首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A liquid chromatographic method with ultraviolet detection was developed for the analysis of the recent antidepressant sertraline and its main metabolite N-desmethylsertraline in human plasma. The analytes were separated on a C8 reversed phase column, using a mobile phase composed of acetonitrile and a 12.3 mM, pH 3.0 phosphate buffer containing 0.1% triethylamine (35:65, v/v). Clomipramine was used as the Internal Standard. Using a solid phase extraction procedure with C2 cartridges high extraction yields (>94%) and good purification from matrix interference were obtained. Good linearity was obtained in the 7.5-250.0 ng mL(-1) range for sertraline and in the 10-500 ng mL(-1) range for N-desmethylsertraline. The analytical method was validated in terms of precision, extraction yield and accuracy. These assays gave R.S.D.% values for precision always lower than 3.9% and mean accuracy higher than 90%. Thanks to its good selectivity, the method proved to be suitable for the analysis of plasma samples from patients treated with sertraline as either monotherapy or polypharmacy.  相似文献   

2.
A sensitive, rapid liquid chromatographic-electrospray ionization mass spectrometric method for the determination of xanthinol in human plasma was developed and validated. Xanthinol nicotinate in plasma (0.5mL) was pretreated with 20% trichloroacetic acid for protein precipitation. The samples were separated using a Lichrospher silica (5mum, 250mmx4.6mm i.d.). A mobile phase of methanol-water containing 0.1% formic acid (50: 50, v/v) was used isocratically eluting at a flow rate of 1mL/min. Xanthinol and its internal standard (IS), acyclovir, were measured by electrospray ion source in positive selected reaction monitoring mode. The method demonstrated that good linearity ranged from 10.27 to 1642.8ng/mL with r=0.9956. The limit of quantification for xanthinol in plasma was 10.27ng/mL with good accuracy and precision. The mean plasma extraction recovery of xanthinol was in the range of 90.9-100.2%. The intra- and inter-batch variability values were less than 4.8% and 7.9% (relative standard deviation, R.S.D.), respectively. The established method has been successfully applied to a bioequivalence study of two xanthinol nicotinate tablets for 20 healthy volunteers.  相似文献   

3.
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection (LC-MS/MS) was developed for the determination of a potent 5-HT(1B/1D) receptor agonist, rizatriptan in human plasma using granisetron as the internal standard. The analyte and internal standard were isolated from 100 microL plasma samples by liquid-liquid extraction (LLE) and chromatographed on a Lichrospher C18 column (4.6mm x 50mm, 5 microm) with a mobile phase consisting of acetonitrile-10mM aqueous ammonium acetate-acetic acid (50:50:0.5, v/v/v) pumped at 1.0 mL/min. The method had a chromatographic total run time of 2 min. A Varian 1200 L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 270-->201 (rizatriptan) and 313.4-->138 (granisetron) used for quantitation. The assay was validated over the concentration range of 0.05-50 ng/mL and was found to have acceptable accuracy, precision, linearity, and selectivity. The mean extraction recovery from spiked plasma samples was above 98%. The intra-day accuracy of the assay was within 12% of nominal and intra-day precision was better than 13% C.V. Following a 10mg dose of the compound administered to human subjects, mean concentrations of rizatriptan ranged from 0.2 to 70.6 ng/mL in plasma samples collected up to 24h after dosing. Inter-day accuracy and precision results for quality control samples run over a 5-day period alongside clinical samples showed mean accuracies of within 12% of nominal and precision better than 9.5% C.V.  相似文献   

4.
A sensitive, rapid liquid chromatographic-electrospray ionization mass spectrometric method for determination of erythromycylamine in human plasma was developed and validated. Erythromycylamine in plasma (0.2 mL) was extracted with ethyl acetate, the organic phase was transferred to another clear 1.5 mL Eppendorf tube and evaporated to dryness under gentle nitrogen stream at 45 degrees C, and the residue was dissolved in 100 microL of mobile phase. The samples were separated using a Thermo Hypersil HyPURITY C18 reversed-phase column (150 mm x 2.1 mm I.D., 5 microm). A mobile phase containing 10 mM of ammonium acetate (pH = 6.4)-acetonitrile-methanol (50:10:40, v/v/v) was used isocratically eluting at a flow rate of 0.2 mL/min. Erythromycylamine and its internal standard (IS), midecamycin, were measured by electrospray ion source in positive selective ion monitoring mode. The method demonstrated that good linearity ranged from 4.5 to 720 ng/mL with r = 0.9997. The limit of quantification for erythromycylamine in plasma was 4.5 ng/mL with good accuracy and precision. The mean extraction recovery of the method was higher than 75.1% and 72.7% for erythromycylamine and IS, respectively. The intra-day and inter-day precision ranged from 5.2% to 6.4% and 5.6-9.3% (relative standard deviation, RSD), respectively. The established method has been successfully applied to a bioequivalence study of two dirithromycin formulations for 18 healthy volunteers.  相似文献   

