首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The obligate intracellular bacterial pathogen Chlamydia pneumoniae (Cp) is responsible for a range of human diseases, including acute respiratory infection. Although experimental intratracheal infection with Cp results in a massive recruitment of neutrophil granulocytes (polymorphonuclear neutrophils (PMN)), the role of these cells in the defense against Cp is unclear. In this study the interactions of PMN with Cp were investigated. In vitro coincubation experiments showed that human granulocytes were able to internalize Chlamydia in an opsonin-independent manner. Importantly, phagocytosed Cp were not killed; the ingested bacteria survived and multiplied within PMN. Although uninfected granulocytes became apoptotic within 10 h, infected PMN survived up to 90 h. Coincubation with Cp significantly decreased the ratio of apoptotic PMN, as detected by morphological analysis, annexin V, and TUNEL staining. The observed antiapoptotic effect was associated with a markedly lower level of procaspase-3 processing and, consequently, reduced caspase-3 activity in infected PMN. LPS was found as a major, but not exclusive, component responsible for the observed antiapoptotic effect. Chlamydia LPS affected PMN apoptosis both by acting directly on the cells and by inducing the autocrine production of the antiapoptotic cytokine IL-8. These data show that, in contrast to other microbial pathogens that drive phagocytes into apoptosis to escape killing, Cp can extend the life span of neutrophil granulocytes, making them suitable host cells for survival and multiplication within the first hours/days after infection.  相似文献   

2.
The signalling pathways mediating neutrophil spontaneous apoptosis are still largely unknown. We report that the indolocarbazole compound KT5823, a specific inhibitor of cGMP-dependent protein kinases (cGK), dose-dependently inhibited spontaneous apoptosis of neutrophils. At the concentration eliciting the maximum effect (8 microM), it decreased apoptosis from 72.42+/-12.79% to 45.86+/-7.22% (p=0.0002, n=6). Similarly, the isoquinoline sulfonamide compound H89, another cGK inhibitor, prevented neutrophil apoptosis. At the concentration eliciting the maximum effect (20 microM), it decreased apoptosis from 72.42+/-12.79% to 31.84+/-10.70% (p=0.0004, n=6). The maximum effect of KT5823 and H89 was comparable to that of GM-CSF and LPS, respectively. Moreover, YC-1, a soluble guanylate cyclase activator, and 4-([3',4',-(methylenedioxy)benzyl]amino)-6-methoxyquinazoline, a specific phosphodiesterase 5 inhibitor, enhanced neutrophil apoptosis, and their effect was antagonised by KT5823. Taken together, these observations highlight a new role of cGK as important mediators of neutrophil spontaneous apoptosis.  相似文献   

3.
Neutrophils are recruited to the site of parasite inoculation within a few hours of infection with the protozoan parasite Leishmania major. In C57BL/6 mice, which are resistant to infection, neutrophils are cleared from the site of s.c. infection within 3 days, whereas they persist for at least 10 days in susceptible BALB/c mice. In the present study, we investigated the role of macrophages (MPhi) in regulating neutrophil number. Inflammatory cells were recruited by i.p. injection of either 2% starch or L. major promastigotes. Neutrophils were isolated and cultured in the presence of increasing numbers of MPhi. Extent of neutrophil apoptosis positively correlated with the number of MPhi added. This process was strictly dependent on TNF because MPhi from TNF-deficient mice failed to induce neutrophil apoptosis. Assays using MPhi derived from membrane TNF knock-in mice or cultures in Transwell chambers revealed that contact with MPhi was necessary to induce neutrophil apoptosis, a process requiring expression of membrane TNF. L. major was shown to exacerbate MPhi-induced apoptosis of neutrophils, but BALB/c MPhi were not as potent as C57BL/6 MPhi in this induction. Our results emphasize the importance of MPhi-induced neutrophil apoptosis, and membrane TNF in the early control of inflammation.  相似文献   

