首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CP43 is a chlorophyll-protein complex that funnels excitation energy from the main light-harvesting system of photosystem II to the photochemical reaction center. We purified CP43 from spinach photosystem II membranes in the presence of the nonionic detergent n-dodecyl-beta,D-maltoside and recorded its spectroscopic properties at various temperatures between 4 and 293 K by a number of polarized absorption and fluorescence techniques, fluorescence line narrowing, and Stark spectroscopy. The results indicate two "red" states in the Q(y) absorption region of the chlorophylls. The first peaks at 682.5 nm at 4 K, has an extremely narrow bandwidth with a full width at half-maximum of approximately 2.7 nm (58 cm(-1)) at 4 K, and has the oscillator strength of a single chlorophyll. The second peaks at approximately 679 nm, has a much broader bandshape, is caused by several excitonically interacting chlorophylls, and is responsible for all 4 K absorption at wavelengths longer than 685 nm. The Stark spectrum of CP43 resembles the first derivative of the absorption spectrum and has an exceptionally small overall size, which we attribute to opposing orientations of the monomer dipole moments of the excitonically coupled pigments.  相似文献   

2.
《BBA》2023,1864(3):148982
Photosystem II in oxygenic organisms is a large membrane bound rapidly turning over pigment protein complex. During its biogenesis, multiple assembly intermediates are formed, including the CP43-preassembly complex (pCP43). To understand the energy transfer dynamics in pCP43, we first engineered a His-tagged version of the CP43 in a CP47-less strain of the cyanobacterium Synechocystis 6803. Isolated pCP43 from this engineered strain was subjected to advanced spectroscopic analysis to evaluate its excitation energy dissipation characteristics. These included measurements of steady-state absorption and fluorescence emission spectra for which correlation was tested with Stepanov relation. Comparison of fluorescence excitation and absorptance spectra determined that efficiency of energy transfer from β-carotene to chlorophyll a is 39 %. Time-resolved fluorescence images of pCP43-bound Chl a were recorded on streak camera, and fluorescence decay dynamics were evaluated with global fitting. These demonstrated that the decay kinetics strongly depends on temperature and buffer used to disperse the protein sample and fluorescence decay lifetime was estimated in 3.2–5.7 ns time range, depending on conditions. The pCP43 complex was also investigated with femtosecond and nanosecond time-resolved absorption spectroscopy upon excitation of Chl a and β-carotene to reveal pathways of singlet excitation relaxation/decay, Chl a triplet dynamics and Chl a → β-carotene triplet state sensitization process. The latter demonstrated that Chl a triplet in the pCP43 complex is not efficiently quenched by carotenoids. Finally, detailed kinetic analysis of the rise of the population of β-carotene triplets determined that the time constant of the carotenoid triplet sensitization is 40 ns.  相似文献   

3.
PsbK is encoded by the chloroplast psbK gene and is one of the small polypeptides of photosystem II (PSII). This polypeptide is required for accumulation of the PSII complex. In the present study, we generated an antibody against recombinant mature PsbK of Chlamydomonas and used it in Western blots to localize PsbK in the PSII core complex. PsbK was found in the thylakoid membranes, and purification of the PSII core complex from detergent-solubilized thylakoid membranes showed that PsbK is tightly associated with the PSII core complex. We used potassium thiocyanate to separate PSII into subcore complexes, including the D1/D2/cytochrome b559 reaction center complex, CP47, and CP43, and we found that PsbK co-purifies with one of the core antenna complexes, CP43, during ion exchange chromatography. Subsequent gel filtration chromatography of the purified CP43 confirmed that PsbK is tightly associated with CP43. Steady-state levels of PsbK were also determined in Chlamydomonas mutants expressing various levels of PSII. Quantitative Western blotting revealed that the levels of PsbK in these mutants are approximately equal to those of CP43, suggesting that PsbK is stable only when associated with CP43 in the chloroplast. Together, our results indicate that PsbK is an integral part of the PSII complex and may participate in the assembly and stability of the PSII complex.  相似文献   