5.
An HPLC-MS/MS assay for the determination of an HIV integrase inhibitor, 5-(1,1-dioxido-1,2-thiazinan-2-yl)-N-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide (I) in human plasma has been developed and validated. Compound I and a stable isotope labeled internal standard (II) were isolated from 0.5 mL plasma samples by solid phase extraction using an Ansys SPEC C-8 96-well plate. Extracts were separated on a Hypersil BDS C-18 HPLC column (3.0 mmx50 mm, 3 microm) with a mobile phase consisting of 25 mM ammonium formate pH 3.0:acetonitrile (60:40) vol%/vol% pumped at 0.5 mL/min. A Sciex API 365 mass spectrometer equipped with an atmospheric pressure chemical ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 431-->109 (I) and m/z 437-->115 (II) used for quantitation. The assay was validated over the concentration range of 10-5000 ng/mL and was found to have acceptable accuracy, precision, linearity, and selectivity. The mean extraction recovery from spiked plasma samples was 69%. The intra-day accuracy of the assay was within 4% of nominal and intra-day precision was better than 4% C.V. Following a 200 mg dose of the compound administered to human subjects, concentrations of I ranged from 21.1 to 1500 ng/mL in plasma samples collected up to 12 h after dosing. Inter-day accuracy and precision results for quality control samples run over a 3-month period alongside clinical samples showed mean accuracies of within 6% of nominal and precision better than 3.5% C.V.  相似文献   

6.
A method based on high-performance liquid chromatography with UV detection in combination with solid-phase extraction for sample pretreatment has been developed for the simultaneous analysis of the antiepileptic drug oxcarbazepine and its main metabolites in human plasma. The extraction of the analytes from plasma samples was carried out by means of a selective solid-phase extraction procedure using hydrophilic-lipophilic balance cartridges. The separation was obtained on a reversed-phase column (C(18), 150x4.6 mm I.D., 5 micrometer) using a phosphate buffer-acetonitrile-methanol-triethylamine mixture (final apparent pH* 3.5) as the mobile phase. Under these chromatographic conditions, oxcarbazepine and its metabolites 10,11-dihydro-10-hydroxycarbamazepine, 10,11-dihydro-10,11-dihydroxycarbamazepine and the internal standard are baseline separated in less than 9 min. The extraction yield values were >94% for all analytes and the precision, expressed by the RSD%, was in the low percentage range. For the entire method, including sample pre-treatment and HPLC determination, the linearity of the calibration lines, expressed by the linear correlation coefficient, was better than 0.995; the limit of quantitation was 15 ng ml(-1). The method was applied to plasma samples from patients undergoing chronic treatment with oxcarbazepine, both in monotherapy and in polytherapy. Based on the analytical parameters precision, accuracy, limit of quantitation and analysis time the method is suitable for routine application in therapeutic drug monitoring.  相似文献   

7.
A selective, rapid and sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the quantitative determination of azithromycin in human plasma and its application in a pharmacokinetic study. With roxithromycin as internal standard, sample pretreatment involved a one-step extraction with diethyl ether of 0.5 mL plasma. The analysis was carried out on an ACQUITY UPLC BEH C(18) column (50 mm x 2.1 mm, i.d., 1.7 microm) with gradient elution at flow rate of 0.35 mL/min. The mobile phase was 50 mM ammonium acetate and acetonitrile. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode via electrospray ionization (ESI). Linear calibration curves were obtained in the concentration range of 1-1000 ng/mL, with a lower limit of quantification of 1 ng/mL. The intra- and inter-day precision (RSD) values were below 15% and accuracy (RE) was -1.3% to 5.7% at all QC levels. The method was applicable to clinical pharmacokinetic study of azithromycin in healthy volunteers following oral administration.  相似文献   

8.
A rapid, sensitive and specific method was developed and validated using LC/MS/MS for determination of sunitinib in human plasma. Sample preparation involved a liquid-liquid extraction by the addition of 0.2mL of plasma with 4.0mL tert-butyl-methyl-ether extraction solution containing 25ng/mL of the internal standard clozapine. Separation of compounds was achieved on a C18 (50mmx2.1mm i.d., 3.5microm) analytical column using a mobile phase consisting of acetonitrile/H20 (65:35, v/v) containing 0.1% formic acid and isocratic flow at 0.150mL/min for 3min. The analytes were monitored by tandem-mass spectrometry with electrospray positive ionization. Linear calibration curves in human plasma were generated over the range of 0.2-500ng/mL with values for the coefficient of determination of >0.9950. Within- and between day precision and accuracy were < or =10%. The method was applied to the quantitation of sunitinib in plasma samples from a patient receiving daily oral therapy with sunitinib.  相似文献   

9.
A rapid and sensitive LC-MS/MS method for the quantification of ondansetron was developed and validated. The plasma samples were treated by a semi-automated liquid-liquid extraction (LLE) in 1.2 mL 96-well format micro-tubes. Ondansetron and the internal standard (IS) granisetron were analyzed by combined reversed phase LC-MS/MS, with positive ion electrospray ionization, using multiple reactions monitoring (MRM). The statistical evaluation for this method reveals excellent linearity, accuracy and precision values for the range of concentrations 0.25-40.0 ng/mL. The proposed method enabled the reliable determination of ondansetron in bioequivalence studies after per os administration of a 4 or 8 mg tablet.  相似文献   

