首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the influence of urea on the properties of the rat liver glucocorticoid receptor (GR). A 1-h incubation of hepatic cytosol with 1-3 M urea at 0 or at 23 degrees C caused a progressive decrease in the steroid binding efficiency of GR. Urea treatment of cytosol incubated with 20 nM [3H]triamcinolone acetonide caused transformation of glucocorticoid-receptor complexes (GRc) and resulted in an increase in the binding of GRc to DNA-cellulose and ATP-Sepharose. The transforming effect was maximal with 2.5 M urea at 0 degrees C for 1 h, and it caused a shift in the rate of sedimentation of the 9 S untransformed GRc to a 4 S form, similar to that observed upon incubation of the cytosol GRc at 23 degrees C. This 9 to 4 S transformation could also be observed in the presence of Na2MoO4. The Stokes radii of the GRc eluted from a Bio-Gel-A-0.5m agarose column were determined to be 5.9 and 4.9 nm in the absence and presence of 2.5 M urea. The aqueous two-phase partitioning analysis revealed a significant change in surface properties of GR following urea treatment; the observed partition coefficient values (cpm upper phase/bottom phase) were 0.022, 0.208, and 0.60 for GRc, GRc + 23 degrees C, and GRc + 2.5 M urea, respectively. Furthermore, the urea treatment rendered the GRc less negatively charged, forcing their appearance in the flow-through fractions of a DEAE-Sephacel column. These results suggest that urea is a potent in vitro modulator of the physicochemical behavior of GR, influencing both the steroid binding and the process of receptor transformation.  相似文献   

2.
We have identified an endogenous regulator of the glucocorticoid receptor following fractionation of dialyzed rat liver cytosol on DEAE-cellulose. The macromolecular regulator, purified approximately 20-fold as judged by Lowry-reactive material, inhibits activation of glucocorticoid-receptor complexes when assayed by DNA-cellulose binding and by chromatography on DEAE-cellulose minicolumns. In addition the active DEAE-cellulose fraction stabilizes the unoccupied glucocorticoid receptor against heat inactivation. Evidence is presented that the observed inhibition of activation by the active DEAE-cellulose fraction is not due to concentration of cytosolic proteases or RNA. The inhibitory molecule in the active fraction is not stable to heating at 90 degrees C (15 min) and is partially inactivated at 45 degrees C (15-60 min).  相似文献   

3.
Aliquots of rat liver cytosol glucocorticoid-receptor complexes (GRc) were transformed by an incubation with 8-10 mM ATP at 0 degrees C and were compared with those transformed by an exposure to 23 degrees C. The extent of receptor transformation was measured by chromatography of the samples over columns of DEAE-Sephacel. The ATP-transformed complexes, like those which were heat-transformed, exhibited lower affinity for the positively charged ion-exchange resin and were eluted with 0.12 M KCl (peak-I): the nontransformed complexes appeared to possess higher affinity and required 0.21 M KCl (peak II) for their elution. As expected, the receptor in the peak-I exhibited the DNA-cellulose binding capacity and sedimented as 4S in sucrose gradients. Peak II contained an 8-9S glucocorticoid receptor (GR) form that showed reduced affinity for DNA-cellulose. Presence of sodium tungstate (5 mM) prevented both heat and ATP transformation of the GRc resulting in the elution of the complexes in the region of nontransformed receptors. When parallel experiments were performed, binding of the cytosol GRc to rat liver nuclei or DNA-cellulose was seen to increase 10-15 fold upon transformation by heat or ATP: tungstate treatment blocked this process completely. The transformed and nontransformed GRc were also differentially fractionated by (NH4)2SO4: tungstate-treated (nontransformed) receptor required higher salt concentration and was precipitated at 55% saturation. In addition, the GRc could be extracted from DNA-cellulose by an incubation of the affinity resin with sodium tungstate resulting in approximately 500-fold purification of the receptor with a 30% yield. These studies show that the nontransformed, and the heat-, salt-, and ATP-transformed GRc from the rat liver cytosol can be separated chromatographically, and that the use of tungstate facilitates the resolution of these different receptor forms. In addition, extraction of the receptor from DNA-cellulose by tungstate provides another new and efficient method of partial receptor purification.  相似文献   