4.
Noguchi T  Sugiura M 《Biochemistry》2001,40(6):1497-1502
Fourier transform infrared (FTIR) difference spectra of all flash-induced S-state transitions of the oxygen-evolving complex were measured using photosystem II (PSII) core complexes of Synechococcus elongatus. The PSII core sample was given eight successive flashes with 1 s intervals at 10 degrees C, and FTIR difference spectra upon individual flashes were measured. The obtained difference spectra upon the first to fourth flashes showed considerably different spectral features from each other, whereas the fifth, sixth, seventh, and eighth flash spectra were similar to the first, second, third, and fourth flash spectra, respectively. The intensities at the wavenumbers of prominent peaks of the first and second flash spectra showed clear period four oscillation patterns. These oscillation patterns were well fitted with the Kok model with 13% misses. These results indicate that the first, second, third, and fourth flash spectra represent the difference spectra upon the S(1) --> S(2), S(2) --> S(3), S(3) --> S(0), and S(0) --> S(1) transitions, respectively. In these spectra, prominent bands were observed in the symmetric (1300-1450 cm(-)(1)) and asymmetric (1500-1600 cm(-)(1)) stretching regions of carboxylate groups and in the amide I region (1600-1700 cm(-)(1)). Comparison of the band features suggests that the drastic coordination changes of carboxylate groups and the protein conformational changes in the S(1) --> S(2) and S(2) --> S(3) transitions are reversed in the S(3) --> S(0) and S(0) --> S(1) transitions. The flash-induced FTIR measurements during the S-state cycle will be a promising method to investigate the detailed molecular mechanism of photosynthetic oxygen evolution.  相似文献   

5.
A review of the structural properties of the photosystem II chlorophyll binding proteins, CP47 and CP43, is given and a model of the transmembrane helical domains of CP47 has been constructed. The model is based on (i) the amino acid sequence of the spinach protein, (ii) an 8 A three-dimensional electron density map derived from electron crystallography and (iii) the structural homology which the membrane spanning region of CP47 shares with the six N-terminal transmembrane helices of the PsaA/PsaB proteins of photosystem I. Particular emphasis has been placed on the position of chlorophyll molecules assigned in the 8 A three-dimensional map of CP47 (K.-H. Rhee, E.P. Morris, J. Barber, W. Kühlbrandt, Nature 396 (1998) 283-286) relative to histidine residues located in the transmembrane regions of this protein which are likely to form axial ligands for chlorophyll binding. Of the 14 densities assigned to chlorophyll, the model predicted that five have their magnesium ions within 4 A of the imidazole nitrogens of histidine residues. For the remaining seven histidine residues the densities attributed to chlorophylls were within 4-8 A of the imidazole nitrogens and thus too far apart for direct ligation with the magnesium ion within the tetrapyrrole head group. Improved structural resolution and reconsiderations of the orientation of the porphyrin rings will allow further refinement of the model.  相似文献   

6.
The State 1 to State 2 transition in the photosynthetic membranes of plants and green algae involves the functional coupling of phosphorylated light-harvesting complexes of photosystem II (LHCII) to photosystem I (PSI). We present evidence suggesting that in Chlamydomonas reinhardtii this coupling may be aided by a hyper-phosphorylated form of the LHCII-like CP29 protein (Lhcbm4). MS analysis of CP29 showed that Thr6, Thr16 and Thr32, and Ser102 are phosphorylated in State 2, whereas in State 1-exposed cells only phosphorylation of Thr6 and Thr32 could be detected. The LHCI-PSI supercomplex isolated from the alga in State 2 was found to contain strongly associated CP29 in phosphorylated form. Electron microscopy suggests that the binding site for this highly phosphorylated CP29 is close to the PsaH protein. It is therefore postulated that redox-dependent multiple phosphorylation of CP29 in green algae is an integral part of the State transition process in which the structural changes of CP29, induced by reversible phosphorylation, determine the affinity of LHCII for either of the two photosystems.  相似文献   

