首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The reaction catalyzed by calf liver uridine diphosphate glucose synthase (pyrophosphorylase) (EC 2.7.7.9; UTP + glucose 1-phosphate = UDP-glucose + PPi) is an example of an enzymic reaction in which a nucleoside triphosphate other than ATP is the immediate source of metabolic energy. Kinetic properties of the enzyme, acting in the direction of UCP-glucose formation were investigated in vitro. The reaction was inhibited by UDP-glucose (0.072), Pi (11), UDP (1.6), UDP-xylose (0.87), UDP-glucuronate (1.3), and UDP-galacturonate (0.95). The numbers in parentheses indicate the concentration (mM) required for half-maximal inhibition under the conditions used. Other compounds tested, including ATP, ADP, and AMP, had no effect. Over a range of concentrations of UTP (0.04-0.8 MM) and UDP-glucose (0.05-0.03 mM), the reaction rate was more dependent on the concentration ratio [UDP-glucose]/[UTP] than on the absolute concentration of either compound. Comparison of the kinetic properties in vitro with estimates of metabolite levels in vivo suggests that (1) the enzyme operates in a range far from its maximal rate, and (2) the concentrations of glucose 1-phosphate and Pi and the ratio [UDP-glucose]/[UTP] may be the most important determinants of UDP-glucose synthase activity.  相似文献   

2.
The regulation of glucuronidation during hypoxia was studied in isolated hepatocytes by analysing the dependence of acetaminophen glucuronidation rate on the intracellular concentrations of UTP, glucose 1-phosphate, UDP-glucose and UDP-glucuronic acid. The steady-state concentrations of these metabolites in cells from fed and starved rats were altered by exposure to various hypoxic O2 concentrations and by adding exogenous glucose. Changes in glucuronidation rate under all conditions were explained in terms of the concentrations of the substrates for UDP-glucose pyrophosphorylase, i.e. UTP and glucose 1-phosphate. Steady-state rates for the UDP-glucose pyrophosphorylase reaction, calculated by using published kinetic constants and measured glucose 1-phosphate and UTP concentrations, were in agreement with the measured glucuronidation rates. Thus the UDP-glucose pyrophosphorylase reaction is the key regulatory site for drug glucuronidation during hypoxia. Control at this site indicates that glucuronidation in vivo may be generally depressed in pathological conditions involving hypoxia and energy (calorie) malnutrition.  相似文献   

3.
UDP-glucose pyrophosphorylase synthesizes UDP-glucose from UTP and glucose 1-phosphate and exists in almost all species. Most bacteria possess a GalU-type UDP-glucose pyrophosphorylase, whereas many cyanobacteria species do not. In certain cyanobacteria, UDP-glucose is used as a substrate for synthesis of exopolysaccharide cellulose in spite of the absence of GalU-type UDP-glucose pyrophosphorylase. Therefore, there should be an uncharacterized UDP-glucose pyrophosphorylase in cyanobacteria. Here, we show that all cyanobacteria possess a non-GalU-type bacterial UDP-glucose pyrophosphorylase, i.e., CugP, a novel family in the nucleotide triphosphate transferase superfamily. The expressed recombinant Synechocystis sp. strain PCC 6803 CugP had pyrophosphorylase activity that was highly specific for UTP and glucose 1-phosphate. The fact that the CugP gene cannot be deleted completely in Synechocystis sp. PCC 6803 suggests its central role as the substrate supplier for galactolipid synthesis. Galactolipids are major constituents of the photosynthetic thylakoid membrane and important for photosynthetic activity. Based on phylogenetic analysis, this CugP-type UDP-glucose pyrophosphorylase may have recently been horizontally transferred to certain noncyanobacteria.  相似文献   

4.
1. A study has been made of the ability of rat liver in vivo to maintain equilibrium in the combined glyceraldehyde 3-phosphate dehydrogenase, 3-phosphoglycerate kinase and lactate dehydrogenase reactions, i.e. in the system: [Formula: see text] Attempts were made to upset equilibrium. The [lactate]/[pyruvate] ratio was rapidly changed by injection of ethanol or crotyl alcohol, and the value of [ATP]/[ADP][HPO(4) (2-)] was rapidly changed by injection of ethionine or carbonyl cyanide p-trifluoromethoxy-phenylhydrazone. 2. The concentrations of the metabolites occurring in the above equation were measured in freeze-clamped liver. 3. Although the injected agents caused large changes in the concentrations of the individual components, near-equilibrium in the system was maintained, as indicated by the fact that the value of [ATP]/[ADP][HPO(4) (2-)], referred to as the phosphorylation state of the adenine nucleotides, measured directly agreed with the value calculated for equilibrium conditions from the above equation. 4. The results are discussed and taken to confirm that the order of magnitude of the value of the redox state of the cytoplasmic NAD couple in rat liver is controlled by the phosphorylation state of the adenine nucleotide system.  相似文献   

