首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteinase K-containing liposomes with highly selective membrane permeability properties were prepared. The selectivity obtained was with respect to the two substrate molecules added to the external aqueous phase of the liposomes: acetyl-L-Ala-Ala-Ala-p-nitroanilide (Ac-AAA-pNA) and succinyl-L-Ala-Ala-Ala-p-nitroanilide (Suc-AAA-pNA). The liposome-forming lipid used was POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and modulation of the membrane permeability was achieved using the detergent cholate. Proteinase K-containing mixed liposomes (PKCL) were prepared by adding cholate to preformed proteinase K-containing POPC liposomes (PKL) at a defined effective cholate/POPC molar ratio in the liposomal bilayer membrane R(e). Proteinase K was kept inside PKCL with a negligible amount of leakage into the bulk aqueous phase at R(e) < or = 0.30. At higher R(e), leakage of proteinase K was pronounced, even under conditions where POPC/cholate mixed liposomes seemed to be still intact (0.30 < R(e) < or = 0.39). At R(e) < or = 0.30, the reactivity of proteinase K in the PKCL measured with the externally added substrate Ac-AAA-pNA increased with increasing R(e), while the reactivity measured with Suc-AAA-pNA remained low, regardless of the R(e) value. This showed that externally added Ac-AAA-pNA molecules permeated the liposomal membrane more easily than Suc-AAA-pNA by modulating the membrane with cholate. Consequently, Ac-AAA-pNA was hydrolyzed in PKCL with considerably higher apparent substrate selectivity in comparison with the cases of proteinase K in PKL and free proteinase K (without liposomal encapsulation). The results obtained clearly demonstrate that the prepared PKCL can be utilized as a kind of nano-scaled bioreactor system which can take up a particular target substrate with high apparent substrate selectively from the external phase of the liposomes. Inside the liposomes, the target substrate is then converted into the corresponding products.  相似文献   

2.
The glucose oxidase-containing liposomes (GOL) were prepared by entrapping glucose oxidase (GO) in the liposomes composed of phosphatidylcholine (PC), dimyristoyl L-alpha-phosphatidylethanolamine (DMPE), and cholesterol (Chol) and then covalently immobilized in the glutaraldehyde-activated chitosan gel beads. The immobilized GOL gel beads (IGOL) were characterized to obtain a highly stable biocatalyst applicable to bioreactor. At first, the glutaraldehyde concentration used in the gel beads activation as well as the immobilizing temperature and time were optimized to enhance the immobilization yield of the GOL to the highest extent. The liposome membrane composition and liposome size were then optimized to obtain the greatest possible immobilization yield of the GOL, the highest possible activity efficiency of the IGOL, and the lowest possible leakage of the entrapped GO during the GOL immobilization. As a result, the optimal immobilization conditions were found to be as follows: the liposome composition, PC/DMPE/Chol = 65/5/30 (molar percentage); the liposome size, 100 nm; the glutaraldehyde concentration, 2% (w/v); the immobilizing temperature, 4 degrees C; and the immobilizing time, 10 h. Furthermore, the optimal IGOL prepared were characterized by its rapidly increasing effective GO activity to the externally added substrate (glucose) with increasing temperature from 20 to 40 degrees C, and also by its high stability at 40 degrees C against not only the thermal denaturation in a long-term (7 days) incubation but also the bubbling stress in a bubble column. Finally, compared to the conventionally immobilized glucose oxidase (IGO), the higher operational stability of the optimal IGOL was verified by using it either repeatedly (4 times) or for a long time (7 days) to catalyze the glucose oxidation in a small-scale airlift bioreactor.  相似文献   