4.
5.
We investigated the role of neutrophil elastase (NE) in interactions between murine inflammatory neutrophils and macrophages infected with the parasite Leishmania major. A blocker peptide specific for NE prevented the neutrophils from inducing microbicidal activity in macrophages. Inflammatory neutrophils from mutant pallid mice were defective in the spontaneous release of NE, failed to induce microbicidal activity in wild-type macrophages, and failed to reduce parasite loads upon transfer in vivo. Conversely, purified NE activated macrophages and induced microbicidal activity dependent on secretion of TNF-alpha. Induction of macrophage microbicidal activity by either neutrophils or purified NE required TLR4 expression by macrophages. Injection of purified NE shortly after infection in vivo reduced the burden of L. major in draining lymph nodes of TLR4-sufficient, but not TLR4-deficient mice. These results indicate that NE plays a previously unrecognized protective role in host responses to L. major infection.  相似文献   

6.
Increased circulating and tissue levels of plasminogen activator inhibitor 1 (PAI-1) are often present in severe inflammatory states associated with neutrophil activation and accumulation and correlate with poor clinical outcome from many of these conditions. The mechanisms by which PAI-1 contributes to inflammation have not been fully delineated. In the present experiments, we found that addition of PAI-1 to neutrophil cultures diminished the rate of spontaneous and TNF-related apoptosis-inducing ligand-induced apoptotic cell death. The effects of PAI-1 on cell viability were associated with activation of antiapoptotic signaling pathways, including upregulation of PKB/Akt, Mcl-1, and Bcl-x(L). Although urokinase-plasminogen activator receptor, lipoprotein receptor-related protein, and vitronectin are primary ligands for PAI-1, these molecules were not involved in mediating its antiapoptotic properties. In contrast, blocking pertussis toxin-sensitive G protein-coupled receptors and selective inhibition of phosphatidylinositide 3-kinase reversed the ability of PAI-1 to extend neutrophil viability. The antiapoptotic effects of PAI-1 were also evident under in vivo conditions during LPS-induced acute lung injury, where enhanced apoptosis was present among neutrophils accumulating in the lungs of PAI-1(-/-) compared with PAI-1(+/+) mice. These results demonstrate a novel antiapoptotic role for PAI-1 that may contribute to its participation in neutrophil-associated inflammatory responses.  相似文献   

7.
Extracellular phosphorylation in the parasite, Leishmania major   总被引:2,自引:0,他引:2  
Intact promastigotes or cell-free extracts of the parasite Leishmania major were labelled with adenosine 5'[gamma-32P]-triphosphate (ATP). This resulted in the identification of eleven phosphoproteins. [gamma-32P]ATP incorporation into endogenous and exogenous substrates was insensitive to most of the commonly used protein kinase inhibitors and activators indicating that the leishmanial enzyme(s) may represent a new class of kinase(s). In addition, exogenous substrate specificity was inconsistent with the preferences of second messenger-dependent protein kinases. Cyclic AMP had differential effects on phosphorylation in intact cells and lysates. The majority of kinase activity could be attributed to an externally oriented membrane-associated protein kinase(s), as no specific cytosolic phosphoproteins were found and intact cells phosphorylated exogenous substrates. Labelled ATP did not cross the membrane and [alpha-32P]ATP was an unsuitable substrate for the phosphorylation activity. The ectokinase activity on live Leishmania exhibited a different substrate preference when compared to the protein kinase activity in the particulate fraction, suggesting that more than one protein kinase may be present in L. major. Three serine-labelled phosphoproteins were specifically released into the medium. The presence of an ecto-kinase and these released phosphoproteins may play a significant role in host-parasite interactions.  相似文献   

8.
9.
Previous studies provided evidence that the role of TNF in the control of Leishmania (Leishmania) major might vary with the parasite strain. Here, we analyzed the development and outcome of cutaneous leishmaniasis in C57BL/6 wild-type (B6.WT) and TNF-deficient (B6. TNF(-/-)) mice infected with two different isolates of L. (L.) major (FRIEDLIN vs. BNI). L. (L.) major BNI caused progressive, fatal disease in B6.TNF(-/-) mice. In contrast, B6.TNF(-/-) mice infected with the L. (L.) major FRIEDLIN strain exhibited partial resistance characterized by chronic, non-healing skin lesions without lethality. Analysis of the tissue parasite numbers showed that the numbers of L. (L.) major FRIEDLIN and BNI parasites were comparable in footpads and lymph nodes of B6.TNF(-/-) mice, whereas in the spleen the parasite numbers were strikingly lower in the case of L. (L.) major FRIEDLIN. In vitro, cytokine-activated inflammatory macrophages killed L. (L.) major FRIEDLIN more efficiently than L. (L.) major BNI. These results suggest that in the absence of TNF, the course of leishmaniasis depends on the biology of the inoculated L. (L.) major strain, which most likely explains the previously published discrepant results on the role of TNF in leishmaniasis.  相似文献   