4.
Characterization of glucocorticoid receptor in HeLa-S3 cells   总被引:1,自引:0,他引:1  
H Hoschützky  O Pongs 《Biochemistry》1985,24(25):7348-7356
Glucocorticoid receptor of the human cell line HeLa-S3 has been characterized and has been compared to rat and to mouse glucocorticoid receptors. If HeLa cells were lysed in the absence of glucocorticoid, glucocorticoid receptor was isolated in a nonactivated form, which did not bind to DNA-cellulose. If HeLa cells were preincubated with glucocorticoid, glucocorticoid receptor was isolated in an activated, DNA-binding form. HeLa cell glucocorticoid receptor bound [3H]triamcinolone acetonide with a dissociation constant (KD = 1.3 nM at 0 degrees C) that was similar to those of mouse and rat glucocorticoid receptors. Similarly, the relative binding affinities for steroid hormones decreased in the order of triamcinolone acetonide greater than dexamethasone greater than promegestone greater than methyltrienolone greater than aldosterone greater than or equal to moxestrol. Nonactivated and activated receptors were characterized by high-resolution anion-exchange chromatography (FPLC), DNA-cellulose chromatography, and sucrose gradient centrifugation. Human, mouse, and rat nonactivated glucocorticoid receptors had very similar ionic and sedimentation properties. Activated glucocorticoid receptors were eluted at similar salt concentrations from DNA-cellulose columns but at different salt concentrations from the FPLC column. A monoclonal mouse anti-rat liver glucocorticoid receptor antibody [Westphal, H.M., Mugele, K., Beato, M., & Gehring, U. (1984) EMBO J. 3, 1493-1498] did not cross-react with HeLa cell glucocorticoid receptor. Glucocorticoid receptors of HeLa, HTC, and S49.1 cells were affinity labeled with [3H]dexamethasone and with [3H]dexamethasone 21-mesylate. The molecular weights of [3H]dexamethasone 21-mesylate labeled glucocorticoid receptors (MT 96 000 +/- 1000) were undistinguishable by polyacrylamide gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The unactivated molybdate-stabilized glucocorticoid receptor (GcR) was purified from rat kidney cortex cytosol (RKcC) by using a modification of the procedure previously described by this laboratory for rat hepatic receptor. The purification includes affinity chromatography, gel filtration, and ion-exchange chromatography. The final preparation (approximately 1000-fold pure as determined from specific radioactivity) was used in subsequent physicochemical and functional analyses. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a single heavily Coomassie-stained band at 90 kilodaltons. Density gradient ultracentrifugation indicated a sedimentation coefficient of 10.5 +/- 0.05 S (n = 2). Chromatography on an analytical gel filtration column produced a Stokes radius (Rs) of 6.4 +/- 0.07 nm (n = 5). The Rs was unchanged when the molybdate-stabilized GcR was analyzed in the presence of 400 mM KCl or when analyzed in the unpurified (cytosolic) state. In contrast, the hepatic GcR was observed to exist as a larger form in cytosol (7.7 +/- 0.2 nm). Following purification, or upon gel filtration analysis under hypertonic conditions, the Rs was similar to that of the unpurified RKcC GcR. Following removal of molybdate from RKcC GcR and thermal activation (25 degrees C/30 min), DNA-cellulose binding increased 1.5-2-fold over the unheated control. Addition of RKcC or hepatic cytosol (endogenous receptors thermally denatured at 90 degrees C/30 min or presaturated with 10(-7) M radioinert ligand) during thermal activation increased DNA-cellulose binding an additional 2-6-fold beyond the heated control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Glucocorticoids act synergistically with insulin-like growth factor I (IGF-I) to stimulate DNA synthesis and replication of cultured human fibroblasts. In the present study, we further define glucocorticoid and IGF-I interactive effects on human fibroblast metabolism and growth. IGF-I stimulated dose-dependent increases in early metabolic events. Half-maximal effectiveness was seen at 5–8 ng/ml IGF-I, with mean maximal responses of 1.5-, 2-, and 6-fold for [3H]2-deoxyglucose uptake, [14C]glucose incorporation, and [14C]aminoisobutyric acid (AIB) uptake, respectively. A 48-hour preincubation with 10?7 M dexamethasone markedly enhanced both the sensitivity and maximal effectiveness of IGF-I stimulation of AIB uptake. In contrast, dexamethasone had no effect on IGF-I-stimulated glucose uptake and utilization. Maximum specific binding of [125I]IGF-I to fibroblast monolayers was identical in ethanol control and glucocorticoid-treated cells, with 50% displacement at ~5 ng/ml IGF-I. In addition to its synergism with IGF-I, preincubation with dexamethasone augmented insulin and epidermal growth factor (EGF) stimulation of [3H]thymidine incorporation; dexamethasone had no effect on platelet-derived growth factor or fibroblast growth factor action. Two-dimensional gel electrophoresis identified two specific glucocorticoid-induced proteins in human fibroblast cell extracts with molecular weights of 45K and 53K and pls of 6.8 and 6.3, respectively. These data indicate that IGF-I receptor-mediated actions in human fibroblasts are differentially modulated by glucocorticoids. Glucocorticoids are synergistic with IGF-I in stimulating mitogenesis and amino acid uptake, without having any apparent effect on IGF-I-stimulated glucose metabolism. Glucocorticoid enhancement of growth factor bioactivity may involve modulation of a regulatory event in the mitogenic signaling pathway subsequent to cell surface receptor activation. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Treatment of rat liver cytosol containing temperature-transformed, [3H]dexamethasone-bound receptors at 0 degree C with the sulfhydryl-modifying reagent methyl methanethiosulfonate (MMTS) inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol (DTT). When cytosol containing untransformed receptors is heated at 25 degrees C in the presence of MMTS, the 90-kDa heat shock protein dissociates from the receptor in the same manner as in the absence of MMTS, and the receptor will bind to DNA-cellulose if DTT is added subsequently at 0 degree C. These observations are consistent with the conclusion of Bodwell et al. (Bodwell, J. E., Holbrook. N. J. and Munck, A. (1984) Biochemistry 23, 1392-1398) that sulfhydryl moieties on the receptor are absolutely required for the receptor to bind to DNA, and they show that the sulfhydryl-modifying reagent does not inhibit the temperature-mediated dissociation of the heteromeric receptor complex that accompanies transformation to the DNA-binding state. When steroid-receptor complexes that are prebound to DNA-cellulose are exposed to MMTS, the steroid rapidly dissociates, but the receptor remains bound to DNA. Thus, the presence of steroid is not required for the receptor to remain bound to DNA in a high affinity manner. Treatment of cytosol containing transformed glucocorticoid-receptor complexes at 0 degrees C with 20 mM hydrogen peroxide also inactivates the DNA-binding activity of the receptor. The peroxide-induced inactivation is reversed by DTT. Incubation of rat liver cytosol containing untransformed glucocorticoid-receptor complexes at 25 degrees C with hydrogen peroxide prevents their transformation to the DNA-binding form as shown by their inability to bind to DNA-cellulose after addition of DTT. The presence of peroxide during heating of the cytosol also prevents dissociation of the receptor complex as assayed both by reduction in sedimentation value of the receptor and by dissociation of the 90-kDa heat shock protein from the steroid-binding protein. These results strongly suggest that critical sulfur moieties in the receptor complex must be in a reduced form for the temperature-mediated dissociation of the receptor to occur.  相似文献   

