首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract A sexual reproduction is thought to doom organisms to extinction due to mutation accumulation and parasite exploitation. Theoretical models suggest that parthenogens may escape the negative effects of conspecific and biological enemiecs through escape in space. Through intensive sequencing of a mitochondrial DNA (mtDNA) and a nuclear intron locus in sexual and pathenogenetic freshwater snails (Campelom), I examine three questionss: (1) Are sexual mtDNA lineage more restricted geographically than parthenogenetic mtDNA lineages? (2) Are independent pathenogenetic lineages shorter lived than sexual lineages? (3) Do pathenogens have higher intraindividual nuclear sequence diversity and form well‐differentiated monophyletic groups as expected under the Meselson effect? Geographic ranges of parthenogenetic lineages are significantly larger than geographic ranges of sexual lineages. Based on coalescence times under different deographic assumptions, asexual lineages are short lived, but there is variation in clonal ages. Although alternative explanations exit, these results suggest that asexual lineages may persist in the short term through dispersal, and that various constraints may cause geographic restriction of sexual lineagess. Both allotriploid and diploid Campleloma parthenogens have significantly higher allelic divergence within individuals, but show limited nuclear sequence divergence from sexual ancestors. In contrast to previous allozyme evidence for nonhybrid origins of diploid Campeloma parthenogens, cryptic hybridization may account for elevated heterozygosity.  相似文献   

2.
Prior allozyme studies have indicated that populations of the asexual ostracode, Cypridopsis vidua (Müller), show extraordinary clonal diversity. Based on a joint examination of allozyme variation and sequence divergence at the mitochondrial cytochrome c oxidase I (COI) gene, the present analysis provides new insights concerning the origins of this variation. The results establish that populations of C. vidua in one recently deglaciated region of North America are not only allozymically diverse, but also include several divergent mitochondrial DNA (mtDNA) lineages. The extent of sequence divergence among these lineages is so large as to suggest their diversification over the past 7–8 million years. The patterning of genetic divergence among co-occurring clones makes it apparent that much of the mtDNA and allozyme diversity in local populations owes its origins to recurrent colonization events. However, in situ mutational diversification also appears to explain some variation. The mechanisms enabling the sustained coexistence of such a large array of closely allied genotypes remain unclear, but there is an apparent difference in equilibrium diversity between benthic and planktonic asexual organisms.  相似文献   

3.
We determined the amount and temporal stability of genetic differentiation among brook cham sampled from five rivers on Cape Race, Newfoundland, with an electrophoretic analysis of 42 protein coding loci. Fish from four of these rivers were analysed for restriction fragment length polymorphisms in mitochondrial DNA (mtDNA). A single mtDNA clone was observed in all rivers sampled, except one, where 47% offish were from a different and relatively divergent clone (0.31 % sequence divergence). In contrast, Cape Race brook charr show large amounts of genetic differentiation at six enzyme coding loci; Nei's genetic distance ranged between 0,020 and 0.048. This differentiation is relatively stable as no significant differences in allele frequencies were detected between fish sampled from two rivers over two consecutive years. The most divergent population based on protein polymorphism is not that with two mtDNA clonal lineages. In contrast to the commonly held view, mtDNA analyses do not necessarily provide greater resolution of population structure than allozyme analyses.  相似文献   

4.
Cyclic parthenogenesis is the ancestral mode of reproduction in the cladoceran crustacean, Daphnia pulex, but some populations have made the transition to obligate parthenogenesis and this is the only mode of reproduction known to occur in arctic populations. Melanism and polyploidy are also common in arctic populations of this species. Prior allozyme studies of arctic D. pulex revealed substantial levels of clonal diversity on a regional scale. Clonal groupings based on cluster analysis of allozyme genotypes do not conform to groupings based on the presence/absence of melanin or on ploidy level. In order to further elucidate genetic relationships among arctic D. pulex clones, mitochondrial DNA (mtDNA) variation was examined in 31 populations from two Canadian high-arctic sites. The data were also compared to a previous study of mtDNA variation in populations from a Canadian low-arctic site. Cladistic analysis of restriction site variation of the entire mitochondrial genome and nucleotide sequence variation of the mitochondrial control region was used to construct genetic relationships among mitochondrial genotypes. Three distinct mitochondrial lineages were detected. One lineage was associated with diploid, nonmelanic clones and is the same as the lineage that is found in temperate populations of D. pulex. The other two lineages (A & B) were associated with polyploid, melanic clones. Sequence divergence between the A and B lineages was 2.4%. Sequence divergence between D. pulex and either of these two lineages exceeded 3%. It is suggested that the melanic, polyploid clones are hybrids between males of D. pulex (and/or a closely related congener, D. pulicaria) and females of either of two ancestral melanic species that have mitochondrial lineages A and B. Geographic patterns of mitochondrial diversity in ‘melanic’ lineage B support the hypothesis of an high-arctic refuge for the ancestral species during the last glacial period.  相似文献   