3.
A catalase-containing liposome (CAL) was prepared and characterized in terms of stability during storage and catalysis of the decomposition of hydrogen peroxide (H2O2) that was initially added or produced in the oxidation of glucose catalyzed by the glucose oxidase-containing liposomes (GOL). The reactors used were a test tube and an external loop airlift bubble column as the static liquid and circulating liquid flow systems, respectively. The free catalase (CA) at low concentrations was unstable during storage at 4 degrees C as a result of dissociation of the tetrameric CA subunits. On the other hand, the deactivation of the CA activity in the CAL was depressed because of the high CA concentration in the CAL liposome. The CAL effectively catalyzed the repeated decompositions at 25 degrees C with 10 mM H2O2 added initially, whereas the free CA was significantly deactivated during the repeated reactions. The high stability of the CAL was attributed to the moderately depressed reactivity, which was essentially derived from the diffusion limitation of the CAL membrane to H2O2 in the liquid bulk. In the GOL-catalyzed prolonged oxidation of 10 mM glucose at 40 degrees C in the static liquid in a test tube, both the free CA and CAL could continuously catalyze the decomposition of H2O2 produced. This was because the glucose oxidation rate was small due to the limited reactivity of the GOL to glucose with its low permeability through the GOL membrane. In the glucose oxidation catalyzed by the GOL with the free CA or the CAL in the airlift, much larger oxidation rates were observed compared to those in the test tube because the permeability of the GOL membrane to glucose was increased in the gas-liquid two phase flow in the airlift. The GOL/CAL system in the airlift operated in an acidic condition, which was preferable to the GO activity, gave the largest oxidation rate with negligible accumulation of the H2O2 produced. On the other hand, the GOL/free CA system gave an oxidation rate smaller than that of the GOL/CAL system even under the acidic condition due to an unfavorable interaction of the free CA molecules with the GOL membranes leading to the decreased reactivity of the GOL.  相似文献   

4.
The reactivity of immobilized glucose oxidase-containing liposomes (IGOL) prepared in our previous work (Wang et al. [2003] Biotechnol Bioeng 83:444-453) was considerably improved here by incorporating the channel protein OmpF from Escherichia coli into the liposome membrane as well as by entrapping inside the liposome's aqueous interior not only glucose oxidase (GO), but also catalase (CA), both from Aspergillus niger. CA was used for decomposing the hydrogen peroxide produced in the glucose oxidation reaction inside the liposomes. The presence of OmpF enhanced the transport of glucose molecules from the exterior of the liposomes to the interior. In a first step of the work, liposomes containing GO and CA (GOCAL) were prepared and characterized. A remarkable protection effect of the liposome membrane on CA inside the liposomes at 40 degrees C was found; the remaining CA activity at 72 h incubation was more than 60% for GOCAL, while less than 20% for free CA. In a second step, OmpF was incorporated into GOCAL membranes, leading to the formation of OmpF-embedded GOCAL (abbreviated GOCAL-OmpF). The activity of GO inside GOCAL-OmpF increased up to 17 times in comparison with that inside GOCAL due to an increased glucose permeation across the liposome bilayer, without any leakage of GO or CA from the liposomes. The optimal system was estimated to contain on average five OmpF molecules per liposome. Finally, GOCAL-OmpF were covalently immobilized into chitosan gel beads. The performance of this novel biocatalyst (IGOCAL-OmpF) was examined by following the change in glucose conversion, as well as by following the remaining GO activity in successive 15-h air oxidations for repeated use at 40 degrees C in an airlift bioreactor. IGOCAL-OmpF showed higher reactivity and reusability than IGOL, as well as IGOL containing OmpF (IGOL-OmpF). The IGOCAL-OmpF gave about 80% of glucose conversion even when the catalyst was used repeatedly four times, while the corresponding conversions were about 60% and 20% for the IGOL and IGOL-OmpF, respectively. Due to the absence of CA, IGOL-OmpF was less stable and resulted in drastically inhibited GO.  相似文献   

5.
Glucose oxidase (GO) was encapsulated in the liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) to increase the enzyme stability through its decreased inhibition because of hydrogen peroxide (H(2)O(2)) produced in the glucose oxidation. The GO-containing liposomes (GOLs) were completely free of the inhibition even in the complete conversion of 10 mM glucose at 25 degrees C because the H(2)O(2) concentration was kept negligibly low both outside and inside liposomes throughout the reaction. It was interestingly revealed that the H(2)O(2) produced was decomposed not only by a slight amount of catalase originally contained in the commercially available GO but also by the lipid membranes of GOL. As compared to the GOL-catalyzed reaction, the free GO-catalyzed reaction more highly accumulated H(2)O(2) because of the more rapid glucose conversion despite containing free catalase, leading to the completely inhibited GO before reaching a sufficient glucose conversion. This suggested that only the liposomal catalase could continue to catalyze the H(2)O(2) decomposition. The effect of the glucose oxidation rate, i.e., the H(2)O(2) production rate on the liposomal GO inhibition, was also examined employing the various GOLs with different permeabilities to glucose present in their external phase. It was concluded that the liposomal GO free of the inhibition could be obtained when the GOL-catalyzed H(2)O(2) formation rate was limited by such a suitable lipid bilayer as POPC membrane so that the rate was well-balanced with the sum of the above two H(2)O(2) decomposition rates. The highly stable GOL obtained in the present paper was shown to be a useful biocatalyst for the prolonged glucose oxidation.  相似文献   