5.
1. The ratio [ATP]/[ADP][P(i)], as measured by direct determination of the three components in rat liver, was found in various nutritional states to have approximately the same value as the ratio [ATP]/[ADP][P(i)] calculated from the concentrations of lactate, pyruvate, glyceraldehyde phosphate and 3-phosphoglycerate on the assumption that lactate dehydrogenase, glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase are at near-equilibrium in the liver. This implies that the redox state of the NAD couple in the cytoplasm is linked to, and partially controlled by, the phosphorylation state of the adenine nucleotides. 2. The combined equilibrium constant of the glyceraldehyde 3-phosphate dehydrogenase and 3-phosphoglycerate kinase reactions at 38 degrees C and I0.25, was found to be 5.9x10(-6). 3. The fall of the [NAD(+)]/[NADH] ratio in starvation and other situations is taken to be the consequence of a primary fall of the [ATP]/[ADP][HPO(4) (2-)] ratio.  相似文献   

6.
Previously we reported that stable transfection of human UDP-glucose pyrophosphorylase (hUGP2) rescued galactose-1-phosphate uridyltransferase (GALT)-deficient yeast from "galactose toxicity." Here we test in human cell lines the hypothesis that galactose toxicity was caused by excess accumulation of galactose-1-phosphate (Gal-1-P), inhibition of hUGP2, and UDP-hexose deficiency. We found that SV40-transformed fibroblasts derived from a galactosemic patient accumulated Gal-1-P from 1.2+/-0.4 to 5.2+/-0.5 mM and stopped growing when transferred from 0.1% glucose to 0.1% galactose. Control fibroblasts accumulated little Gal-1-P and continued to grow. The GALT-deficient cells had 157+/-10 micromoles UDP-glucose/100 g protein and 25+/-5 micromoles UDP-galactose/100 g protein when grown in 0.1% glucose. The control cells had 236+/-25 micromoles UDP- glucose/100 g protein and 82+/-10 micromoles UDP-galactose/100 g protein when grown in identical medium. When we transfected the GALT-deficient cells with either the hUGP2 or GALT gene, their UDP-glucose content increased to 305+/-28 micromoles/100 g protein (hUGP2-transfected) and 210+/-13 micromoles/100 g protein (GALT-transfected), respectively. Similarly, UDP-galactose content increased to 75+/-12 micromoles/100 g protein (hUGP2-transfected) and 55+/-9 micromoles/100 g protein (GALT-transfected), respectively. Though the GALT-transfected cells grew in 0.1% galactose with little accumulation of Gal-1-P (0.2+/-0.02 mM), the hUGP2-transfected cells grew but accumulated some Gal-1-P (3.1+/-0.4 mM). We found that 2.5 mM Gal-1-P increased the apparent KM of purified hUGP2 for glucose-1-phosphate from 19.7 microM to 169 microM, without changes in apparent Vmax. The Ki of the reaction was 0.47 mM. Gal-1-P also inhibited UDP-N-acetylglucosamine pyrophosphorylase, which catalyzes the formation of UDP-N-acetylglucosamine. We conclude that intracellular concentrations of Gal-1-P found in classic galactosemia inhibit UDP-hexose pyrophosphorylases and reduce the intracellular concentrations of UDP-hexoses. Reduced Sambucus nigra agglutinin binding to glycoproteins isolated from cells with increased Gal-1-P is consistent with the resultant inhibition of glycoprotein glycosylation.  相似文献   