5.
Phylogenetic relationships among four Stizostedion species were examined using mitochondrial DNA (mtDNA) and allozyme analyses. Twenty-six allozyme loci were scored, and mtDNA variation was examined using 24 restriction endonucleases, yielding 48–57 restriction sites among the species. Genetic distance analyses show that the two North American species ( S. canadense and S. vitreum ) cluster in one group, while the two European species ( S. hciopercu and S. vogense ) form a second group. Nei's genetic distance between these two groups was 0.7 ± 0.2 for allozymes, while the corresponding mtDNA sequence divergence was 14.8 ± 2.0%, suggesting that these two groups diverged approximately 10 million years ago. Thus, these data are consistent with the hypothesis that Stizostedion colonized North America during the Pliocene.  相似文献   

6.
Cyclical parthenogens, including aphids, are attractive models for comparing the genetic outcomes of sexual and asexual reproduction, which determine their respective evolutionary advantages. In this study, we examined how reproductive mode shapes genetic structure of sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) populations of the aphid Rhopalosiphum padi by comparing microsatellite and allozyme data sets. Allozymes showed little polymorphism, confirming earlier studies with these markers. In contrast, microsatellite loci were highly polymorphic and showed patterns very discordant from allozyme loci. In particular, microsatellites revealed strong heterozygote excess in asexual populations, whereas allozymes showed heterozygote deficits. Various hypotheses are explored that could account for the conflicting results of these two types of genetic markers. A strong differentiation between reproductive modes was found with both types of markers. Microsatellites indicated that sexual populations have high allelic polymorphism and heterozygote deficits (possibly because of population subdivision, inbreeding or selection). Little geographical differentiation was found among sexual populations confirming the large dispersal ability of this aphid. In contrast, asexual populations showed less allelic polymorphism but high heterozygosity at most loci. Two alternative hypotheses are proposed to explain this heterozygosity excess: allele sequence divergence during long-term asexuality or hybrid origin of asexual lineages. Clonal diversity of asexual lineages of R. padi was substantial suggesting that they could have frozen genetic diversity from the pool of sexual lineages. Several widespread asexual genotypes were found to persist through time, as already seen in other aphid species, a feature seemingly consistent with the general-purpose genotype hypothesis.  相似文献   

7.
The evolutionary history of the cryptic Gammarus fossarum species complex (Crustacea, Amphipoda) in Central Europe was approached by investigating the genetic variation in populations of a natural contact zone. Nucleotide sequence variation of a 395-bp segment of the mitochondrial 16S rRNA gene was compared to that of six nuclear allozyme loci. Three major mtDNA lineages were found, the eastern clade being consistent with the former allozyme type A. The two western clades (types B and C) were not distinguished previously. Strong sequence divergence and correlation with nuclear genetic isolation in syntopic populations, however, justifies the specific status of the three G. fossarum types. The common speciation event is believed to be very old (Miocene). The within-type mtDNA variation is probably molded by the ice ages, with type B populations being most affected. Moreover, the patch-like distribution of mtDNA type B lineages in an area near the contact zone corroborates the hypothesis of a recent colonization.  相似文献   