7.
The carboxyl terminus of the CP43 subunit of photosystem II (PSII) in the thermophilic cyanobacterium, Synechococcus elongatus, was genetically tagged with six consecutive histidine residues to create a metal binding site on the PSII supramolecular complex. The histidine-tagging enabled rapid isolation of an intact cyanobacterial PSII core complex from dodecyl maltoside-solubilized thylakoids by a simple one-step Ni(2+)-affinity column chromatography. The isolated core complex was in a dimeric form with a molecular mass of about 580 kDa, consisting of five major intrinsic membrane proteins (CP47, CP43, D1, D2 and cytochrome b-559), three extrinsic proteins (33 kDa, 12 kDa, and cytochrome c-550), and a few low molecular mass membrane proteins, and evolved oxygen at a rate as high as 3,400 mumol (mg Chl)-1 h-1 at 45 degrees C with ferricyanide as an electron acceptor. The core complex emitted thermoluminescence B2-, B1- and Q-bands arising from S2QB-, S3QB- and S2QA- charge recombinations at respective emission temperatures of 45, 38 and 20 degrees C, all of which were higher by about 15 degrees C as compared with those in mesophilic spinach BBY membranes. These results indicated that the isolated core complex well retained the intact properties of thermoluminescence of thermophilic cyanobacterial cells, the deeper stabilization of PSII charge pairs. The isolated complex was extremely stable in terms of both protein composition and function, exhibiting no release of extrinsic proteins, no proteolytic degradation in any of its subunits, accompanied by only a slight (less than 10%) loss in oxygen evolution, after dark-incubation at 20 degrees C for 8 d. These properties of the thermophilic PSII core complex are highly useful for various types of studies on PSII.  相似文献   

8.
The pigment-protein complexes CP43 and CP47 transfer excitation energy from the peripheral antenna of photosystem II toward the photochemical reaction center. We measured the excitation dynamics of the chlorophylls in isolated CP43 and CP47 complexes at 77 K by time-resolved absorbance-difference and fluorescence spectroscopy. The spectral relaxation appeared to occur with rates of 0.2-0.4 ps and 2-3 ps in both complexes, whereas an additional relaxation of 17 ps was observed only in CP47. Using the 3.8-A crystal structure of the photosystem II core complex from Synechococcus elongatus (A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger, and P. Orth, 2001, Nature, 409:739-743), excitation energy transfer kinetics were calculated and a Monte Carlo simulation of the absorption spectra was performed. In both complexes, the rate of 0.2-0.4 ps can be ascribed to excitation energy transfer within a layer of chlorophylls near the stromal side of the membrane, and the slower 2-3-ps process to excitation energy transfer to the calculated lowest excitonic state. We conclude that excitation energy transfer within CP43 and CP47 is fast and does not contribute significantly to the well-known slow trapping of excitation energy in photosystem II.  相似文献   

9.
The energy equilibration and transfer processes in the isolated core antenna complexes CP43 and CP47 of photosystem II have been studied by steady-state and ultrafast (femto- to nanosecond) time-resolved spectroscopy at room temperature. The annihilation-free femtosecond absorption data can be described by surprisingly simple sequential kinetic models, in which the excitation energy transfer between blue and red states in both antenna complexes is dominated by sub-picosecond processes and is completed in less than 2 ps. The slowest energy transfer steps with lifetimes in the range of 1-2 ps are assigned to transfer steps between the chlorophyll layers located on the stromal and lumenal sides. We conclude that these ultrafast intra-antenna energy transfer steps do not represent a bottleneck in the rate of the primary processes in intact photosystem II. Since the experimental energy equilibration rates are up to a factor of 3-5 higher than concluded previously, our results challenge the conclusions drawn from theoretical modeling.  相似文献   