8.
The possible reversibility of pH induced activation of the glucocorticoid-receptor complex was studied. Generally, this was accomplished by activating rat liver cytosol at pH 8.5 (15 degrees C, 30 min), and then returning it to pH 6.5 for a second incubation (15 degrees C, 30 min). Activation was quantitated by measuring the binding of [3H]triamcinolone acetonide [( 3H]TA)-receptor complexes to DNA-cellulose. When cytosol was incubated at pH 6.5, only 4.1% of the [3H]TA-receptor complexes bound to DNA-cellulose. However, 39.2% of the complexes bound when the cytosol was pH activated. When pH activation was followed by a second incubation at pH 6.5, 47.0% of the steroid-receptor complexes bound. Thus, according to the DNA-cellulose binding assay, pH induced activation was irreversible. In order to visualize both activated and unactivated [3H]TA-receptor complexes during this process, diethylaminoethyl (DEAE)-cellulose chromatography was performed. When cytosol was incubated at pH 6.5, only 19.6% of the [3H]TA-receptor complexes were eluted in the activated form from DEAE-cellulose. However, 67.5% of the complexes were eluted in the activated form when cytosol was pH activated. When pH activation was followed by a second incubation at pH 6.5, 74.9% of the steroid-receptor complexes were eluted in the activated form. Thus, DEAE-cellulose chromatography also showed that pH induced activation was irreversible. This is the first known report that the combination of DNA-cellulose binding and DEAE-cellulose chromatography have been used to study pH induced activation of the glucocorticoid-receptor complex. By these criteria, we conclude that in vitro pH induced activation is irreversible.  相似文献   