8.
Genetic variation in four natural populations of the starfish Linckia laevigata from the Indo-West Pacific was examined using restriction fragment analysis of a portion of the mtDNA including the control region. Digestion with seven restriction enzymes identified 47 haplotypes in a sample of 326 individuals. Samples collected from reef sites within each location were not significantly differentiated based on ΦST or spatial distribution of haplotypes, indicating that dispersal is high over short to moderate distances. Evidence of gene flow is further supported by the low divergence among haplotypes and the lack of any clear geographical structuring among different haplotypes in the gene phylogeny. However, analysis of molecular variance ( AMOVA ), ΦST and contingency χ2 analyses of the spatial distribution of haplotypes demonstrate the presence of significant broad scale population genetic structure among the four widespread locations examined. RFLP data are consistent with high gene flow between the Philippines and Western Australia and moderate gene flow between the Great Barrier Reef (GBR) and Fiji, but only limited gene flow between either the Philippines or Western Australia and either the GBR or Fiji. The presence of mtDNA structure contrasts with previous allozyme data which suggest that dispersal among widely separated locations is equivalent to dispersal among populations within the highly connected GBR studies. This discordance between patterns of gene flow inferred from these two markers cannot be fully accounted for by differences in effective population size for mtDNA. This might suggest that while mtDNA variation may represent contemporary patterns of gene flow, allozyme variation among populations is yet to reach equilibrium between drift and migration over the range surveyed.  相似文献   

9.
Microsatellite DNA markers were applied for the first time in a population genetic study of a cephalopod and compared with previous estimates of genetic differentiation obtained using allozyme and mitochondrial DNA (mtDNA) markers. Levels of genetic variation detected with microsatellites were much higher than found with previous markers (mean number of alleles per locus=10.6, mean expected heterozygosity ( H E)=0.79; allozyme H E=0.08; mtDNA restriction fragment length polymorphism (RFLP) H E=0.16). In agreement with previous studies, microsatellites demonstrated genetic uniformity across the population occupying the European shelf seas of the North East Atlantic, and extreme genetic differentiation of the Azores population ( R ST/ F ST=0.252/0.245; allozyme F ST=0.536; mtDNA F ST=0.789). In contrast to other markers, microsatellites detected more subtle, and significant, levels of differentiation between the populations of the North East Atlantic offshore banks (Rockall and Faroes) and the shelf population ( R ST=0.048 and 0.057). Breakdown of extensive gene flow among these populations is indicated, with hydrographic (water depth) and hydrodynamic (isolating current regimes) factors suggested as possible barriers to migration. The demonstration of genetic subdivision in an abundant, highly mobile marine invertebrate has implications for the interpretation of dispersal and population dynamics, and consequent management, of such a commercially exploited species. Relative levels of differentiation indicated by the three different marker systems, and the use of measures of differentiation (assuming different mutation models), are discussed.  相似文献   

10.
Samples of Luxilus cornutus, Luxilus chrysocephalus, and their hybrids were collected along hypothesized routes of dispersal from Pleistocene refugia to examine the significance of geographic variation in patterns of introgression between these species. Patterns of allozyme and mitochondrial DNA (mtDNA) variation were generally consistent with those from previous studies. Tests of Hardy-Weinberg equilibrium revealed significant deficiencies of heterozygotes in all samples, indicating some form of reproductive isolation. Mitochondrial DNAs of each species were not equally represented in F1 hybrids; however, this bias was eliminated when the two largest samples were excluded from the analysis. Backcross hybrids exhibited biased mtDNA introgression, as samples from Lake Erie (eastern) and Lake Michigan (western) drainages showed significant excesses of mtDNAs from L. chrysocephalus and L. cornutus, respectively, relative to frequencies of diagnostic allozyme markers. The extent and direction of allozyme and mtDNA introgression was quantified by calculating isolation index values from morphologically “pure” individuals of each species from each locality. Analysis of variance of these measures identified limited introgression of allozyme variants with no geographic pattern, but significant differences in direction of mtDNA introgression between drainages (i.e., postglacial dispersal route). Association between patterns of mtDNA introgression and dispersal route across the latitudinal width of the contact zone is best explained by genetic divergence during past isolation of ancestral populations from these drainages. These results identify a significant role for historical effects in the evolution of reproductive isolation and the process of speciation.  相似文献   

