpha for Ap4A. It is possible that Ap4A is a second messenger molecule required for the proliferation of lymphocytes and that the production of Ap4A in IL-2 dependent murine T lymphocytes is regulated by the homologous growth factor.  相似文献   

19.
A clone overproducing diadenosine tetraphosphatase (diadenosine 5', 5'-P1, P4-tetraphosphate pyrophosphohydrolase) activity was isolated from an Escherichia coli cosmid library. Localization of the DNA region responsible for stimulation of this activity was achieved by deletion mapping and subcloning in various vectors. Maxicell experiments and immunological assays demonstrated that a 3.5-kilobase-pair DNA fragment carried the structural gene apaH encoding the E. coli diadenosine tetraphosphatase. The DNA coding strand was determined by cloning this fragment in both orientations in pUC plasmids. It was also shown that the overproduction of diadenosine tetraphosphatase decreased the dinucleoside tetraphosphate concentration in E. coli by a factor of 10.  相似文献   

20.
Potential bisubstrate analogs, with adenosine and thymidine joined at their 5' positions by polyphosphoryl linkages of varying lengths (ApndT, where n = the number of phosphoryl groups), were examined as inhibitors of cytosolic thymidine kinase from blast cells of patients with acute myelocytic leukemia. Ki values were 1.2 microM for Ap3dT, 0.31 microM for Ap4dT, 0.12 microM for Ap5dT, and 0.19 microM for Ap6dT. The best inhibitor of the cytosolic enzyme, Ap5dT, was somewhat less effective as an inhibitor of the mitochondrial enzyme (Ki = 0.50 microM). In addition to their inhibitory modes of binding by the cytosolic enzyme, these compounds were bound at considerably lower concentrations (Kd = 0.029 microM for Ap4dT, 0.0025 microM for Ap5dT, and 0.0027 microM for Ap4dT), in such a way as to protect the cytosolic enzyme from thermal inactivation at 37 degrees C in the absence of substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号