10.
The functional role of the Ca (2+) ion in the oxygen-evolving complex of photosystem II is not yet clear. Current models explain why the redox cycle of the complex would be interrupted after the S 3 state without Ca (2+), but the literature shows that it is interrupted after the S 2 state. Reinterpretation of the literature on methods of Ca (2+) depletion [Miqyass, M., van Gorkom, H. J., and Yocum, C. F. (2007) Photosynth. Res. 92, 275-287] led us to propose that all S-state transitions require Ca (2+). Here we confirm that interpretation by measurements of flash-induced S-state transitions in UV absorbance. The results are explained by a cation exchange at the Ca (2+) binding site that, in the absence of the extrinsic PsbP and PsbQ polypeptides, can occur in minutes in low S-states and in seconds in high S-states, depending on the concentration of the substituting cation. In the S 2(K (+)) or S 2(Na (+)) state a slow conformational change occurs that prevents recovery of the slow-exchange situation on return to a lower S-state but does not inhibit the S-state cycle in the presence of Ca (2+). The ratio of binding affinities for monovalent vs divalent cations increases dramatically in the higher S-states. With the possible exception of S 0 to S 1, all S-state transitions specifically require Ca (2+), suggesting that Ca (2+)-bound H 2O plays an essential role in a H (+) transfer network required for H (+)-coupled electron transfer from the Mn cluster to tyrosine Z.  相似文献   

11.
12.
Hillier W  Wydrzynski T 《Biochemistry》2000,39(15):4399-4405
The first determinations of substrate water binding to the O(2) evolving complex in photosystem II as a complete function of the S states have been made. H(2)(18)O was rapidly injected into spinach thylakoid samples preset in either the S(0), S(1), S(2), or S(3) states, and the rate of (18)O incorporation into the O(2) produced was determined by time-resolved mass spectrometry. For measurements at m/e = 34 (i.e., for the (16)O(18)O product), the rate of (18)O incorporation in all S states shows biphasic kinetics, reflecting the binding of the two substrate water molecules to the catalytic site. The slow phase kinetics yield rate constants at 10 degrees C of 8 +/- 2, 0.021 +/- 0.002, 2.2 +/- 0.3, and 1.9 +/- 0.2 s(-1) for the S(0), S(1), S(2), and S(3) states, respectively, while the fast phase kinetics yield a rate constant of 36.8 +/- 1.9 s(-1) for the S(3) state but remain unresolvable (>100 (s-1)) for the S(0), S(1), and S(2) states. Comparisons of the (18)O exchange rates reveal that the binding affinity for one of the substrate water molecules first increases during the S(0) to S(1) transition, then decreases during the S(1) to S(2) transition, but stays the same during the S(2) to S(3) transition, while the binding affinity for the second substrate water molecule undergoes at least a 5-fold increase on the S(2) to S(3) transition. These findings are discussed in terms of two independent Mn(III) substrate binding sites within the O(2) evolving complex which are separate from the component that accumulates the oxidizing equivalents. One of the Mn(III) sites may only first bind a substrate water molecule during the S(2) to S(3) transition.  相似文献   

13.
The linear optical spectra (absorbance, linear dichroism, circular dichroism, fluorescence) of the CP43 (PsbC) antenna of the photosystem II core complex (PSIIcc) pertaining to the S(0)?→?S(1) (Q(Y)) transitions of the chlorophyll (Chl) a pigments are simulated by applying a combined quantum chemical/electrostatic method to obtain excitonic couplings and local transition energies (site energies) on the basis of the 2.9?? resolution crystal structure (Guskov et al., Nat Struct Mol Biol 16:334-342, 2009). The electrostatic calculations identify three Chls with low site energies (Chls 35, 37, and 45 in the nomenclature of Loll et al. (Nature 438:1040-1044, 2005). A refined simulation of experimental spectra of isolated CP43 suggests a modified set of site energies within 143?cm(-1) of the directly calculated values (root mean square deviation: 80?cm(-1)). In the refined set, energy sinks are at Chls 37, 43, and 45 in agreement with earlier fitting results (Raszewski and Renger, J Am Chem Soc 130:4431-4446, 2008). The present structure-based simulations reveal that a large part of the redshift of Chl 37 is due to a digalactosyldiacylglycerol lipid. This finding suggests a new role for lipids in PSIIcc, namely the tuning of optical spectra and the creation of an excitation energy funnel towards the reaction center. The analysis of electrostatic pigment-protein interactions is used to identify amino acid residues that are of potential interest for an experimental approach to an assignment of site energies and energy sinks by site-directed mutagenesis.  相似文献   