11.
The Amazonian avifauna remains severely understudied relative to that of the temperate zone, and its species richness is thought to be underestimated by current taxonomy. Recent molecular systematic studies using mtDNA sequence reveal that traditionally accepted species-level taxa often conceal genetically divergent subspecific lineages found to represent new species upon close taxonomic scrutiny, suggesting that intraspecific mtDNA variation could be useful in species discovery. Surveys of mtDNA variation in Holarctic species have revealed patterns of variation that are largely congruent with species boundaries. However, little information exists on intraspecific divergence in most Amazonian species. Here we screen intraspecific mtDNA genetic variation in 41 Amazonian forest understory species belonging to 36 genera and 17 families in 6 orders, using 758 individual samples from Ecuador and French Guiana. For 13 of these species, we also analyzed trans-Andean populations from the Ecuadorian Chocó. A consistent pattern of deep intraspecific divergence among trans-Amazonian haplogroups was found for 33 of the 41 taxa, and genetic differentiation and genetic diversity among them was highly variable, suggesting a complex range of evolutionary histories. Mean sequence divergence within families was the same as that found in North American birds (13%), yet mean intraspecific divergence in Neotropical species was an order of magnitude larger (2.13% vs. 0.23%), with mean distance between intraspecific lineages reaching 3.56%. We found no clear relationship between genetic distances and differentiation in plumage color. Our results identify numerous genetically and phenotypically divergent lineages which may result in new species-level designations upon closer taxonomic scrutiny and thorough sampling, although lineages in the tropical region could be older than those in the temperate zone without necessarily representing separate species. In-depth phylogeographic surveys are urgently needed to avoid underestimating tropical diversity, and the use of mtDNA markers can be instrumental in identifying and prioritizing taxa for species discovery.  相似文献   

12.
The genetic differentiation among 33 populations of the Italian treefrog, Hyla intermedia (Anura: Hylidae), was investigated using both biparentally (23 allozyme loci) and maternally (partial mitochondrial cytochrome b gene) inherited markers. Two main population groups were evidenced by both markers, located north and south of the northern Apennines. However, the pattern of differentiation between these two groups was much less pronounced at allozymes than at mtDNA, leading to gene flow estimates that were 25 times lower at mitochondrial than at nuclear level. Also, the mtDNA divergence between the two groups was particularly marked for two cospecific lineages of anuran amphibians (the P-distance being on average 9.04%), while their average genetic distance at allozymes was comparatively low (D NEI = 0.07). This contrasting pattern of nuclear versus mitochondrial genetic variation is discussed in the context of: (1) marker specific selection, (2) secondary contact and sex-biased gene flow and (3) ancestral polymorphism and colonization from north to south. Finally we emphasize how, for population genetic studies, the use of multiple markers having distinct evolutionary properties can help unravel the existence of more complex evolutionary histories.  相似文献   

13.
Mitochondrial DNA (mtDNA) from 25 blue tits Parus caeruleus sampled from two populations of the Grenoble region (France) was assayed for polymorphism with 17 restriction endonucleases. Nine genotypes were found. Several mtDNA genotypes were also analysed by amplification via the polymerase chain reaction (PCR) and direct sequencing of 903 bp of the cytochrome b gene. The mtDNA polymorphism is greater in P. caeruleus than in other comparable bird species and results from the presence of two clearly differentiated mitochondrial lineages. Using the data of restriction polymorphism, the mean sequence divergence between individuals of the two lineages is 1.23%. Therefore, P. caeruleus should fall into the category II of phylogeographic pattern sensu Avise et al. (1987): discontinuous mtDNA genotypes which co-occur in the same region. P. caeruleus, like humans and other mobile species with high gene flow, seems to have lost its geographic structure in terms of mtDNA phylogeny. This unusual mitochondrial polymorphism can be explained by the recent admixture of two long-term isolated populations. This could be accounted for by two different scenarios. One assumes a simultaneous post-glacial colonization of the Grenoble region by two isolated European populations of P. caeruleus. Alternatively, hybridization between P. caeruleus and P. cyanus could have caused the observed pattern of mtDNA variation.  相似文献   