9.
Effects of sodium tungstate on various properties of rat liver glucocorticoid receptor were examined at pH7 and pH 8. At pH 7, [3H]triamcinolone acetonide binding in rat liver cytosol preparations was completely blocked in the presence of 10--20 mM-sodium tungstate at 4 degrees C, whereas at 37 degrees C a 30 min incubation of cytosol receptor preparation with 1 mM-sodium tungstate reduced the loss of unoccupied receptor by 50%. At pH 8.0, tungstate presence during the 37 degrees C incubation maintained the steroid-binding capacity of unoccupied glucocorticoid receptor at control (4 degrees C) levels. In addition, heat-activation of cytosolic glucocorticoid-receptor complex was blocked by 1 mM- and 10 mM-sodium tungstate at pH 7 and pH 8 respectively. The DNA-cellulose binding by activated receptor was also inhibited completely and irreversibly by 5 mM-tungstate at pH 7, whereas at pH 8 no significant effect was observed with up to 20 mM-tungstate. The entire DNA-cellulose-bound glucocorticoid-receptor complex from control samples could be extracted by incubation with 1 mM- and 20 mM-tungstate at pH 7 and pH 8 respectively, and appeared to sediment as a 4.3--4.6 S molecule, both in 0.01 M- and 0.3 M-KCl-containing sucrose gradients. Tungstate effects are, therefore, pH-dependent and appear to involve an interaction with both the non-activated and the activated forms of the glucocorticoid receptor.  相似文献   

10.
1. Specific binding of [3H]dexamethasone to cytosol and the activation of bound hormone-receptor complexes were studied in the kidney of immature (3-week) and mature (26-week) Long-Evans male rats. 2. The concentration of specific binding sites was significantly higher (25%) in the kidney of immature rats as compared with mature, while dissociation constants (Kd) remain unaltered at both ages. 3. Heat activation (25 degrees C for 45 min) significantly enhanced the binding of [3H]dexamethasone-receptor complexes to DNA-cellulose and purified nuclei at both ages to the same extent. Cross-mixing experiments (i.e. binding of activated cytosol from mature rats to nuclei of immature and vice versa) gave similar results to the non-mixed groups. 4. Ca2+ activation (0 degree C for 45 min with 20 mM Ca2+) also enhanced the nuclear and DNA-cellulose binding at both ages but to a greater magnitude in immature rats. 5. Differences in the number of specific binding sites and some of the physicochemical properties of kidney glucocorticoid receptors presented here between immature and mature rats may underlie the functional changes in tissue response with age.  相似文献   

11.
With heat treatment (20 degrees C for 30 min), the glucocorticoid-receptor complex becomes 'activated' and undergoes an increase in affinity for DNA. A two-stage procedure was used to separate sequentially the rat liver glucocorticoid-receptor complex from proteins with high and low affinity for DNA. DNA-cellulose column chromatography of unheated cytosol resulted in the retention of DNA-binding proteins, but not the unactivated receptor complex. Heat treatment of the column eluate resulted in increased affinity of the receptor complex to DNA, and chromatography on DNA-cellulose then yielded receptor complex free from proteins with low affinity for DNA. Removal of DNA-binding proteins during the first chromatographic step was critically dependent on ionic conditions and the ratio of cytosol chromatographed to DNA-cellulose. A purification of 11000-fold (85% yield) was achieved by this procedure. The partially purified receptor complex was taken up by rat liver nuclei.  相似文献   

