首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The number of gene copies for tRNA2Gln in λpsu+2 was determined by genetic and biochemical studies. The transducing phage stimulates the production of the su+2 (amber suppressor) and su°2 glutamine tRNAs and methionine tRNAm. When the su+2 amber suppressor was converted to an ochre suppressor by single-base mutation, the phage stimulated ochre-suppressing tRNA2Gln, instead of the amber-suppressing tRNA2Gln. From the transducing phage carrying the ochre-suppressing allele, strains carrying both ochre and amber suppressors were readily obtainable. These phages stimulated both ochre-suppressing and amber-suppressing tRNA2Gln, but not the non-suppressing form. We conclude that the original transducing phage carries two tRNA2Gln genes, one su+2 and one su°2. The transducing phage carrying two suppressors, ochre and amber, segregates one-gene derivatives that encode only one or the other type of suppressor tRNA. These derivatives apparently arise by unequal recombination involving the two glutamine tRNA genes in the parental phage. This segregation is not accompanied by the loss of the tRNAmMet gene. Based on these results, it is suggested that Escherichia coli normally carries in tandem two identical genes specifying tRNA2Gln at 15 minutes on the bacterial chromosome. su+2 mutants may arise by single-base mutations in the anticodon region of either of these two, leaving the other intact. By double mutations, tRNA2Gln genes could also become ochre suppressors. A tRNAmMet gene is located near, but not between, these two tRNA2Gln genes.  相似文献   

2.
3.
4.
5.
Physical mapping of the transfer RNA genes on lambda-h80dglytsu+36   总被引:7,自引:0,他引:7  
The three Escherichia coli transfer RNA genes of the DNA of the transducing phage λ80cI857S?t68dglyTsu+36tyrTthrT (abbreviated λh80T), which specify the structures of tRNAGly2(su+36), tRNATyr2 and tRNAThr3, have been mapped by hybridizing ferritin-labeled E. coli tRNA to heteroduplexes of λh80T DNA with the DNA of the parental phage (λh80cI857S?t68) and examining the product in the electron microscope. The DNA of λh80T contains a piece of bacterial DNA of length 0·43 λ unit3 that replaces a piece of phage DNA of length 0·46 λ unit, proceeding left from B · P′ (the junction of bacterial DNA and phage DNA) (i.e. att80). A cluster of three ferritin binding sites, and thus of tRNA genes, is seen at a position of 0·24 λ unit (1·1 × 104 nucleotides) to the left of B· P′. The three tRNA genes of the cluster are separated by the unequal spacings of 260 (±30) and 140 (± 30) nucleotides, proceeding left from B·P′. The specific map positions have been identified by hybridization competition between ferritin-labeled whole E. coli tRNA with unlabeled purified tRNATyr2 and with unlabeled partially purified tRNAGly2. The central gene of the cluster is tRNATyr2. The tRNAGly2gene is probably the one furthest from B·P′. Thus, the gene order and spacings, proceeding left from B·P′, are: tRNAThr3, 260 nucleotides, tRNATry2, 140 nucleotides, tRNAGly2.  相似文献   

6.
The su+7 amber suppressor of Escherichia coli is a mutant tRNATrp that translates UAG codons as glutamine. Nevertheless, the purified su+7 tRNA can be charged with either glutamine or tryptophan. Aminoacylation kinetics in vitro suggest that the tRNA should be acylated with equal amounts of glutamine and tryptophan in vivo. The predominance of the glutamine specificity of the suppressor is therefore potentially anomalous. We can find no selective deacylation of tryptophanyl-su+7 tRNA by glutaminyl-tRNA synthetase, tryptophanyl-tRNA synthetase, or any other cellular element. Furthermore, as predicted, nearly equal amounts of glutaminyl and tryptophanyl-su+7 tRNA are actually detected in aminoacyl-tRNA extracted from growing cells. We conclude that the translational apparatus somehow discriminates against tryptophanyl-su+7 tRNA at a step after synthesis of the two aminoacyl-tRNAs.  相似文献   