14.
The dual roles of H2S as an endogenously synthesized respiratory substrate and as a toxin raise questions as to how it is cleared when the electron transport chain is inhibited. Sulfide quinone oxidoreductase (SQOR) catalyzes the first step in the mitochondrial H2S oxidation pathway, using CoQ as an electron acceptor, and connects to the electron transport chain at the level of complex III. We have discovered that at high H2S concentrations, which are known to inhibit complex IV, a new redox cycle is established between SQOR and complex II, operating in reverse. Under these conditions, the purine nucleotide cycle and the malate aspartate shuttle furnish fumarate, which supports complex II reversal and leads to succinate accumulation. Complex II knockdown in colonocytes decreases the efficiency of H2S clearance while targeted knockout of complex II in intestinal epithelial cells significantly decreases the levels of thiosulfate, a biomarker of H2S oxidation, to approximately one-third of the values seen in serum and urine samples from control mice. These data establish the physiological relevance of this newly discovered redox circuitry between SQOR and complex II for prioritizing H2S oxidation and reveal the quantitatively significant contribution of intestinal epithelial cells to systemic H2S metabolism.  相似文献   

15.
M R?gner  D A Chisholm  B A Diner 《Biochemistry》1991,30(22):5387-5395
Two mutants of Synechocystis PCC 6803 lacking the psbC gene product CP43 were constructed by site-directed mutagenesis. Analysis of cells and thylakoid membranes of these mutants indicates that PS II reaction centers accumulate to a concentration of about 10% of that of WT cells. PS II core complexes isolated from mutants lacking the CP43 subunit show light-driven electron transfer from the secondary electron donor Z to the primary quinone electron acceptor QA with a quantum yield similar to that of wild type, indicating that CP43 is not required for binding or function of QA. The use of mutants for the removal of CP43 thus avoids the loss of QA function associated with biochemical extraction of CP43 from intact core complexes. Both absorbance and fluorescence emission maxima of the mutant complexes show a blue shift in comparison to the WT PS II core complex, indicating that the absorbance spectrum of CP43 is red-shifted relative to that of the remainder of the core complex. The antenna size of these CP43-less complexes is about 70% of that of WT, indicating that approximately 15 chlorophyll molecules are bound by CP43. The molecular mass of the PS II complex, including the detergent shell, shifts from 310 +/- 15 kDa in WT to 285 +/- 15 kDa in the CP43-less mutants.  相似文献   

16.
《BBA》2022,1863(7):148580
Photosystem (PS) II is prone to photodamage both as a direct consequence of light, and indirectly by producing reactive oxygen species. Engineering high-light tolerance in cyanobacteria with minimal impact on PSII function is desirable in synthetic biology. IsiA, a CP43 homolog found exclusively in cyanobacteria, can dissipate excess light energy. We have recently determined that the sole cysteine residue of IsiA in Synechocystis sp. PCC 6803 has a critical role in non-photochemical quenching. Similar cysteine-mediated energy quenching has also been observed in green?sulfur bacteria. Sequence analysis of IsiA and CP43 aligns cysteine 260 of IsiA with valine 277 of CP43 in Synechocystis sp. PCC 6803. In the current study, we explore the impact of replacing valine 277 of CP43 to a cysteine on growth, PSII activity and high-light tolerance. Our results imply a decline in the PSII output for the mutant (CP43V277C) presumably due to the dissipation of absorbed light energy by cysteine. Spectroscopic analysis of isolated PSII from this mutant strain also suggests a delayed transfer of excitation energy from CP43-associated chlorophyll a to PSII reaction center. The mutation makes the PSII high-light tolerant and provides a small advantage in growth under high-light conditions. This previously unexplored strategy to engineer high-light tolerance could be a step further towards developing cyanobacterial cells as biofactories.  相似文献   