12.
The DNA-binding and physical properties of the rat liver cytosol glucocorticoid receptor were determined before and after Sephacryl S-300 filtration in the presence or absence of molybdate. Cytosol was prepared and labeled with [3H]triamcinolone acetonide in buffer containing molybdate. Prior to gel filtration, only 5 +/- 3% (mean +/- S.E.) of labeled receptors bound to DNA-cellulose. After gel filtration in the presence and absence of molybdate, the per cent of labeled receptors binding to DNA-cellulose was 57 +/- 10% and 83 +/- 1%, respectively. Nonreceptor fractions from the Sephacryl S-300 column contained a heat-stable factor which blocked receptor activation but did not block the binding of activated receptors to DNA-cellulose. The activation inhibitor eluted from the column in the region of the albumin standard, but after heating its size was considerably reduced (Mr less than 3500). Receptors activated by Sephacryl S-300 filtration underwent the same size changes in the presence or absence of molybdate. Prior to gel filtration, the S20,w of labeled receptors in the presence of molybdate was 9.2 +/- 0.2 S. After filtration in the presence and absence of molybdate, the S20,w of labeled receptors was 4.2 +/- 0.2 and 4.4 +/- 0.1 S, respectively. The Stokes radius (Rs) of labeled receptors after gel filtration in either the presence or absence of molybdate was 65 +/- 1 A. From the Rs and S20,w values, the molecular weight (Mr) of activated receptors was calculated to be 115,000 to 121,000, which was in close agreement with the Mr of affinity-labeled receptors determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

13.
Effects of aurintricarboxylic acid (ATA) were examined on the DNA binding properties of rat liver glucocorticoid-receptor complex. The DNA-cellulose binding capacity of the glucocorticoid-receptor complex was completely abolished by a pretreatment of receptor preparation with 0.1-0.5 mM ATA at 4 degrees C. The half-maximal inhibition (i.d.50) in the DNA binding of [3H]triamcinolone acetonide-receptor complex [( 3H]TARc) was observed at 130- and 40 microM ATA depending upon whether the inhibitor was added prior to or following the receptor activation. The entire DNA-cellulose bound [3H]TARc could be extracted in a concentration-dependent manner by incubation with 2-100 microns ATA. The [3H]TARc remained intact under the above conditions, the receptor in both control and ATA-treated preparations sedimented in the same region in salt-containing 5-20% sucrose gradients. The action of ATA appeared to be on the receptor and not on DNA-cellulose. The DNA-binding capacity of ATA-treated receptor preparations could be recovered upon exhaustive dialysis. The treatment with ATA did not appear to change the ionic behavior of heat activated GRc; the receptor in both control and the ATA-treated preparations showed similar elution profiles. Therefore, ATA appears to alter the binding to and dissociation of glucocorticoid-receptor complex from DNA. The use of ATA should offer a good chemical probe for analysis of the DNA binding domain(s) of the glucocorticoid receptor.  相似文献   

14.
Glucocorticoid receptors in the IM-9 human lymphoblastoid cell line were affinity labeled with [3H]dexamethasone 21-mesylate and activated to a DNA-binding form by filtration through a Bio-Gel A-1.5m column. The 90 kDa heat shock protein, HSP90, was identified by labeling IM-9 cells with 35S-methionine at both 37 degrees C and 42 degrees C and purified to near homogeneity by sequential chromatography through DE52 and hydroxyapatite. Addition of purified HSP90 to activated, affinity labeled glucocorticoid receptors in a molecular ratio of 16 to 1 inhibited the binding of the receptors to DNA-cellulose. HSP90 did not affect the binding of other proteins to DNA-cellulose, indicating that the inhibitory effect of HSP90 was specific for the glucocorticoid receptor. These results suggest that HSP90 may associate with the glucocorticoid receptor, masking its DNA-binding site and thereby inhibiting receptor interaction with DNA.  相似文献   

15.
This investigation was undertaken 1) to determine whether the increased glucocorticoid-receptor binding activities, observed in hypertrophied plantaris muscles, are associated with a reduced ability to undergo receptor activation and 2) to examine whether glucocorticoid-receptor complexes in hypertrophied muscles undergo a shift in the relative distribution of the two thermally activated receptor forms (termed binder II and corticosteroid binder IB) to a distribution that is found in slow-twitch or heart muscle types. Plantaris muscles of female adrenalectomized rats, enlarged by surgical removal of synergists, were 60% heavier and had higher glucocorticoid cytosol binding (125 +/- 14 vs. 79 +/- 8 fmol/mg protein) than these muscles of controls. Activation, which was quantitated by the ability of the steroid-receptor complex to bind to DNA, was similar in overloaded and control muscles (57 +/- 2 vs. 62 +/- 4%). Diethylaminoethyl-cellulose chromatography of activated receptors showed approximately 16% of the radioactivity appearing as binder II and 38% as binder IB in both hypertrophied and control muscles. These results show that although enlarged plantaris muscles are undergoing certain fast- to slow-twitch biochemical transformations, the activated glucocorticoid-receptor distribution does not shift to that observed in slow fibers.  相似文献   

