首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinoids as chemopreventive agents   总被引:2,自引:0,他引:2  
Retinoids are promising agents for cancer chemoprevention. The myriad effects of retinoids on biological processes including development, differentiation, homeostasis, carcinogenesis and apoptosis are mediated through their molecular targets, the retinoid and rexinoid receptors. Tissue specific expression patterns, ligand specificities, receptor numbers, their distinct functions and functional redundancy make retinoid signaling highly complex. The cross-talks of these receptors with cell surface receptors signaling pathways, as well as their interactions with multiple co-activators and co-repressors further add to the complexity of the pleiotropic effects of retinoids. Elucidation of retinoid signaling pathways and indepth understanding of the mechanisms that underlie the anti-proliferative and apoptotic action of retinoids has paved the way for designing synthetic retinoids for effective chemoprevention and therapy of cancer. Development of receptor selective synthetic retinoids is a major focus of molecular retinoid development. Other new avenues encompass identification of novel retinoid regulated genes, orphan-receptor ligands/functions, novel retinoid mechanisms involving receptor-independent apoptosis inducing activity and synergistic combinations with other agents for cancer prevention and therapy. This review focuses on recent advances in the understanding of molecular mechanisms underlying the action of retinoids and retinoid molecular targeting studies designed primarily to develop retinoids with reduced toxicity, while maintaining or enhancing activity in context of chemoprevention. The clinical efficacy of retinoid based chemoprevention trials is discussed.  相似文献   

2.
维甲酸类药物对多种癌症有效,其作用包括诱导凋亡、抑制生长、促进分化等,这主要通过调节维甲酸受体包括维甲酸受体(retinoic acid receptor,RAR)和维甲酸X受体(rexinoid X receptor,RXR)的表达实现。目前发现,一些患者癌细胞的RAR、RXR或RAR/RXR表达缺乏,可能导致癌细胞对维甲酸产生耐药性。鞘脂代谢异常和维甲酸类受体表达缺失密切相关,在癌细胞对维甲酸产生耐药性中发挥着重要作用。本文就鞘脂代谢异常与维甲酸受体表达异常及维甲酸类药物耐药的相关性做一简要综述。  相似文献   

3.
4.
5.
6.
All-trans-retinoic acid (trans-RA) and other retinoids exert anticancer effects through two types of retinoid receptors, the RA receptors (RARs) and retinoid X receptors (RXRs). Previous studies demonstrated that the growth-inhibitory effects of trans-RA and related retinoids are impaired in certain estrogen-independent breast cancer cell lines due to their lower levels of RAR alpha and RARbeta. In this study, we evaluated several synthetic retinoids for their ability to induce growth inhibition and apoptosis in both trans-RA-sensitive and trans-RA-resistant breast cancer cell lines. Our results demonstrate that RXR-selective retinoids, particularly in combination with RAR-selective retinoids, could significantly induce RARbeta and inhibit the growth and induce the apoptosis of trans-RA-resistant, RAR alpha-deficient MDA-MB-231 cells but had low activity against trans-RA-sensitive ZR-75-1 cells that express high levels of RAR alpha. Using gel retardation and transient transfection assays, we found that the effects of RXR-selective retinoids on MDA-MB-231 cells were most likely mediated by RXR-nur77 heterodimers that bound to the RA response element in the RARbeta promoter and activated the RARbeta promoter in response to RXR-selective retinoids. In contrast, growth inhibition by RAR-selective retinoids in trans-RA-sensitive, RAR alpha-expressing cells most probably occurred through RXR-RAR alpha heterodimers that also bound to and activated the RARbeta promoter. In MDA-MB-231 clones stably expressing RAR alpha, both RARbeta induction and growth inhibition by RXR-selective retinoids were suppressed, while the effects of RAR-selective retinoids were enhanced. Together, our results demonstrate that activation of RXR can inhibit the growth of trans-RA-resistant MDA-MB-231 breast cancer cells and suggest that low cellular RAR alpha may regulate the signaling switch from RAR-mediated to RXR-mediated growth inhibition in breast cancer cells.  相似文献   