7.
1. To examine the role of the hepatic redox state on the rate of gluconeogenesis the effects of sodium crotonate injection (6mmol/kg body wt.) on rat liver metabolite concentrations and gluconeogenesis from lactate were studied in vivo. 2. Crotonate caused a marked oxidation of cytoplasmic and mitochondrial redox couples; decreases were observed in the ratios of [lactate]/[pyruvate], [glycerol 3-phosphate]/[dihydroxyacetone phosphate], [hydroxybutyrate]/[acetoacetate] and measured [NAD(+)]/[NADH]. 3. Increases occurred in the liver concentrations of all gluconeogenic intermediates from pyruvate through to glucose 6-phosphate, but there was no change in lactate concentration. 4. To determine whether gluconeogenesis from lactate was altered by the more-oxidized hepatic redox state l-[2-(14)C]lactic acid was infused into the inferior vena cava (50mumol/min per kg body wt.) and the incorporation of radioactivity into blood glucose was measured. 5. Administration of crotonate transiently decreased the rate of lactate incorporation into glucose but within a few minutes the rate of incorporation returned to that of the controls. 6. The results indicate that in these experiments alteration of the NAD(+)-NADH systems of cytoplasm and mitochondria to a more-oxidized state did not change the rate of gluconeogenesis.  相似文献   

8.
1. The specific radioactivities of glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, UDP-glucose and glycogen, derived from [14C]gluocose, were determined in the normal and insulin-deficient (streptozotocin-diabetic and anti-insulin-serum-treated) perfused non-working and working rat heart. 2. The specific radioactivities of all glucose metabolities reached a plateau after about 10 min, except that for glycogen, which increased slightly but steadily over the whole observation period of 30min. 3. The specific radio-activities of fructose 6-phosphate, UDP-glucose and glycogen were slignificantly lower in the streptozotocin-diabetic heart than in the normal heart. 4. Mechanical work in the normal rat heart increased the specific radioactivities of glucose 1-phosphate, UDP-glucose and glycogen, but had little or no effect on those of gluose 6-phosphate and fructose 6-phosphate. 5. In the normal heart insulin strongly increased the specific radioactivities of all gluocse metabolites under all conditions tested. The maximum values achieved in the normal working heart in the presence of insulin were only about 15-20% above those in the normal non-working heart in the presence of insulin for the phosphorylated intermediates and about 40% above for glycogen. 6. In the streptozotocin-diabetic heart, work restored the specific radioactivities of all glucose metabolities to about normal values. 7. In the streptozotocin-diabetic heart insulin strongly increased the specific radioactivities of the direct glycogen precursors glucose 1-phosphate and UDP-glucose; the effect of insulin on glucose 6-phosphate and fructose 6-phosphate was less marked. These results confirm previous findings that the primary metabolic lesion in diabetic heart muscle is a defect of glycogen synthesis. The specific radioactivity of glycogen itself was increased sixfold. 8. Under all conditions tested the specific radioactivity of glucose 1-phosphate was always found to be higher than that of glucose 6-phosphate. This indicated either compartmentation of a small but metabolically very active pool of glucose 6-phosphate, or the existence of a hitherto unknown pathway of metabolism in which glucose 1-phosphate is the primary reaction product. For a number of reasons the authors prefer the first explanation, which could also account for the observation that in the perfused normal working and non-working heart the specific radioactivity of fructose 6-phosphate was always found to be higher than that of glucose 6-phosphate. This difference disappeared or was reversed in the rat hearts rendered insulin-insufficent by either streptozotocin or anti-insulin treatment.  相似文献   

9.
1. Ethionine-treated mice showed a marked depletion in liver glycogen, a decrease of glycogen-synthetase activity, an increase in activity of glucose 6-phosphate dehydrogenase and the solubilization of phosphorylase. 2. The administration of cortisol or glucose did not alleviate these changes but the effect of ethionine was completely prevented in animals given methionine as well as ethionine. 3. The activities of the following enzymes were unchanged: hexokinase, glucokinase, glucose 6-phosphatase, phosphoglucomutase, 6-phosphogluconate dehydrogenase, UDP-glucose pyrophosphorylase, UDP-glucose dehydrogenase and pyruvate kinase.  相似文献   

10.
Comparative time-course studies of glycogen synthesis from glucose 6-phosphate, glucose 1-phosphate and UDP-glucose show that glucose 1-phosphate forms glycogen at an initial rate faster than that obtained with glucose 6-phosphate and UDP-glucose. After 5min. the rates from glucose monophosphates are considerably slower. 2,4-Dinitrophenol decreases glycogen synthesis from both glucose monophosphates, whereas arsenate and EDTA increase glycogen synthesis from glucose 1-phosphate and inhibit the reaction from glucose 6-phosphate, galactose and galactose 1-phosphate. Mitochondria-free pigeon liver cytoplasmic fraction forms less glycogen from glucose monophosphates than does the whole homogenate. 2-Deoxyglucose 6-phosphate inhibits glycogen synthesis from glucose monophosphates. Glycogen formation from UDP-glucose is relatively unaffected by dinitrophenol, by arsenate, by EDTA, by 2-deoxyglucose 6-phosphate and by the removal of mitochondria from the whole homogenate.  相似文献   