16.
The relationship between glucocorticoid receptor subunit dissociation and activation was investigated by DEAE-cellulose and DNA-cellulose chromatography of monomeric and multimeric [3H]triamcinolone acetonide ([3H]TA)-labeled IM-9 cell glucocorticoid receptors. Multimeric (7-8 nm) and monomeric (5-6 nm) complexes were isolated by Sephacryl S-300 chromatography. Multimeric complexes did not bind to DNA-cellulose and eluted from DEAE-cellulose at a salt concentration (0.2 M KCl) characteristic of unactivated steroid-receptor complexes. Monomeric [3H]TA-receptor complexes eluted from DEAE-cellulose at a salt concentration (20 mM KCl) characteristic of activated steroid-receptor complexes. However, only half of these complexes bound to DNA-cellulose. This proportion could not be increased by heat treatment, addition of bovine serum albumin, or incubation with RNase A. Incubation of monomeric complexes with heat inactivated cytosol resulted in a 2-fold increase in DNA-cellulose binding. Unlike receptor dissociation, this increase was not inhibited by the presence of sodium molybdate. Fractionation of heat inactivated cytosol by Sephadex G-25 chromatography demonstrated that the activity responsible for the increased DNA binding of monomeric [3H]TA-receptor complexes was macromolecular. These results are consistent with a two-step model for glucocorticoid receptor activation, in which subunit dissociation is a necessary but insufficient condition for complete activation. They also indicate that conversion of the steroid-receptor complex to the low-salt eluting form is a reflection of receptor dissociation but not necessarily acquisition of DNA-binding activity.  相似文献   

17.
A majority of the untransformed glucocorticoid-receptor complexes (GRc) from rat liver cytosol sedimented in the 9S region in 5-20% sucrose gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of the cytosol at 23 degrees C, or at 0 degree C with 10 mM ATP or 0.3 M KCl caused appearance of a slower migrating (4S) form which exhibited an increased affinity toward DNA-cellulose and ATP-Sepharose. Presence of 20 mM Na2MoO4 blocked this 9S to 4S transformation of GRc. A complete conversion of the 9S to the 4S form occurred upon a 2 h incubation of GRc with 10 mM ATP at 0 degree C. Other nucleoside triphosphates (GTP, CTP, and UTP), ADP and PPi (but not AMP or cAMP) were also effective in transforming the 9S form. The heat transformation occurred in a time-dependent manner and was complete within 1 h at 23 degrees C; presence of 10 mM ATP during this 23 degrees C incubation period allowed a complete 9S to 4S alteration in 10-20 min. Addition of ATP also accelerated the rate of salt activation of the GRc; a 50% conversion to the 4S form occurred in 20 min or 3 min in the absence or the presence of 10 mM ATP during the 0 degree C incubation of GRc with 0.15 M KCl. An absolute requirement of the hormone for 9S to 4S transformation of glucocorticoid receptor (GR) was evident, as no conversion of the 9S form to the 4S form could be achieved with the ligand-free GR under any of the above conditions. Incubation of cytosol preparations at 23 degrees C or at 0 degree C with KCl or ATP caused dissociation of the GRc and reduced the steroid binding capacity of GR. Although aurintricarboxylic acid, pyridoxal 5'-phosphate, Na2MoO4, Na2WO4, o-phenanthroline, Rifamycin AF/013 and heparin inhibited the ATP-Sepharose and DNA binding of the GRc, only Na2MoO4 and Na2WO4 selectively blocked the 9S to 4S conversion. We suggest that the 9S to 4S transformation in vitro of rat liver GRc represents an acquisition of DNA and ATP-Sepharose binding ability and may involve a separation of subunits from an oligomeric receptor structure.  相似文献   