7.
Suppression (suA78+) of the trpA78 missense mutation (Gly,GGU/C → Cys,UGU/C) in Escherichia coli involves a genetically altered tRNAGly isoacceptor. Purification and sequence analysis of 32P-labeled suppressor tRNA indicates that the suA78+ mutation results in the alteration of a small fraction of the tRNAGGU/CGly3 of the cell. The resulting tRNAUGU/CGly3 contains a C → A substitution at the 3′ end (C36) of the anticodon (GCC) and in addition, a modification of the adjacent A(A37) to form N6-(Δ2-isopentenyl)-2-thiomethyl-adenylic acid. Labeled glycyl-tRNAUGU/CGly3 binds to E. coli ribosomes in the presence of the cysteine triplets, UpGpU and UpGpC, but not with the glycine triplets, GpGpU and GpGpC. The suppressor tRNAUGU/CGly3 glycylates relatively slowly in the presence of the glycyl-tRNA synthetase, with a Vmax value 200-fold lower than that of wild-type tRNAGGU/CGly3. Multiple identical copies of genes specifying the sequence of tRNAGGU/CGly3 apparently occur on the E. coli chromosome, since suppressor mutations alter the nucleotide sequence of only a fraction of the tRNAGGU/CGly3 population.  相似文献   

8.
Previous work identified the psu+1 amber suppressor gene of bacteriophage T4. Analysis of protein arising from suppression now shows that psu+1 specifies the insertion of serine in response to the amber triplet. The efficiency of suppression is 70%.The psu1+ gene affects a serine transfer RNA coded by bacteriophage T4. Comparative ribonuclease T1 fingerprint analysis of the serine transfer RNAs made by wild type T4 and psu+1 strains shows a specific alteration in the patterns, presumably reflecting a mutational alteration in the anticodon of the transfer RNA. Mutations which result in the loss of suppressor activity define two genes: one is apparently the structural gene for the serine transfer RNA; the function of the second gene, M1, is less clear. Mutational inactivation of either gene prevents the appearance of the serine transfer RNA and a second transfer RNA, which has not yet been associated with its cognate amino acid. M1 mutants are also deficient in the production of several additional transfer RNA species, as well as several larger RNAs. The significance of these results in relation to transfer RNA biosynthesis is discussed.  相似文献   

9.
In Saccharomyces cerevisiae, the SUP70 gene encodes the CAG‐decoding tRNAGlnCUG. A mutant allele, sup70‐65, induces pseudohyphal growth on rich medium, an inappropriate nitrogen starvation response. This mutant tRNA is also a UAG nonsense suppressor via first base wobble. To investigate the basis of the pseudohyphal phenotype, 10 novel sup70 UAG suppressor alleles were identified, defining positions in the tRNAGlnCUG anticodon stem that restrict first base wobble. However, none conferred pseudohyphal growth, showing altered CUG anticodon presentation cannot itself induce pseudohyphal growth. Northern blot analysis revealed the sup70‐65 tRNAGlnCUG is unstable, inefficiently charged, and 80% reduced in its effective concentration. A stochastic model simulation of translation predicted compromised expression of CAG‐rich ORFs in the tRNAGlnCUG‐depleted sup70‐65 mutant. This prediction was validated by demonstrating that luciferase expression in the mutant was 60% reduced by introducing multiple tandem CAG (but not CAA) codons into this ORF. In addition, the sup70‐65 pseudohyphal phenotype was partly complemented by overexpressing CAA‐decoding tRNAGlnUUG, an inefficient wobble‐decoder of CAG. We thus show that introducing codons decoded by a rare tRNA near the 5′ end of an ORF can reduce eukaryote translational expression, and that the mutant tRNACUGGln constitutive pseudohyphal differentiation phenotype correlates strongly with reduced CAG decoding efficiency.  相似文献   

10.
The three major glutamine tRNAs of Tetrahymena thermophila were isolated and their nucleotide sequences determined by post-labeling techniques. Two of these tRNAsGln show unusual codon recognition: a previously isolated tRNAGlnUmUA and a second species with CUA in the anticodon (tRNAGlnCUA). These two tRNAs recognize two of the three termination codons on natural mRNAs in a reticulocyte system. tRNAGlnUmUA reads the UAA codon of α-globin mRNA and the UAG codon of tobacco mosaic virus (TMV) RNA, whereas tRNAGlnCUA recognizes only UAG. This indicates that Tetrahymena uses UAA and UAG as glutamine codons and that UGA may be the only functional termination codon. A notable feature of these two tRNAsGln is their unusually strong readthrough efficiency, e.g. purified tRNAGlnCUA achieves complete readthrough over the UAG stop codon of TMV RNA. The third major tRNAGln of Tetrahymena has a UmUG anticodon and presumably reads the two normal glutamine codons CAA and CAG. The sequence homology between tRNAGlnUmUG and tRNAGlnUmUA is 81%, whereas that between tRNAGlnCUA and tRNAGlnUmUA is 95%, indicating that the two unusual tRNAsGln evolved from the normal tRNAGln early in ciliate evolution. Possible events leading to an altered genetic code in ciliates are discussed.  相似文献   