11.
Compartmentation between glycolysis and gluconeogenesis in rat liver   总被引:8,自引:6,他引:2  
1. The specific radioactivity-time relationships of glucose, glucose 6-phosphate, glycerol 1-phosphate and UDP-glucose were determined in rat liver after the intravenous injection of [U-(14)C]fructose, and a kinetic analysis was carried out. The glucose 6-phosphate pool was found to be compartmented into gluconeogenic and glycolytic components, and evidence was obtained that the triose phosphates were similarly compartmented. The glycolytic pathway was fed by glycogenolysis and glucose phosphorylation. There was no direct evidence that glycogenolysis fed only the glycolytic pathway, but this interpretation would make the liver resemble other organs in this respect. 2. UDP-glucose was not formed solely from gluconeogenic glucose 6-phosphate, as there was some dilution of label in the intervening glucose 1-phosphate pool, probably from glycogenolysis, though other pathways cannot be excluded. 3. The data cannot be explained by isotopic exchange.  相似文献   

12.
The short term metabolic effects of the in vivo administration of platelet-derived growth factor have been examined in the liver of the rat. Meal-fed male Wistar rats weighing between 150-180 g received an intraperitoneal injection of platelet-derived growth factor (17 units/100 g weight), transforming growth factor-beta (185 ng/100 g weight), or saline. At 5 min after injection, the livers were freeze-clamped. Samples of the tissue were subsequently assayed for metabolite content and enzyme activities. Platelet-derived growth factor injection caused an elevation in the liver content of pyruvate from 0.14 +/- 0.012 to 0.19 +/- 0.009 mumol/g wet weight liver (p less than or equal to 0.01) and an increase in the cytosolic phosphorylation potential [sigma ATP]/[sigma ADP][sigma Pi] from 6670 +/- 540 to 8970 +/- 750 (p less than or equal to 0.01). In addition an increase in the hepatic content of the hexose monophosphate pathway metabolites, 6-phosphogluconate (0.027 +/- 0.004 to 0.037 +/- 0.005 mumol/g wet weight) (p less than or equal to 0.05), ribulose 5-phosphate (0.013 +/- 0.001 to 0.017 +/- 0.001 mumol/g wet weight) (p less than or equal to 0.05) and combined sedoheptulose 7-phosphate and ribose 5-phosphate (0.052 +/- 0.007 to 0.062 +/- 0.004 mumol/g wet weight) (p less than or equal to 0.05) was observed. The elevation in the hexose monophosphate pathway metabolites resulted from a 1.3-fold elevation in the activity of glucose-6-phosphate dehydrogenase [EC 1.1.1.49] when measured in a crude homogenate. Kinetic analysis performed on partially purified glucose-6-phosphate dehydrogenase demonstrated no significant change in the Km of the enzyme for either NADP+ or glucose 6-phosphate, while a 2.4-fold increase in the Vmax was observed. In view of the rapidity of the change in total measured enzyme activity and increase in the Vmax of glucose-6-phosphate dehydrogenase, it is postulated that platelet-derived growth factor causes a covalent modification of the existing enzyme. Transforming growth factor-beta caused no change in the hepatic metabolite content in the treated animals when compared to saline treated controls.  相似文献   

13.
The hypothesis that ionized calcium [Ca2+]i may stimulate in situ rat adipocyte intermediary metabolism distal to glucose transport was tested. A metabolically active porous adipocyte model was employed in which pathway metabolism is exclusively pore-dependent using glucose 6-phosphate (G6P) as substrate. Cellular [Ca2+]i was, furthermore, directly adjusted to between 0-2.5 microM via the membrane pores. Three metabolic fluxes were examined, (1) glycolysis-Krebs ([6-14C]G6P oxidation), (2) glycolysis to lactate ([U-14C]G6P to [14C]lactate) and (3) pentose pathway ([1-14C]G6P oxidation). Glycolysis-Krebs oxidation was was found to be selectively (33% above basal P less than 0.001) stimulated by 0.625 microM free calcium. In contrast, there was no effect of [Ca2+]i on the other, exclusively cytoplasmic, pathways. The stimulation of glycolysis-Krebs by [Ca2+]i was inhibited by a mitochondrial calcium channel blocker (Ruthenium red) and persisted over a range of ATP/ADP ratios. Separate studies demonstrated that 2-[1-14C]ketoglutarate oxidation was also calcium-stimulated in the porous adipocytes (160% over baseline at 1 microM [Ca2+]i). These studies thus demonstrate that physiologically relevant increments in porous adipocyte [Ca2+]i enhance overall in situ glycolytic-Krebs pathway oxidation by a mechanism which entails mitochondrial calcium uptake. Methodologically, this metabolically active porous adipocyte model presents a novel experimental approach to investigations regarding the effects of ionized calcium on intermediary metabolism beyond glucose transport.  相似文献   