14.
Genetic variation of mitochondrial DNA (mtDNA) in 18 great tits (Parus major) from three neighboring localities in Sweden was investigated with eight tetranucleotide restriction endonucleases. The 18 individuals could be separated into 13 different maternal lineages. The high number of female lineages present in this regional population contrasts with a low level of sequence divergence between the different mtDNA clones, with a mean of 0.19% sequence divergence between all individuals. There was no obvious spatial structuring of mtDNA clones among the three localities. The presence of a high number of different clones with a low degree of sequence divergence could be explained by the effects of a large long-term effective population size, with the mtDNA clones having diverged about 25,000–200,000 years ago.This study was supported by the Swedish Natural Science Research Council, the Erik Philip-Sörensen Foundation, and the Nilsson-Ehle Foundation.  相似文献   

15.
Using five restriction enzymes, geographical variation of mitochondrial DNA (mtDNA) in Bombina bombina and B. variegata was studied in samples from 20 locations. Each restriction enzyme produced a species-specific fragment pattern. B. bombina haplotypes A and B were closely related to each other. In contrast, haplotypes A and B of B. variegata formed two distinct lineages. A very distinctive haplotype (C) was found in the Carpathian Mountains, whereas two other haplotypes, D and E (differing by a single AvaI site), were present in western Europe and the Balkans, respectively. Populations polymorphic for haplotypes D and E occurred in the central Balkans where the haplotypes could replace each other clinally. mtDNA sequence divergence between B. bombina and B. variegata was estimated as 6.0-8.1% and 4.7-5.2% between type C and types D/E of B. variegata. The latter divergence is contrary to allozyme and morphological data that place the western and Carpathian B. v. variegata together (Nei's D = 0.07) and separate them from the Balkan subspecies B. v. scabra (Nei's D = 0.18). Broad interspecific correlation among morphology, allozymes and mtDNA types in European fire-bellied toads argues that, despite continuous hybridization (interrupted perhaps during Pleistocene glacial maxima), little or no mtDNA introgression between the species has occurred outside the narrow hybrid zones that separate these parapatric species.  相似文献   

16.
The genetic relationships between two Finno-Ugric-speaking populations, the Finns and the Finnish Saami (Lapps), were studied by using PCR for six nuclear-DNA marker loci, mitochondrial restriction-site polymorphism, and sequence variation of a 360-bp segment of the mitochondrial control region. The allele frequencies of each of the nuclear-DNA marker loci and the frequencies of mtDNA restriction haplotypes were significantly different between the populations. The Saami showed exceptionally low variation in their mtDNA restriction sites. The 9-bp deletion common in East Asian populations was not observed, nor did the haplotype data fit into the haplogroup categorization of Torroni et al. The average number of nucleotide substitutions from the mtDNA haplotype data indicated that the Finnish Saami may be closer to the Finns than to the other reference populations, whereas nuclear DNA suggested that the Finns are more closely related to the European reference populations than to the Finnish Saami. The similarity of the Finns to the other Europeans was even more pronounced according to the sequence data. We were unable to distinguish between the Finns and either the Swiss or Sardinian reference populations, whereas the Finnish Saami clearly stood apart. The Finnish Saami are distinct from other Circumarctic populations, although two of the lineages found among the Saami showed closer relationship to the Circumarctic than to the European lineages. The sequence data indicated an exceptionally high divergence for the Saami mtDNA control lineages. The distribution of the pairwise nucleotide differences in the Saami suggested that this population has not experienced an expansion similar to what was indicated for the Finns and the reference populations.  相似文献   

17.
In the present study, mitochondrial DNA polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) assay was used to assess the phylogenetic and phylogeographic relationships among 27 brown trout Salmo trutta populations from Turkey. The complete NADH 5/6 region and a second segment comprising the cytochrome b gene and D‐loop of mtDNA amplified by PCR were digested with six and five restriction enzymes, respectively. A total of 27 haplotypes were observed and divided into three major phylogenetic assemblages, namely Danubian (DA), Adriatic (AD) and a newly proposed Tigris (TI) lineage. The timing of the net nucleotide divergence between the major lineages along with the geological history of Turkey suggested pre‐Pleistocene isolation of the Turkish brown trout and provided evidence that Turkey could be considered as a centre of diversification for these lineages. The average haplotype diversity (0·1397) and the nucleotide diversity (0·000416) within populations were low in comparison to the observed interpopulation nucleotide diversity (0·021266). PCR‐RFLP analysis showed that most of the mtDNA sequence variation found in the Turkish brown trout populations was imputable to differences among lineages. On the other hand, there was also an obvious relationship between geographical distribution of the populations and their clustering. The present study showed that brown trout populations from Turkey are highly divergent and mainly have a unique genetic profile that could be used for conservation and management purposes.  相似文献   