10.
The development of a defined molecular vaccine against leishmaniasis involves the determination of candidate molecules that elicit protection against infection. As the amastigote stage is the developmental form found in the infected mammalian host, molecules specific to or upregulated in this stage represent potential antigenic vaccine targets. Diane McMahon-Pratt, Peter Kima and Lynn Soong summarize experiments which indicate that immunization with molecules upregulated in the amastigote stage can provide effective protection against infection. In the immunized host, both CD4(+) and CD8(+) T cells appear to be crucial to protection. Studies of antigen presentation of Leishmania-infected macrophages indicate that the amastigote stage can sequester endogenous leishmanial antigen from the major histocompatability complex (MHC) class II presentation pathway. However, evidence indicates that MHC class I presentation may be sustained in the infected macrophage. The effect of these findings on the design of a leishmanial vaccine are considered.  相似文献   

11.
By using the fluorescent Ca2+ indicator fura 2, we show that the concentration of free calcium in the cytoplasm of Leishmania donovani promastigotes is maintained at very low levels (73.5 +/- 10-94 +/- 8 nM at a [Ca2+]i range of 0-1 mM). The maintenance of low [Ca2+]i is energy-dependent as it is disrupted by KCN, H+-ATPase inhibitors, and ionophores. KCN, nigericin, and N,N'-dicyclohexylcarbodiimide increase cytosolic free calcium by mobilizing calcium from intracellular pools. Monensin and oligomycin increase [Ca2+]i by allowing influx of calcium from the external medium through the plasma membrane, but they have no effect on intracellular pools. Intracellular traffic of calcium was examined by measuring the transport of 45Ca2+ in digitonin-permeabilized promastigotes. Two transport systems for calcium were identified in these cells. One is respiration-dependent, suggesting a mitochondrial localization. A second system is respiration-independent but requires either endogenous or externally added ATP. The ATP-dependent Ca2+ transport is optimal at pH 7.1, has high affinity for calcium (Km = 92 nM, Vmax = 1 nmol/min/mg of protein), and is sensitive to orthovanadate. These properties suggest the presence of a Ca2+-ATPase similar to that of mammalian endoplasmic reticulum. Taken together, the results indicate that [Ca2+]i in L. donovani promastigotes is regulated at low concentration by mechanisms similar to those found in higher eukaryotic cells.  相似文献   

12.
Leishmania pathogenesis is primarily studied using the disease-inducing promastigote stage of Leishmania major. Despite many efforts, all attempts so far have failed to culture the disease-relevant multiplying amastigote stage of L. major. Here, we established a stably growing axenic L. major amastigote culture system that was characterized genetically, morphologically, and by stage-specific DsRed protein expression. We found parasite stage-specific disease development in resistant C57BL/6 mice. Human neutrophils, as first host cells for promastigotes, do not take up amastigotes. In human macrophages, we observed an amastigote-specific complement receptor 3-mediated, endocytotic entry mechanism, whereas promastigotes are taken up by complement receptor 1-mediated phagocytosis. Promastigote infection of macrophages induced the inflammatory mediators TNF, CCL3, and CCL4, whereas amastigote infection was silent and resulted in significantly increased parasite numbers: from 7.1 ± 1.4 (after 3 h) to 20.1 ± 7.9 parasites/cell (after 96 h). Our study identifies Leishmania stage-specific disease development, host cell preference, entry mechanism, and immune evasion. Since the amastigote stage is the disease-propagating form found in the infected mammalian host, the newly developed L. major axenic cultures will serve as an important tool in better understanding the amastigote-driven immune response in leishmaniasis.  相似文献   