14.
《Phytochemistry》1986,25(7):1579-1585
Regulation of the sugar content of the developing tubers of three varieties (King Edward, Maris Bard, Pentland Javelin) of Solanum tuberosum was investigated. Sucrose, glucose, fructose, UDP-glucose and fructose-2,6-bispbosphate were measured during tuber development as were the maximum catalytic activities of acid invertase, alkaline invertase, sucrose synthase, α-glucan phosphorylase, hexokinase, phospbofructokinase and pyrophosphate: fructose 6-phosphate 1-phosphotransferase [PFK(PPi)]. Sucrose was the dominant sugar and there was less fructose than glucose; the amounts of all three per gram fresh weight fell during tuber development. The activity of hexokinase per gram fresh weight declined during development but those of the other enzymes listed did not alter significantly. No change in the amounts of fructose-2,6-bisphosphate or UDP-glucose per gram fresh weight were found. The above measurements suggest that much of the sucrose translocated to the developing tuber is metabolized via sucrose syntbase to UDP-glucose that is converted to glucose 1-phosphate by UDP-glucose pyrophosphorylase using pyrophosphate generated by PFK (PPi).  相似文献   

15.
The H(+)/ATP ratio and the standard Gibbs free energy of ATP synthesis were determined with a new method using a chemiosmotic model system. The purified H(+)-translocating ATP synthase from chloroplasts was reconstituted into phosphatidylcholine/phosphatidic acid liposomes. During reconstitution, the internal phase was equilibrated with the reconstitution medium, and thereby the pH of the internal liposomal phase, pH(in), could be measured with a conventional glass electrode. The rates of ATP synthesis and hydrolysis were measured with the luciferin/luciferase assay after an acid-base transition at different [ATP]/([ADP][P(i)]) ratios as a function of deltapH, analysing the range from the ATP synthesis to the ATP hydrolysis direction and the deltapH at equilibrium, deltapH (eq) (zero net rate), was determined. The analysis of the [ATP]/([ADP][P(i)]) ratio as a function of deltapH (eq) and of the transmembrane electrochemical potential difference, delta micro approximately (H)(+) (eq), resulted in H(+)/ATP ratios of 3.9 +/- 0.2 at pH 8.45 and 4.0 +/- 0.3 at pH 8.05. The standard Gibbs free energies of ATP synthesis were determined to be 37 +/- 2 kJ/mol at pH 8.45 and 36 +/- 3 kJ/mol at pH 8.05.  相似文献   

16.
Potato tuber UDP-glucose pyrophosphorylase (EC 2.7.7.9) catalyzes the reversible uridylyl transfer from UDP-glucose to MgPPi forming glucose 1-phosphate and MgUTP, according to an ordered bi-bi mechanism in which UDP-glucose and MgPPi bind in this order. To probe the active site of this enzyme, we have applied pyridoxal 5'-diphosphate, a reactive PPi analogue. The enzyme was rapidly inactivated when incubated with the reagent in the presence of Mg2+ followed by sodium borohydride reduction. The degree of the inactivation was decreased by MgUTP, MgPPi, and glucose 1-phosphate, but enhanced by UDP-glucose. The enhancement was prevented by co-addition of Pi, the competitive inhibitor with respect to PPi. The complete inactivation corresponded to the incorporation of 0.9-1.1 mol of reagent/mol of enzyme monomer. In the presence of UDP-glucose, labels were almost exclusively incorporated into Lys-329. Thus, this residue may be located near the bound MgPPi and its modification is promoted, probably through conformational changes, by the binding of UDP-glucose to the enzyme. The results of the modification by the same reagent of the mutant enzymes in which Lys-329 and Lys-263 are individually replaced by Gln suggest the roles of these lysyl residues in the binding of MgPPi and in the UDP-glucose-induced conformational changes, respectively.  相似文献   