7.
8.
Vitamin A and its derivatives (collectively referred to as retinoids) are required for many fundamental life processes, including vision, reproduction, metabolism, cellular differentiation, hematopoesis, bone development, and pattern formation during embryogenesis. There is also considerable evidence to suggest that natural and synthetic retinoids have therapeutical effects due to their antiproliferative and apoptosis-inducing effects in human diseases such as cancer. Therefore it is not surprising that a significant amount of research was dedicated to probe the molecular and cellular mechanisms of retinoid action during the past decade. One of the cellular mechanisms retinoids have been implicated in is the initiation and modulation of apoptosis in normal development and disease. This review provides a brief overview of the molecular basis of retinoid signaling, and focuses on the retinoid-regulation of apoptotic cell death and gene expression during normal development and in pathological conditions in vivo and in various tumor cell lines in vitro.  相似文献   

9.
10.
Negative selection refers to the selective deletion of autoreactive thymocytes. Its molecular mechanisms have not been well defined. Previous studies in our laboratory have demonstrated that retinoic acids, physiological ligands for the nuclear retinoid receptors, selectively inhibit TCR-mediated death under in vitro conditions, and the inhibition is mediated via the retinoic acid receptor (RAR) alpha. The present studies were undertaken to investigate whether ligation of RARalpha leads to inhibition of TCR-mediated death in vivo and to identify the molecular mechanisms involved. Three models of TCR-mediated death were studied: anti-CD3-mediated death of thymocytes in wild-type mice, and Ag- and bacterial superantigen-driven thymocyte death in TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c in the context of the E(k) (class II MHC) molecule. Our data demonstrate that the molecular program of both anti-CD3- and Ag-driven, but not that of superantigen-mediated apoptosis involves up-regulation of nur77, an orphan nuclear receptor, and bim, a BH3-only member of the proapoptotic bcl-2 protein family, proteins previously implicated to participate in the negative selection. Ligation of RARalpha by the synthetic agonist CD336 inhibited apoptosis, DNA binding of nur77, and synthesis of bim induced by anti-CD3 or the specific Ag, but had no effect on the superantigen-driven cell death. Our data imply that retinoids are able to inhibit negative selection in vivo as well, and they interfere with multiple steps of the T cell selection signal pathway.  相似文献   

11.
The mechanisms of retinoid activity in tumors remain largely unknown. Here we establish that retinoids cause extensive apoptosis of medulloblastoma cells. In a xenograft model, retinoids largely abrogated tumor growth. Using receptor-specific retinoid agonists, we defined a subset of mRNAs that were induced by all active retinoids in retinoid-sensitive cell lines. We also identified bone morphogenetic protein-2 (BMP-2) as a candidate mediator of retinoid activity. BMP-2 protein induced medulloblastoma cell apoptosis, whereas the BMP-2 antagonist noggin blocked both retinoid and BMP-2-induced apoptosis. BMP-2 also induced p38 mitogen-activated protein kinase (MAPK), which is necessary for BMP-2- and retinoid-induced apoptosis. Retinoid-resistant medulloblastoma cells underwent apoptosis when treated with BMP-2 or when cultured with retinoid-sensitive medulloblastoma cells. Retinoid-induced expression of BMP-2 is thus necessary and sufficient for apoptosis of retinoid-responsive cells, and expression of BMP-2 by retinoid-sensitive cells is sufficient to induce apoptosis in surrounding retinoid-resistant cells.  相似文献   

12.
Diverse actions of retinoid receptors in cancer prevention and treatment   总被引:1,自引:0,他引:1  
Retinoids (retinol [vitamin A] and its biologically active metabolites) are essential signaling molecules that control various developmental pathways and influence the proliferation and differentiation of a variety of cell types. The physiological actions of retinoids are mediated primarily by the retinoic acid receptors alpha, beta, and gamma (RARs) and rexinoid receptors alpha, beta, and gamma. Although mutations in RARalpha, via the PML-RARalpha fusion proteins, result in acute promyelocytic leukemia, RARs have generally not been reported to be mutated or part of fusion proteins in carcinomas. However, the retinoid signaling pathway is often compromised in carcinomas. Altered retinol metabolism, including low levels of lecithin:retinol acyl trasferase and retinaldehyde dehydrogenase 2, and higher levels of CYP26A1, has been observed in various tumors. RARbeta(2) expression is also reduced or is absent in many types of cancer. A greater understanding of the molecular mechanisms by which retinoids induce cell differentiation, and in particular stem cell differentiation, is required in order to solve the issue of retinoid resistance in tumors, and thereby to utilize RA and synthetic retinoids more effectively in combination therapies for human cancer.  相似文献   