6.
A method has been developed for identifying the step in a detergent-mediated reconstitution procedure at which an integral membrane protein can be associated with phospholipids to give functional proteoliposomes. Large liposomes prepared by reverse-phase evaporation were treated with various amounts of the detergents Triton X-100, octyl glucoside, or sodium cholate as described in the preceding paper [Paternostre, M.-T., Roux, M., & Rigaud, J. L. (1988) Biochemistry (preceding paper in this issue)]. At each step of the solubilization process, we added bacteriorhodopsin, the light-driven proton pump from Halobacterium halobium. The protein-phospholipid detergent mixtures were then subjected to SM2 Bio-Beads treatments to remove the detergent, and the resulting vesicles were analyzed with respect to protein insertion and orientation in the membrane by freeze-fracture electron microscopy, sucrose density gradients, and proton pumping measurements. The nature of the detergent used for reconstitution proved to be important for determining the mechanism of protein insertion. With sodium cholate, proteoliposomes were formed only from ternary phospholipid-protein-detergent micelles. With octyl glucoside, besides proteoliposome formation from ternary mixed micelles, direct incorporation of bacteriorhodopsin into preformed liposomes destabilized by saturating levels of this detergent was observed and gave proteoliposomes with optimal proton pumping activity. With Triton X-100, protein insertion into destabilized liposomes was also observed but involved a transfer of the protein initially present in phospholipid-Triton X-100-protein micelles into Triton X-100 saturated liposomes. Our results further demonstrated that protein orientation in the resulting proteoliposomes was critically dependent upon the mechanism by which the protein was incorporated.  相似文献   

7.
The mechanisms governing the solubilization by Triton X-100, octyl glucoside, and sodium cholate of large unilamellar liposomes prepared by reverse-phase evaporation were investigated. The solubilization process is described by the three-stage model previously proposed for these detergents [Lichtenberg, D., Robson, R.J., & Dennis, E.A.(1983) Biochim. Biophys. Acta 737, 285-304]. In stage I, detergent monomers are incorporated into the phospholipid bilayers until they saturate the liposomes. At that point, i.e., stage II, mixed phospholipid-detergent micelles begin to form. By stage III, the lamellar to micellar transition is complete and all the phospholipids are present as mixed micelles. The turbidity of liposome preparations was systematically measured as a function of the amount of detergent added for a wide range of phospholipid concentrations (from 0.25 to 20 mM phospholipid). The results allowed a quantitative determination of RSat, the effective detergent to lipid molar ratios in the saturated liposomes, which were 0.64, 1.3, and 0.30 for Triton X-100, octyl glucoside, and sodium cholate, respectively. The corresponding ratios in the mixed micelles, RSol, were 2.5, 3.8, and 0.9 mol of detergent/mol of phospholipid. The monomer concentrations of the three detergents in the aqueous phase were also determined at the lamellar to micellar transitions (0.18, 17, and 2.8 mM, respectively). These transitions were also investigated by 31P NMR spectroscopy, and complete agreement was found with turbidity measurements. Freeze-fracture electron microscopy and permeability studies in the sublytic range of detergent concentrations indicated that during stage I of solubilization detergent partitioning between the aqueous phase and the lipid bilayer greatly affects the basic permeability of the liposomes without significantly changing the morphology of the preparations. A rough approximation of the partition coefficients was derived from the turbidity and permeability data (K = 3.5, 0.09, and 0.11 mM-1 for Triton X-100, octyl glucoside, and sodium cholate, respectively). It is concluded that when performed systematically, turbidity measurements constitute a very convenient and powerful technique for the quantitative study of the liposome solubilization process by detergents.  相似文献   