17.
Scanning tunnelling microscopy of intact D1/D2/CP47/CP43 photosystem 2 (PS2) core complexes and CP43-deleted D1/D2/CP47 core complexes shows definitively that the CP43 subunits reside at the ends of the dimeric core complex. The CP43-removal procedure produces CP43-deleted cores with minimal conformational distortion to the D1/D2/CP47 residual core complex. There was excellent agreement between the X-ray and STM structures for the intact core complex, and between the STM image for the CP43-deleted core complex and the X-ray model with the components assigned to CP43 omitted.  相似文献   

18.
Hughes JL  Picorel R  Seibert M  Krausz E 《Biochemistry》2006,45(40):12345-12357
We have employed absorption, circular dichroism (CD), and persistent spectral hole-burning measurements at 1.7 K to study the photoconversion properties and exciton coupling of low-energy chlorophylls (Chls) in the CP43 proximal antenna light-harvesting subunit of photosystem II (PSII) isolated from spinach. These approximately 683 nm states act as traps for excitation energy in isolated CP43. They "bleach" at 683 nm upon illumination and photoconvert to a form absorbing in the range approximately 660-680 nm. We present new data that show the changes in the CD spectrum due to the photoconversion process. These changes occur in parallel with those in absorption, providing evidence that the feature undergoing the apparent bleach is a component of a weakly exciton-coupled system. From our photoconversion difference spectra, we assign four states in the Chl long-wavelength region of CP43, two of which are the known trap states and are both highly localized on single Chls. The other two states are associated with weak exciton coupling (maximally approximately 50 cm(-)(1)) to one of these traps. We propose a mechanism for photoconversion that involves Chl-protein hydrogen bonding. New hole-burning data are presented that indicate this mechanism is distinct to that for narrow-band spectral hole burning in CP43. We discuss the photophysical behavior of the Chl trap states in isolated CP43 compared to their behavior in intact PSII preparations. The latter represent a more intact, physiological complex, and we find no clear evidence that they exhibit the photoconversion process reported here.  相似文献   

19.
We introduce a quantum mechanics/molecular mechanics model of the oxygen-evolving complex of photosystem II in the S(1) Mn(4)(IV,III,IV,III) state, where Ca(2+) is bridged to manganese centers by the carboxylate moieties of D170 and A344 on the basis of the new X-ray diffraction (XRD) model recently reported at 1.9 ? resolution. The model is also consistent with high-resolution spectroscopic data, including polarized extended X-ray absorption fine structure data of oriented single crystals. Our results provide refined intermetallic distances within the Mn cluster and suggest that the XRD model most likely corresponds to a mixture of oxidation states, including species more reduced than those observed in the catalytic cycle of water splitting.  相似文献   

20.
We have investigated the location of the Psb27 protein and its role in photosystem (PS) II biogenesis in the cyanobacterium Synechocystis sp. PCC 6803. Native gel electrophoresis revealed that Psb27 was present mainly in monomeric PSII core complexes but also in smaller amounts in dimeric PSII core complexes, in large PSII supercomplexes, and in the unassembled protein fraction. We conclude from analysis of assembly mutants and isolated histidine-tagged PSII subcomplexes that Psb27 associates with the "unassembled" CP43 complex, as well as with larger complexes containing CP43, possibly in the vicinity of the large lumenal loop connecting transmembrane helices 5 and 6 of CP43. A functional role for Psb27 in the biogenesis of CP43 is supported by the decreased accumulation and enhanced fragmentation of unassembled CP43 after inactivation of the psb27 gene in a mutant lacking CP47. Unexpectedly, in strains unable to assemble PSII, a small amount of Psb27 comigrated with monomeric and trimeric PSI complexes upon native gel electrophoresis, and Psb27 could be copurified with histidine-tagged PSI isolated from the wild type. Yeast two-hybrid assays suggested an interaction of Psb27 with the PsaB protein of PSI. Pull-down experiments also supported an interaction between CP43 and PSI. Deletion of psb27 did not have drastic effects on PSII assembly and repair but did compromise short-term acclimation to high light. The tentative interaction of Psb27 and CP43 with PSI raises the possibility that PSI might play a previously unrecognized role in the biogenesis/repair of PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号