13.
The capability of the obligate intracellular parasites like Leishmania donovani to survive within the host cell parasitophorous vacuoles as nonmotile amastigotes determines disease pathogenesis, but the mechanism of elimination of the parasites from these vacuoles are not well understood. By using the anti-leishmanial drug potassium antimony tartrate, we demonstrate that, upon drug exposure, intracellular L. donovani amastigotes undergo apoptotic death characterized by nuclear DNA fragmentation and externalization of phosphatidylserine. Changes upstream of DNA fragmentation included generation of reactive oxygen species like superoxide, nitric oxide, and hydrogen peroxide that were primarily concentrated in the parasitophorous vacuoles. In the presence of antioxidants like N-acetylcysteine or Mn(III) tetrakis(4-benzoic acid)porphyrin chloride, an inhibitor of inducible nitric-oxide synthase, a diminution of reactive oxygen species generation and improvement of amastigote survival were observed, suggesting a close link between drug-induced oxidative stress and amastigote death. Changes downstream to reactive oxygen species increase involved elevation of intracellular Ca2+ concentrations in both the parasite and the host that was preventable by antioxidants. Flufenamic acid, a non-selective cation channel blocker, decreased the elevation of Ca2+ in both the cell types and reduced amastigote death, thus establishing a central role of Ca2+ in intracellular parasite clearance. This influx of Ca2+ was preceded by a fall in the amastigote mitochondrial membrane potential. Therefore, this study projects the importance of flufenamic acid-sensitive non-selective cation channels as important modulators of antimonial efficacy and lends credence to the suggestion that, within the host cell, apoptosis is the preferred mode of death for the parasites.  相似文献   

14.
Macrophages infected with amastigotes of Leishmania major and treated with IFN-gamma in vitro develop potent antimicrobial activities that eliminate the intracellular parasite. This antileishmanial activity was suppressed in a dose dependent fashion by NG-monomethyl-L-arginine (NGMMLA), a competitive inhibitor of nitrite, nitrate, nitric oxide and L-citrulline synthesis from L-arginine. Excess L-arginine added to infected macrophage cultures reversed the inhibitory effects of NGMMLA. Addition of arginase to culture media inhibited intracellular killing by IFN-gamma-treated cells. Similar effects were seen with macrophages obtained from BCG-infected C3H/HeN mice. Increased levels of nitrite, an oxidative product of the L-arginine-dependent effector mechanism, was measured in cultures of infected IFN gamma-treated macrophages as well as infected BCG-activated macrophages. Nitrite production correlated with development of antileishmanial activity. Nitrite production and microbicidal activity both decreased when in vivo or in vitro-activated macrophages were cultured in the presence of either arginase or NGMMLA. Nitric oxide synthesized from a terminal guanidino nitrogen atom of L-arginine and a precursor of the nitrite measured, may disrupt Fe-dependent enzymatic pathways vital to the survival of amastigotes within macrophages.  相似文献   

15.
A. Hoerauf    Ch. Rascher    R. Bang    A. Pahl    W. Solbach    K. Brune    M. Röllinghoff  & H. Bang 《Molecular microbiology》1997,24(2):421-429
The antiparasitic effects of cyclosporin A were examined in leishmanial infection by analysing the role of CsA-binding proteins (cyclophilins) in the host–parasite interaction. We hypothesized that the leishmanicidal effects of CsA on Leishmania major infected macrophages might be mediated through a cyclophilin of either the parasite or the host cell. Two cyclophilins (20 and 22 kDa) were purified from L. major parasites and N-terminally sequenced. Although enzyme activity of these cyclophilins was inhibited by CsA, pretreatment of L. major parasites with CsA did not result in reduction of a subsequent macrophage infection, arguing against a role of L. major cyclophilins as infectivity potentiators. However, host-cell cyclophilin A (CypA) was found to be critically involved in the intracellular replication of L. major parasites in murine macrophages. An antisense oligonucleotide to murine CypA was constructed and added to cultures of peritoneal macrophages prior to infection with L. major parasites. This treatment strongly reduced the expression of CypA in macrophages and resulted in the inhibition of the intracellular replication of L. major amastigotes. These data indicate that interaction of amastigotes with host-cell cyclophilin is an important part of the intracellular replication machinery of L. major and define, for the first time, a direct involvement of a cyclophilin in the survival strategies of an intracellular parasite.  相似文献   