13.
14.
15.
16.
Characterization of retinoic acid receptor-deficient keratinocytes   总被引:4,自引:0,他引:4  
Retinoids are essential for normal epidermal growth and differentiation and show potential for the prevention or treatment of various epithelial neoplasms. The retinoic acid receptors (RARalpha, -beta, and -gamma) are transducers of the retinoid signal. The epidermis expresses RARgamma and RARalpha, both of which are potential mediators of the effects of retinoids in the epidermis. To further investigate the role(s) of these receptors, we derived transformed keratinocyte lines from wild-type, RARalpha, RARgamma, and RARalphagamma null mice and investigated their response to retinoids, including growth inhibition, markers of growth and differentiation, and AP-1 activity. Our results indicate that RARgamma is the principle receptor contributing to all-trans-retinoic acid (RA)-mediated growth arrest in this system. This effect partially correlated with inhibition of AP-1 activity. In the absence of RARs, the synthetic retinoid N-(4-hydroxyphenyl)-retinamide inhibited growth; this was not observed with RA, 9-cis RA, or the synthetic retinoid (E)-4-[2-(5, 5, 8, 8 tetramethyl-5,6,7,8-tetrahydro-2-naphthalenyl)-1-propenyl] benzoic acid. Finally, both RARalpha and RARgamma differently affected the expression of some genes, suggesting both specific and overlapping roles for the RARs in keratinocytes.  相似文献   

17.
The rationale for using retinoids in the prevention of respiratory epithelium cancers is based on their ability to coordinately regulate differentiation, proliferation and apoptosis. The complex retinoid signaling pathways and their cross-reactions are modulated by multiple mechanisms that are gradually being elucidated. It is possible that significant molecular changes take place during the very early stages of respiratory epithelial carcinogenesis, which enable cancer cells to escape apoptosis and result in unimpeded proliferation. Here, we propose that a "switch on/off" model dictates the cross-talk between retinoid receptors and other signal transducing pathways during respiratory epithelium carcinogenesis. This model might contribute to the development of novel selective retinoids and their clinical evaluation in combinatorial chemopreventive strategies.  相似文献   

18.
19.
D M Kochhar  J D Penner 《Teratology》1992,45(6):637-645
Certain synthetic retinoids differ widely from retinoic acid (RA) in teratogenic potency, being much more or much less effective than RA. It is assumed that the potency of a retinoid may depend on the nature of its interaction with cellular binding components (nuclear retinoic acid receptors or cytoplasmic binding proteins) and, as in the case of retinoids that are mammalian teratogens, on factors that determine its accessibility to the embryo. To investigate some of the factors that contribute to potency, we used a new synthetic retinoid Ro 13-6307 that differs in structure from RA in having an aromatic ring inserted in its side chain along with gem dimethyl modification of the natural cyclohexenyl ring. Pregnant ICR mice were given a single oral dose (0, 1, or 10 mg/kg) on day 11 of gestation, and the resultant teratogenic outcome was monitored on day 17. Direct effects on cell differentiation were obtained by exposing high density cultures of limb bud mesenchymal cells to a range of concentrations (0.3 ng/ml-3 micrograms/ml) of Ro 13-6307 and scoring for chondrogenic suppression. Concentrations reaching the embryo after maternal administration of Ro 13-6307 were measured by HPLC to quantify the analog for a period of 4 h after administration of the oral dose. We found that this retinoid was 40-fold as active as RA in both inducing teratogenesis and suppressing chondrogenesis, yet its concentration in the affected embryo was only a fraction of that achieved after an equivalent dose of RA was employed in a similar protocol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号