8.
The choline-transport system has been solubilized from synaptic plasma membrane by using either sodium cholate or Triton X-100, and re-incorporated into unilamellar liposomes by using the technique of cholate dialysis. The criteria of choline-transport activity were saturability by excess choline, inhibition by hemicholinium-3, and trans-activation (i.e. stimulation of the uptake of [3H]choline into liposomes by preloading them with non-radioactive choline). Liposomes prepared from detergent extracts of synaptic plasma membrane and added lipid showed uptake of [3H]choline fulfilling these three criteria. Data on choline-transport activity of liposomes at various choline concentrations could be interpreted as implying that the transport system has two apparent Km values (2-5 microM and 50-100 microM), or alternatively that the system is composed of two or more negatively co-operating subunits (or units). It was shown by t.l.c. that the transported radioactivity was choline and that it was not significantly acetylated. Replacing Na+ by K+ on the outside of these liposomes partially inhibited uptake, and the formation of a potential gradient (inside negative) with valinomycin increased the total but not the saturable components of uptake when liposomes were prepared in a K+ medium, and transferred to an Na+ medium.  相似文献   

9.
Summary The effects produced by the detergents Triton X-100, sodium dodecylsulphate and sodium cholate on sarcoplasmic reticulum vesicles have been comparatively studied. In all cases, maximal effects are found 5 min after detergent addition. Triton X-100 and SDS are approximately ten times more effective than cholate in protein and phospholipid solubilization. Both Triton X-100 and SDS maintain Ca++ accumulation in SR vesicles at detergent concentrations below 10–3 M; higher concentrations cause a strong inhibition. On the other hand, cholate produces a gradual inhibition of Ca++ accumulation in the concentration range between 10–4 M and 2.5 × 10–2 M. Triton X-100 and SDS produce a gradual solubilization of the specific Ca++-ATPase activity up to a 10–3 M detergent concentration, above which a strong inactivation occurs, while the enzyme solubilization increases with the presence of cholate in the whole concentration range under study. The different behaviour of sodium cholate, when compared to SDS or Triton X-100, is discussed in relation to the surfactant molecular structures. The possibility of membrane lysis and reassembly in the presence of some detergents is also considered.Abbreviations SR sarcoplasmic reticulum - SDS sodium dodecylsulphate - DTT dithiothreitol - EGTA ethyleneglycoltetraacetate - PEP phosphoenolpyruvate  相似文献   

10.
The detergent effects of lysolecithin, Triton X-100, and cholate were compared in the calcium transport ATPase system of sarcoplasmic reticulum. Lysolecithin was found to act as a detergent in releasing the ATPase for subsequent purification, but did not strongly promote exchange of membrane lipid classes. Both Triton and cholate promoted exchange of membrane phospholipid. Higher concentrations of Triton and cholate inhibited the ATPase activity, but the enzyme could be reactivated by addition of phospholipid or fatty acid directly to the mixture. Under these conditions, reactivation depended on the presence of lipid acyl chains, rather than specific head groups. It was also found that Triton could be readily removed from the mixture by passing the enzyme through a hydrophobic bead column. Calcium transport was reactivated in the resulting membranes.  相似文献   

11.
Four detergents have been compared for identification of the Plasmodium knowlesi variant antigen on infected erythrocytes by immunoprecipitation analysis. Erythrocytes infected with late trophozoite and schizont forms of cloned asexual parasites were labeled by lactoperoxidase-catalyzed radioiodination and extracted either with the anionic detergents sodium dodecyl sulfate (SDS) or cholate, the neutral detergent Triton X-100, or the zwitterion 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS). After addition of Triton X-100 to SDS and cholate extracts, parallel immunoprecipitations of the four extracts were performed using rhesus monkey antisera of defined agglutinability. Identical results were obtained with clone Pk1(A+), which has 125I-variant antigens of Mr 210,000 and 190,000, and with clone Pk1(B+)1+, which has variant antigens of Mr 200,000-205,000. SDS yielded maximal levels of immunoprecipitated 125I-variant antigens. Variant-specific immunoprecipitation was detected in some experiments with Triton X-100 and cholic acid but with significantly lower recovery than with SDS. CHAPS extraction did not yield the variant antigens on immunoprecipitation. The variant antigens could also be identified in Triton X-100-insoluble material by subsequent extraction with SDS, indicating that failure to recover these proteins in the Triton X-100-soluble fraction is due to failure of this detergent to extract the variant antigens rather than to degradation during extraction. We suggest that the 125I-variant antigens either have a structure that renders them intrinsically insoluble in Triton X-100, cholate, or CHAPS, or that they are associated in some way with host cell membrane components that also resist solubilization by these detergents.  相似文献   