17.
Gibberellic acid (GA) stimulated both the elongation of Avena sativa stem segments and increased synthesis of cell wall material. The effects of GA on glucose metabolism, as related to cell wall synthesis, have been investigated in order to find specific events regulated by GA. GA caused a decline in the levels of glucose, glucose 6-phosphate, and fructose 6-phosphate if exogenous sugar was not supplied to the segments, whereas the hormone caused no change in the levels of glucose 6-phosphate, fructose 6-phosphate, UDP-glucose, or the adenylate energy charge if the segments were incubated in 0.1 m glucose. No GA-induced change could be demonstrated in the activities of hexokinase, phosphoglucomutase, UDP-glucose pyrophosphorylase, or polysaccharide synthetases using UDP-glucose, UDP-galactose, UDP-xylose, and UDP-arabinose as substrates. GA stimulated the activity of GDP-glucose-dependent β-glucan synthetase by 2- to 4-fold over the control. When glucan synthetase was assayed using UDP-glucose as substrate, only β-1,3-linked glucan was synthesized in vitro, whereas with GDP-glucose, only β-1,4-linked glucan was synthesized. These results suggest that one part of the mechanism by which GA stimulates cell wall synthesis concurrently with elongation in Avena stem segments may be through a stimulation of cell wall polysaccharide synthetase activity.  相似文献   

18.
1. The administration of cortisol and of other glucocorticoid steroids to starved mice produced an increase in liver glycogen content, an elevation of glycogen-synthetase activity and a predominantly particulate localization of both phosphorylase and glycogen-synthetase enzymes. 2. Three daily doses of actinomycin D caused a marked glycogen depletion, a significant decrease in glycogen-synthetase activity, the solubilization of phosphorylase and glycogen synthetase and the following effects on the activities of various other enzymes: a decrease in UDP-glucose pyrophosphorylase and phosphoglucomutase, an increase in glucose 6-phosphate dehydrogenase and no change in glucose 6-phosphatase, 6-phosphogluconate dehydrogenase, pyruvate kinase and UDP-glucose dehydrogenase. 3. Glucose ingestion, but not cortisol administration, reversed the effects of actinomycin D on liver glycogen content and on the activities of phosphorylase and glycogen synthetase.  相似文献   

19.
1. Lactogenesis was initiated in pregnant rats by ovariectomy, thereby causing progesterone withdrawal, after which the mammary tissue was analysed for contents of enzymes and metabolites concerned with the biosynthesis of lactose. 2. Lactose synthesis increased about 126-fold with little or no accompanying change in the contents of most metabolic intermediates or in the adenine nucleotide energy charge. 3. Comparison of mass-action ratios with equilibrium constants showed that phosphoglucomutase (EC 2.7.5.1), UDP-glucose pyrophosphorylase (EC 2.7.7.9) and UDP-glucose epimerase (EC 5.1.3.2.) catalysed reactions close to equilibrium. Nucleoside diphosphokinase (EC 2.7.4.6.) activity was very high and probably equilibrates the UTP-UDP and ATP-ADP couples. Lactose synthetase and hexokinase (EC 2.7.1.1) appeared to catalyse rate-limiting reactions. 4. Large increases were seen of UDP-glucose pyrophosphorylase (5-fold), lactose synthetase A protein (3.8-fold) and alpha-lactalbumin (28-fold), but not of hexokinase, phosphoglucomutase, UDP-glucose epimerase, nucleoside diphosphokinase or glucose 6-phosphate dehydrogenase (EC 1.1.1.49) activities. 5. It appeared that the increased lactose synthesis was largely accounted for by the increased lactose synthetase A protein activity and alpha-lactalbumin.  相似文献   

20.
A new sensitive method is described for glucose 1-phosphate analysis. The key reaction is the pyrophosphorolysis of UDP-glucose catalyzed by uridine 5′-diphosphoglucose pyrophosphorylase. The reaction product, [14C]UDP-glucose, is separated from [14C]UTP by adsorbing [14C]UTP selectively onto polyethyleneimine cellulose or by separating both labeled compounds on one-dimensional polyethyleneimine thin-layer chromatograms. The sensitivity of the method for glucose 1-phosphate analysis is 5 pmol. The method has been successfully employed to monitor the level of glucose 1-phosphate in early germination of wheat embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号