18.
Mitochondrial DNA (mtDNA) restriction analysis was used to examine the evolutionary and taxonomic relationships among 11 taxa of the subfamily Salmoninae. The genera Brachymystax and Hucho were closely related, diverging by sequence divergence estimates of 3.1%. Because the mtDNA sequence divergence between blunt- and sharp-snouted forms of Brachymystax (2.24%) was similar to divergence level of Brachymystax and Hucho , then taking into account the distinct morphological, ecological and allozyme differences between them, it is possible to recognize these forms as two separate species. The subgenus Parahucho formed a very distinct group differing by 6.35–7.08% (sequence divergence estimate) from both Brachymystax and Hucho and must be considered as a valid genus. The UPGMA and neighbour-joined phenograms showed that the five genera studied are divided into two main groupings: (1) Hucho, Brachymystax and Salvelinus ; and (2) Oncorhynchus and Parahucho species. The mtDNA sequence divergence estimates between these groupings were about 8.1%. However, the subsequent bootstrap analysis of mtDNA RFLP data did not support the monophyly of the latter grouping. The concordance of morphological and mtDNA phylogenetic patterns is discussed.  相似文献   

19.
The genetic population structure of red snapper Lutjanus malabaricus and Lutjanus erythropterus in eastern Indonesia and northern Australia was investigated by allozyme electrophoresis and sequence variation in the control region of mtDNA. Samples were collected from eight sites in Indonesia and four sites in northern Australia for both species. A total of 13 allozyme loci were scored. More variable loci were observed in L. malabaricus than in L. erythropterus . Sequence variation in the control region (left domain) of the mitochondrial genome was assessed by RFLP and direct sequencing. MtDNA haplotype diversity was high ( L. erythropterus , 0·95 and L. malabaricus , 0·97), as was intraspecific sequence divergence, ( L. erythropterus , 0·0–12·5% and L. malabaricus , 0·0–9·5%). The pattern of mtDNA haplotype frequencies grouped both species into two broad fisheries stocks with a genetic boundary either between Kupang and Sape ( L. malabaricus ) or between Kupang and Australian Timor Sea ( L. erythropertus ). The allozyme analyses revealed similar boundaries for L. erythropterus . Seven allozymes stocks compared to two mtDNA stocks of L. malabaricus including Ambon, which was not sampled with mtDNA, however, were reported. Possible reasons for differences in discrimination between the methods include: i) increased power of multiple allozyme loci over the single mtDNA locus, ii) insufficient gene sampling in the mtDNA control region and iii) relative evolutionary dynamics of nuclear (allozyme loci) and mitochondrial DNA in these taxa. Allozyme and haplotype data did not distinguish separate stocks among the four Australian locations nor the central Indonesian (Bali and Sape locations) for both L. malabaricus and L. erythropterus.  相似文献   

20.
Strong spatial sorting of genetic variation in contiguous populations is often explained by local adaptation or secondary contact following allopatric divergence. A third explanation, spatial sorting by stochastic effects of range expansion, has been considered less often though theoretical models suggest it should be widespread, if ephemeral. In a study designed to delimit species within a clade of venomous coralsnakes, we identified an unusual pattern within the Texas coral snake (Micrurus tener): strong spatial sorting of divergent mitochondrial (mtDNA) lineages over a portion of its range, but weak sorting of these lineages elsewhere. We tested three alternative hypotheses to explain this pattern—local adaptation, secondary contact following allopatric divergence, and range expansion. Collectively, near panmixia of nuclear DNA, the signal of range expansion associated sampling drift, expansion origins in the Gulf Coast of Mexico, and species distribution modeling suggest that the spatial sorting of divergent mtDNA lineages within M. tener has resulted from genetic surfing of standing mtDNA variation—not local adaptation or allopatric divergence. Our findings highlight the potential for the stochastic effects of recent range expansion to mislead estimations of population divergence made from mtDNA, which may be exacerbated in systems with low vagility, ancestral mtDNA polymorphism, and male‐biased dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号