12.
Cholinephosphotransferase (CDPcholine: 1,2-diacylglycerol cholinephosphotransferase, EC 2.7.8.2), which catalyzes the terminal step in phosphatidylcholine synthesis via the CDPcholine pathway, is present in sarcoplasmic reticulum from rabbit skeletal muscle (Cornell, R. and MacLennan, D.H. (1985) Biochim. Biophys. Acta 835, 567-576). The conditions for solubilization and reconstitution of this enzyme were investigated as a preliminary step towards its eventual purification. The activity was not released by treatment of membranes with 1 M KCl, but was solubilized after dissolution of membranes with detergents. Cholinephosphotransferase was inactivated by cholate, deoxycholate, Triton X-100, octylglucoside, Tween-20 or SDS at concentrations which solubilize the membrane. However, the activity could be fully recovered after reconstituting the membrane by adding excess lipid (soybean) and removing detergent by gel filtration, dialysis or by absorption to Bio-Beads. When the membrane was solubilized with octylglucoside or cholate at weight ratios of detergent: membrane protein of at least 10, the activity was irreversibly lost unless stabilizers were added with detergent. The substrate diacylglycerol and glycerol were effective stabilizers.  相似文献   

13.
The cationic large unilamellar mixed liposomes from 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and didodecyldimethylammonium bromide (DDAB) or dioctadecyldimethylammonium bromide (DODAB) were prepared. The influence of the addition of Triton X-100 (TX-100) or octaethylene glycol mono-n-dodecylether (C12E8) on the membrane integrity was investigated turbidimetrically. The stability of the liposomal systems was estimated by monitoring fluorimetrically at 25 °C the rate of spontaneous and surfactant-induced release of entrapped 5(6)-carboxyfluorescein (CF). In order to evaluate the interaction of the cationic DODAB guest with the host POPC membrane, the main phase transition temperatures (Tm) were determined by electron paramagnetic resonance spectroscopy (EPR). All the results obtained show that the presence of DODAB and DDAB stabilizes the POPC liposomes. The extent of stabilization depends on the concentration and nature of the cationic guest.  相似文献   

14.
The increased use of plant sterols as cholesterol-lowering agents warrants further research on the possible effects of plant sterols in membranes. In this study, the effects of the incorporation of cholesterol, campesterol, beta-sitosterol and stigmasterol in phospholipid bilayers were investigated by differential scanning calorimetry (DSC), resonance energy transfer (RET) between trans parinaric acid (tPA) and 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-PC), and Triton X-100-induced solubilization. The phospholipids used were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), D-erythro-N-palmitoyl-sphingomyelin (PSM), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). In DSC experiments, it was demonstrated that the sterols differed in their effect on the melting temperatures of both the sterol-poor and the sterol-rich domains in DPPC and PSM bilayers. The plant sterols gave rise to lower temperatures of both transitions, when compared with cholesterol. The plant sterols also resulted in lower transition temperatures, in comparison with cholesterol, when sterol-containing DPPC and PSM bilayers were investigated by RET. In the detergent solubilization experiments, the total molar ratio between Triton X-100 and POPC at the onset of solubilization (R(t,sat)) was higher for bilayers containing plant sterols, in comparison with membranes containing cholesterol. Taken together, the observations presented in this study indicate that campesterol, beta-sitosterol and stigmasterol interacted less favorably than cholesterol with the phospholipids, leading to measurable differences in their domain properties.  相似文献   