16.
17.
To investigate the role of clathrin-mediated trafficking during the Leishmania lifecycle, open reading frames encoding clathrin heavy chain and the beta-adaptins, major components of the adaptor complexes, have been analysed both in silico and experimentally. The Leishmania genome encodes three beta-adaptins, which arose at a time predating speciation of these divergent trypanosomatids. Unlike Trypanosoma brucei, both clathrin heavy chain and beta-adaptin1 are constitutively expressed throughout the Leishmania life cycle. Clathrin relocalises in amastigotes relative to promastigotes, consistent with developmental alterations to the morphology of the endo-membrane system.  相似文献   

18.
The proteins that mediate polyamine translocation into eukaryotic cells have not been identified at the molecular level. To define the polyamine transport pathways in eukaryotic cells we have cloned a gene, LmPOT1, that encodes a polyamine transporter from the protozoan pathogen, Leishmania major. Sequence analysis of LmPOT1 predicted an unusual 803-residue polytopic protein with 9-12 transmembrane domains. Expression of LmPOT1 cRNA in Xenopus laevis oocytes revealed LmPOT1 to be a high affinity transporter for both putrescine and spermidine, whereas expression of LmPOT1 in Trypanosoma brucei stimulated putrescine uptake that was sensitive to inhibition by pentamidine and proton ionophores. Immunoblot analysis established that LmPOT1 was expressed predominantly in the insect vector form of L. major, and immunofluorescence demonstrated that LmPOT1 was localized predominantly to the parasite plasma membrane. To our knowledge this is the first molecular identification and characterization of a cell surface polyamine transporter in eukaryotic cells.  相似文献   

19.
Neutrophils undergo rapid constitutive apoptosis that is delayed by a range of pathogen- and host-derived inflammatory mediators. We have investigated the ability of the nucleotide ATP, to which neutrophils are exposed both in the circulation and at sites of inflammation, to modulate the lifespan of human neutrophils. We found that physiologically relevant concentrations of ATP cause a concentration-dependent delay of neutrophil apoptosis (assessed by morphology, annexin V/To-Pro3 staining, and mitochondrial membrane permeabilization). We found that even brief exposure to ATP (10 min) was sufficient to cause a long-lasting delay of apoptosis and showed that the effects were not mediated by ATP breakdown to adenosine. The P2 receptor mediating the antiapoptotic actions of ATP was identified using a combination of more selective ATP analogs, receptor expression studies, and study of downstream signaling pathways. Neutrophils were shown to express the P2Y11 receptor and inhibition of P2Y11 signaling using the antagonist NF157 abrogated the ATP-mediated delay of neutrophil apoptosis, as did inhibition of type I cAMP-dependent protein kinases activated downstream of P2Y11, without effects on constitutive apoptosis. Specific targeting of P2Y11 could retain key immune functions of neutrophils but reduce the injurious effects of increased neutrophil longevity during inflammation.  相似文献   

20.
Anaplasma phagocytophilum infects human neutrophils and inhibits the intrinsic pathway of spontaneous neutrophil apoptosis by protecting mitochondrial membrane integrity. In the present study, we investigated the molecular signalling of the extrinsic pathway and the interaction between the intrinsic and extrinsic pathways in the inhibition of spontaneous human neutrophil apoptosis by A. phagocytophilum. Cell surface Fas clustering during spontaneous neutrophil apoptosis was significantly blocked by A. phagocytophilum infection. The cleavage of pro-caspase 8, caspase 8 activation and the cleavage of Bid, which links the intrinsic and extrinsic pathways, in the extrinsic pathway of spontaneous neutrophil apoptosis were inhibited by A. phagocytophilum infection. Inhibition of this pathway was active as the cleavage of pro-caspase 8 and Bid in anti-Fas-induced neutrophil apoptosis was also inhibited by A. phagocytophilum infection. Likewise, A. phagocytophilum infection inhibited the pro-apoptotic Bax translocation to mitochondria, activation of caspase 9, the initiator caspase in the intrinsic pathway, and the degradation of a potent caspase inhibitor, X-chromosome-linked inhibitor of apoptosis protein (XIAP), during spontaneous neutrophil apoptosis. These data point to a novel mechanism induced by A. phagocytophilum involving both extrinsic and intrinsic pathways to ensure to delay the apoptosis of host neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号