11.
Gross map location of Escherichia coli transfer RNA genes.   总被引:13,自引:0,他引:13  
Chromosomal locations of Escherichia coli genes specifying more than 20 different transfer RNA species were determined by utilizing two different methods. One was based upon gene dosage effects caused by F′ factors. In 15 different F′ strains and their corresponding F? strains, relative contents of individual tRNAs were measured after separating the tRNAs by two-dimensional polyacrylamide gel electrophoresis. Approximate doubling of the content of particular tRNA was found in individual F′ strains, as showing gross map location of the tRNA gene. The other method was based on the amplified synthesis of tRNAs occurring after prophage induction of λ lysogens. Synthesis of individual tRNAs was measured after the induction of λ phages integrated at five different bacterial sites. Characteristic overproduction of different tRNAs was observed in individual prophage strains. This finding also gave approximate map locations of tRNA genes close to the prophage sites. The mapping data obtained by the two methods were consistent with each other and also with the reported positions in the cases where previously mapped. On the basis of map location of the tRNAf1Met gene newly determined, the λ-transducing phage carrying the tRNAf1Met gene was found.  相似文献   

12.
Summary A UGA suppressor derived from a glutamine tRNA gene of Escherichia coli K 12 was isolated and characterized. Phages carrying the suppressor su+2UGA could be obtained only from a hybrid transducing phage, h 80 cI 857psu +2oc, but not from the original transducing phage cI 857psu +2oc. By DNA sequence analysis, it was found that the su +2 UGA suppressor obtained has two mutations; one is in the anticodon (TTATCA), as expected, and the other (CT) is at the 7th position from the 3 end of tRNA 2 Gln . The significance of these mutations and the lethal effect on phage of the increased amounts of UGA suppressor tRNAs are discussed.  相似文献   

13.
In this work we show that the wild-type (su?7) progenitor of the recessivelethal suppressors of UAG (su+7(UAG)) and of UAA/G (su+7(UAA/G)) is the structural gene for transfer RNATrp, the adaptor for translating the codon UGG. The su+7(UAG) suppressor form of the tRNA has a C for U substitution in the middle base of the anticodon; in the su+7(UAA/G) suppressor tRNA both C residues of the anticodon are replaced by U. Our data establish that the mutational change altering the tRNATrp to a UAG suppressor is accompanied by a loss of tryptophan-accepting specificity and the acquisition of glutamine-acceptor activity.  相似文献   

14.
We have noticed that during a long storage and handling, the plant methionine initiator tRNA is spontaneously hydrolyzed within the anticodon loop at the C34-A35 phosphodiester bond. A literature search indicated that there is also the case for human initiator tRNAMet but not for yeast tRNAMet i or E. coli tRNAMet f. All these tRNAs have an identical nucleotide sequence of the anticodon stems and loops with only one difference at position 33 within the loop. It means that cytosine 33 (C33) makes the anticodon loop of plant and human tRNAMet i susceptible to the specific cleavage reaction. Using crystallographic data of tRNAMet f of E. coli with U33, we modeled the anticodon loop of this tRNA with C33. We found that C33 within the anticodon loop creates a pocket that can accomodate a hydrogen bonded water molecule that acts as a general base and catalyzes a hydrolysis of C-A bond. We conclude that a single nucleotide change in the primary structure of tRNAMet i made changes in hydration pattern and readjustment in hydrogen bonding which lead to a cleavage of the phosphodiester bond.  相似文献   

15.
16.
Accurate aminoacylation of tRNAs by the aminoacyl-tRNA synthetases (aaRSs) plays a critical role in protein translation. However, some of the aaRSs are missing in many microorganisms. Helicobacter pylori does not have a glutaminyl-tRNA synthetase (GlnRS) but has two divergent glutamyl-tRNA synthetases: GluRS1 and GluRS2. Like a canonical GluRS, GluRS1 aminoacylates tRNAGlu1 and tRNAGlu2. In contrast, GluRS2 only misacylates tRNAGln to form Glu-tRNAGln. It is not clear how GluRS2 achieves specific recognition of tRNAGln while rejecting the two H. pylori tRNAGlu isoacceptors. Here, we show that GluRS2 recognizes major identity elements clustered in the tRNAGln acceptor stem. Mutations in the tRNA anticodon or at the discriminator base had little to no impact on enzyme specificity and activity.  相似文献   