15.
The Ca(2+)-ATPase from skeletal muscle sarcoplasmic reticulum was reconstituted into sealed phospholipid vesicles using the method recently developed for bacteriorhodopsin (Rigaud, J.L., Paternostre, M.T. and Bluzat, A. (1988) Biochemistry 27, 2677-2688). Liposomes prepared by reverse-phase evaporation were treated with various amounts of Triton X-100, octyl glucoside, sodium cholate or dodecyl octa(oxyethylene) glycol ether (C12E8) and protein incorporation was studied at each step of the liposome solubilization process by each of these detergents. After detergent removal by SM-2 Bio-Beads the resulting vesicles were analyzed with respect to protein incorporation by freeze-fracture electron microscopy, sucrose density gradients and Ca2+ pumping measurements. The nature of the detergent used for reconstitution proved to be important for determining the mechanism of protein insertion. With octyl glucoside, direct incorporation of Ca(2+)-ATPase into preformed liposomes destabilized by saturating levels of this detergent was observed and gave proteoliposomes homogeneous in regard to protein distribution. With the other detergents, optimal Ca(2+)-ATPase pumping activities were obtained when starting from Ca(2+)-ATPase/detergent/phospholipid micellar solutions. However, the homogeneity of the resulting recombinants was shown to be dependent upon the detergent used and in the presence of Triton X-100 or C12E8 different populations were clearly evidenced. It was further demonstrated that the rate of detergent removal drastically influenced the composition of resulting proteoliposomes: upon slow detergent removal from samples solubilized with Triton X-100 or C12E8, Ca(2+)-ATPase was found seggregated and/or aggregated in very few liposomes while upon rapid detergent removal compositionally homogeneous proteoliposomes were obtained with high Ca2+ pumping activities. The reconstitution process was further analyzed by centrifugation experiments and the results demonstrated that the different mechanisms of reconstitution were driven predominantly by the tendency for self-aggregation of the Ca(2+)-ATPase. A model for Ca(2+)-ATPase reconstitution was proposed which accounted for all our results. In summary, the advantage of the systematic studies reported in this paper was to allow a rapid and easy determination of the experimental conditions for optimal detergent-mediated reconstitution of Ca(2+)-ATPase. Proteoliposomes prepared by the present simple method exhibited the highest Ca2+ pumping activities reported to date in Ca(2+)-ATPase reconstitution experiments performed in the absence of Ca2+ precipitating agents.  相似文献   

16.
Pig kidney brush-border membrane vesicles were solubilized using a final concentration of 1% Triton X-100, found optimal for quantitative reconstitution of d-glucose transport into liposomes. Using reconstituted proteoliposomes, selective permeability towards d-glucose compared to other sugars tested was shown as well as the main features of d-glucose transport in native membranes, namely sodium dependence and phlorizin inhibition of d-glucose accumulation. After removal of Triton X-100 from the detergent extract, some membrane proteins (about 40%), which are insoluble in the absence of detergent, were isolated. Among these proteins resolubilized by 1% Triton X-100, the component catalyzing the d-glucose transport was located by gel-filtration chromatography separation, using reconstitution of transport as the assay. The active fraction displayed a molecular size of 50 Å; when analyzed on SDS polyacrylamide gel electrophoresis, it contained one major protein subunit with an apparent molecular weight close to 65 000. We conclude that this protein fraction is involved in d-glucose transport by renal brush borders.  相似文献   

17.
Sendai virus envelopes have been a useful tool in studying the mechanism of membrane-membrane fusion and have served as a vehicle for introducing foreign molecules (e.g., membrane proteins) into recipient cells. Reconstituted Sendai virus envelopes are routinely obtained following solubilization of virus particles with Triton X-100. This detergent has a low critical micellar concentration which precludes it from being the best detergent of choice in reconstitution studies. Nevertheless, it has remained in use since other detergents such as sodium deoxycholate and sodium cholate rendered the resultant vesicles inactive. Triton X-100 may be suboptimal for studies of some proteins that need be coreconstituted with the viral envelopes. Thus, alternative advantageous detergents, which retain the envelope fusogenic activity, have been sought. In this study we show that the synthetic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps) effectively solubilizes the Sendai virions, and that the vesicles formed by simple reconstitution protocols appear structurally and biochemically similar to those obtained with Triton X-100. The resultant vesicles retain functional integrity as assessed in both fusion and hemolysis assays. This protocol seems to be useful in sendai envelope-mediated reimplantation of Fc epsilon receptors into the plasma membranes of rat basophilic leukemia cells.  相似文献   