18.
Activation of the glucocorticoid-receptor complex   总被引:2,自引:0,他引:2  
A crucial step in the interaction of glucocorticoids with target cells is the activation step, which involves a conformational change in the cytoplasmic glucocorticoid-receptor protein complexes and facilitates their binding to the cell nucleus. Activation can be quantified by measuring the ability of glucocorticoid-receptor complexes to bind to polyanions, such as DNA-cellulose, and unactivated complexes can be separated from activated complexes by rapid ion exchange chromatography using diethylaminoethyl (DEAE)-Sephadex or DEAE-cellulose. Activation occurs in vivo under physiological conditions and the rate of activation of cytoplasmic glucocorticoid-receptor complexes can be enhanced in vitro by physical manipulations (elevated temperature, increased ionic strength, dilution). In vitro studies suggest that activation is a regulated process and a low molecular weight component termed modulator, which has been identified in rat hepatic cytosol, inhibits activation. Additional studies employing phosphatase inhibitors, such as molybdate, and purified calf intestinal alkaline phosphatase suggest that either the receptor protein or a regulatory component is dephosphorylated during activation. Results obtained with specific chemical probes suggest that activation results in the exposure of basic amino acid residues consisting minimally of lysine, arginine, and histidine. Pyridoxal 5'-phosphate, a specific probe for lysine residues, exerts dual effects on glucocorticoid-receptor complexes, since it stimulates the rate of activation and also inhibits the binding of previously activated complexes to nuclei or DNA-cellulose. The ability of 1,10-phenanthroline, a metal chelator, to inhibit the DNA-cellulose binding of activated complexes suggests that a metal ion(s) located at or near the DNA binding site may become exposed as a consequence of activation. Collectively, the results of these various experiments suggest that activation is a regulated biochemical phenomenon with physiological significance.  相似文献   

19.
Specific binding of [3H]dexamethasone to cytosol and the activation of bound hormone-receptor complexes were studied in the liver of immature (3 weeks old) and mature (26 weeks old) Long-Evans male rats. The concentration of specific binding sites was significantly higher (33%) in the liver of immature rats as compared to mature, while dissociation constants (Kd) remain unaltered at both ages. Heat activation (for 45 min at 25 degrees C) significantly enhances the binding of [3H]dexamethasone-receptor complexes to DNA-cellulose and purified nuclei at both the ages, with a greater magnitude in mature rats. Cross mixing experiments (i.e., binding of activated cytosol from mature rats to nuclei of immature and vice-versa) show receptor specificity. Ca2+ activation (20 mM Ca2+ for 45 min at 0 degree C) also enhances the nuclear and DNA-cellulose binding at both the ages, but to a similar extent. Differences in the number of specific binding sites and some of the physiochemical properties of glucocorticoid receptors presented here between immature and mature rats may underlie the functional changes in tissue response with age.  相似文献   

20.
The glucocorticoid receptor (GR) was partially characterized in mouse renal cytosol. A sensitive and reproducible [3H]dexamethasone binding assay suitable for use with small quantities of cytosolic protein, was developed. Studies defined the optimal equilibrium binding conditions, metabolism of [3H]dexamethasone in adult renal cytosol, specificity of binding of the GR, and molecular weight of the GR-[3H]dexamethasone complex by gel filtration chromatography. The assay was subsequently used to measure the renal GR during different stages of foetal and postnatal development, as well as in glomerular and renal tubular preparations from adult mice. An almost linear increase in GR occurred from day 13 to day 18 of gestation with levels rising from 100 to 201 fmol/mg cytosol protein; this was followed by a sharp rise in receptor concentration just after birth to 343 fmol/mg cytosol protein. Adult levels, 410-433 fmol/mg cytosol protein, were reached by 2 weeks after birth. The equilibrium dissociation constants (Kd) of the [3H]dexamethasone-receptor complex were similar in adult and in embryonic cytosols (range, 2.8-11.8 nM; mean +/- SD = 6.5 +/- 2.9 nM). Specific binding was assessed to be 3- to 5-fold greater in tubular than in glomerular preparations. These data on the localization and ontogeny of GR during murine metanephric development provide a basis for study of glucocorticoid-mediated effects on various models of congenital and acquired renal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号