17.
We have determined the nucleotide sequences of the glutamine transfer RNAs that are coded by wild-type and psu2+ ochre-suppressor strains of bacteriophage T4. The two transfer RNAs have the same sequence except for their anticodons, where NUG in the wild-type species is mutated to NUA in the psu2+ species (N is a modified residue of U). This mutation is believed to confer suppressor activity on the psu2+ glutamine tRNA. Three mutants derived from psu2+ by loss of suppressor activity have been characterized with respect to their sequence alterations. Each mutant specifies a transfer RNA differing from the psu2+ species by a nucleotide substitution that occupies a base-paired region in the cloverleaf arrangement of the molecule. The mutants synthesize a reduced amount of tRNA that is defective in nucleotide modifications and processing at the 5′ and 3′ termini.  相似文献   

18.
Intron-containing tRNA genes are exceptional within nuclear plant genomes. It appears that merely two tRNA gene families coding for tRNATyr G A and elongator tRNAMet CmAU contain intervening sequences. We have previously investigated the features required by wheat germ splicing endonuclease for efficient and accurate intron excision from Arabidopsis pre-tRNATyr. Here we have studied the expression of an Arabidopsis elongator tRNAMet gene in two plant extracts of different origin. This gene was first transcribed either in HeLa or in tobacco cell nuclear extract and splicing of intron-containing tRNAMet precursors was then examined in wheat germ S23 extract and in the tobacco system. The results show that conversion of pre-tRNAMet to mature tRNA proceeds very efficiently in both plant extracts. In order to elucidate the potential role of specific nucleotides at the 3 and 5 splice sites and of a structured intron for pre-tRNAMet splicing in either extract, we have performed a systematic survey by mutational analyses. The results show that cytidine residues at intron-exon boundaries impair pre-tRNAMet splicing and that a highly structured intron is indispensable for pre-tRNAMet splicing. tRNA precursors with an extended anticodon stem of three to four base pairs are readily accepted as substrates by wheat and tobacco splicing endonuclease, whereas pre-tRNA molecules that can form an extended anticodon stem of only two putative base pairs are not spliced at all. An amber suppressor, generated from the intron-containing elongator tRNAMet gene, is efficiently processed and spliced in both plant extracts.  相似文献   

19.
Escherichia coli DNA and fragmented rRNA were used as a model system to study the effect of RNA fragment size in hybridization-competition experiments. Though no difference in hybridization rates was observed, the relative stabilities of the RNA/DNA hybrids were found to be largely affected by the fragment size of the RNA molecule. Intact rRNA was shown to replace shorter homologous rRNA sequences in their hybrids, the rate of the displacement being dependent on the molecular size of the RNA fragments. Hybridization-competition experiments between molecules of different lengths are expected to be complicated by the displacement reaction. The synthesis of tRNATyr-like sequences transcribed in vitro on φ80psu3+ bacteriophage DNA was measured by hybridization competition assays. Indirect competition with labelled E. coli tRNATyr hybridization revealed that the in vitro-synthesized RNA contained significant amounts of tRNATyr; these sequences could not, however, be detected by the direct competition method in which labelled in vitro-synthesized RNA competes with E. coli tRNATyr for hybridization to φ80psu3+ DNA. These contradictory results can be traced to the differences in size of the competing molecules in the hybridization-competition reaction. Indeed, in vitro-transcribed tRNATyr-like sequences, longer than mature tRNA, were found to displace efficiently E. coli tRNATyr from its hybrids with φ80psu3+ DNA. These findings explain why such sequences could not be detected by direct competition with E. coli tRNATyr.  相似文献   

20.
It has previously been shown that the single mutation E222K in glutaminyl-tRNA synthetase (GlnRS) confers a temperature-sensitive phenotype onEscherichia coli. Here we report the isolation of a pseudorevertant of this mutation, E222K/C171G, which was subsequently employed to investigate the role of these residues in substrate discrimination. The three-dimensional structure of the tRNAGln: GlnRS:ATP ternary complex revealed that both E222 and C171 are close to regions of the protein involved in interactions with both the acceptor stem and the 3′ end of tRNAGln. The potential involvement of E222 and C171 in these interactions was confirmed by the observation that GlnRS-E222K was able to mischargesupF tRNATyr considerably more efficiently than the wild-type enzyme, whereas GlnRS-E222K/C171G could not. These differences in substrate specificity also extended to anticodon recognition, with the double mutant able to distinguishsupE tRNA CUA Gln from tRNA 2 Gln considerably more efficiently than GlnRS E222K. Furthermore, GlnRS-E222K was found to have a 15-fold higher Km for glutamine than the wild-type enzyme, whereas the double mutant only showed a 7-fold increase. These results indicate that the C171G mutation improves both substrate discrimination and recognition at three domains in GlnRS-E222K, confirming recent proposals that there are extensive interactions between the active site and regions of the enzyme involved in tRNA binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号