18.
Equilibrium and kinetic aspects of Triton X-100 adsorption onto hydrophobic Bio-Beads SM2 were investigated in detail using the batch procedure originally described by Holloway, P.W. (1973) Anal. Biochem. 53, 304-308. The results demonstrated the importance of the initial detergent concentration, the amount of beads, the commercial source of the detergent, the temperature and the presence of phospholipids in determining the rates of Triton X-100 adsorption onto Bio-Beads. One of the main findings was that Bio-Beads allowed the almost complete removal of Triton X-100, whatever the initial experimental conditions. It was shown that monomeric as well as micellar detergent could be adsorbed and that a key factor in determining the rate of detergent removal was the availability of the free bead surface. Rates of detergent removal were found to be linearly related to the amount of beads even for bead concentrations above those sufficient to remove all the detergent initially present. Adsorptive capacity of phospholipids onto Bio-Beads SM2 was also analyzed and found to be much smaller (2 mg lipid per g of wet beads) than that of Triton X-100 (185 mg TX 100 per g of wet beads). A more general aspect of this work was that the use of Bio-Beads SM2 provided a convenient way for varying and controlling the time course of Triton X-100 removal. The method was further extended to the formation of liposomes from phospholipid-Triton X-100 micelles and the size of the liposomes was found to be critically dependent upon the rate of detergent removal. A general procedure was described to prepare homogeneous populations of vesicles. Freeze-fracture electron microscopy and permeability studies indicated that the liposomes thus obtained were unilamellar, relatively large and impermeable. Noteworthy, this new procedure was shown to be well suited for the reconstitution of different membrane transport proteins such as bacteriorhodopsin, Ca2(+)-ATPase and H(+)-ATPase.  相似文献   

19.
Escherichia coli phage-shock protein A (PspA), a 25.3 kDa peripheral membrane protein, is induced under the membrane stress conditions and is assumed to help maintain membrane potential. Here, we report that purified PspA, existing as a large oligomer, is really able to suppress proton leakage of the membranes. This was demonstrated for membrane vesicles prepared from the PspA-lacking E. coli mutants, and for membrane vesicles damaged by ethanol and Triton X-100 prepared from the mutant and the wild-type cells. PspA also suppressed proton leakage of damaged liposomes made from E. coli total lipids. Furthermore, we found that PspA bound preferentially to liposomes containing phosphatidylserine and phosphatidylglycerol. All these effects were not observed for monomer PspA that was prepared by refolding of urea-denatured PspA. These results indicate that oligomers of PspA bind to membrane phospholipids and suppress proton leakage.  相似文献   

20.
(1) Investigation of the relationship between the detergent concentration and steady-state and pre-steady-state kinetics of cytochrome c oxidase proved to be a valid approach in the study of protein-detergent interaction. (2) Laurylmaltoside, sodium cholate and Triton X-100 influenced the kinetics of cytochrome c oxidase cooperatively at detergent concentrations near their critical micelle concentration. This mode of interaction reflects disaggregation of the oxidase as a result of cooperative binding of the detergent. (3) Addition of increasing concentrations of Tween-80 to the aggregated enzyme caused a more gradual decrease in aggregation of the oxidase, which did not result in a change in activity of the enzyme. This suggests that aggregation of cytochrome c oxidase occurs in a highly regular manner in which no catalytic sites are shielded off. (4) Oxidase aggregates present at detergent concentrations below the critical micelle concentration of laurylmaltoside and Triton X-100 showed considerable activity. Their kinetics were equal to those of the oxidase in Tween-80, suggesting that the protein molecules are aligned in a similar way in all oligomers. Aggregates present in low concentrations of sodium cholate showed turnover rates that were twice as low as those observed with other aggregates. (5) Solubilisation of the oxidase by sodium cholate or Triton X-100 resulted in almost complete inhibition of enzymic activity, whereas the association rate of ferrocytochrome c was almost equal to that found for monomeric oxidase in laurylmaltoside. These results are in agreement with a mixed-type inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号