10.
The purpose of this study was develop and validate a sensitive and specific enantioselective liquid-chromatography/tandem mass spectrometry (LC-MS/MS) method, for the simultaneous quantification of eslicarbazepine acetate (ESL), eslicarbazepine (S-Lic), oxcarbazepine (OXC) and R-licarbazepine (R-Lic) in human plasma. Analytes were extracted from human plasma using solid phase extraction and the chromatographic separation was achieved using a mobile phase of 80% n-hexane and 20% ethanol/isopropyl alcohol (66.7/33.3, v/v). A Daicel CHIRALCEL OD-H column (5 μm, 50 mm × 4.6 mm) was used with a flow rate of 0.8 mL/min, and a run time of 8 min. ESL, S-Lic, R-Lic, OXC and the internal standard, 10,11-dihydrocarbamazepine, were quantified by positive ion electrospray ionization mass spectrometry. The method was fully validated, demonstrating acceptable accuracy, precision, linearity, and specificity in accordance with FDA regulations for the validation of bioanalytical methods. Linearity was proven over the range of 50.0-1000.0 ng/mL for ESL and OXC and over the range of 50.0-25,000.0 ng/mL for S-Lic and R-Lic. The intra- and inter-day coefficient of variation in plasma was less than 9.7% for ESL, 6.0% for OXC, 7.7% for S-Lic and less than 12.6% for R-Lic. The accuracy was between 98.7% and 107.2% for all the compounds quantified. The lower limit of quantification (LLOQ) was 50.0ng/mL for ESL, S-Lic, OXC and R-Lic in human plasma. The short-term stability in plasma, freeze-thaw stability in plasma, frozen long-term stability in plasma, autosampler stability and stock solution stability all met acceptance criteria. The human plasma samples, collected from 8 volunteers, showed that this method can be used for therapeutic monitoring of ESL and its metabolites in humans treated with ESL.  相似文献   

11.
A significant percentage of psychiatric patients who are treated with antipsychotics are treated with more than one antipsychotic drug in the clinic. Thus, it is advantageous to use a rapid and reliable assay that is suitable for determination of multiple antipsychotic drugs in plasma in a single run. A simple and sensitive HPLC-UV method was developed and validated for simultaneous quantification of olanzapine, haloperidol, chlorpromazine, ziprasidone, risperidone and its active metabolite 9-hydroxyrisperidone in rat plasma using imipramine as an internal standard (I.S.). The analytes were extracted from rat plasma using a single step liquid-liquid acid solution back extraction technique with wash procedure, which provided the very clear baseline for blank plasma extraction. The compounds were separated on an Agilent Eclipse XDB C8 (150 mm x 4.6 mm i.d., 5 microm) column using a mobile phase of acetonitrile/30 mM ammonium acetate including 0.05% triethylamine (pH 5.86 adjusted with acetic acid) with gradient elution. All of the analytes were monitored using UV detection. The method was validated and the linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries, selectivity and stability were determined. The LLOQ was 2.0 ng/ml and correlation coefficient (R(2)) values for the linear range of 2.0-500.0 ng/ml were 0.998 or greater for all the analytes. The precision and accuracy for intra-day and inter-day were better than 7.44%. The recovery was above 74.8% for all of the analytes. This validated method has been successfully used to quantify the plasma concentration of the analytes for pharmacological and toxicological studies following chronic treatment with antipsychotic drugs in the rat.  相似文献   

12.
A highly sensitive and specific LC-MS method was developed and validated for the quantification of digoxin in human plasma and urine using d5-dihydrodigoxin as internal standard (IS). The assay procedure involved extraction of digoxin and IS from human plasma with chloroform-isopropanol (95:5, v/v). Chromatogrphic separation was achieved on a Spherisorb ODS2 column using a gradient mobile phase with 5 mmol/L ammonium acetate in water with 1% acetic acid and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective [M+K](+) ions, m/z 819.4 for digoxin and m/z 826.4 for IS. The method was proved to be accurate and precise at linearity range of 0.12-19.60 ng/mL in plasma with a correlation coefficient (r(2)) of >or=0.9968 and 1.2-196.0 ng/mL in urine. The limit of quantification achieved with this method was 0.12 ng/mL in plasma and 1.2 ng/mL in urine. The intra- and inter-assay precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was successfully applied to a pharmacokinetic study in human volunteers following intravenous administration of digoxin.  相似文献   

13.
Atractylenolide III is a major active component in Atractylodes macrocephala. This paper describes a simple, rapid, specific and sensitive method for the quantification of atractylenolide III in rat plasma using a liquid-liquid extraction procedure followed by liquid chromatography mass spectrometric (LC-MS) analysis. A Kromasil 3.5 microm C(18) column (150 mm x 2.00 mm) was used as the analytical column. Linear detection responses were obtained for atractylenolide III concentration ranging from 5 to 500 ng L(-1). The precision and accuracy data, based on intra-day and inter-day variations over 5 days were within 10.29%. The lower limit of quantitation for atractylenolide III was 5 ng mL(-1), using 0.1 mL plasma for extraction and its recoveries were greater than 85% at the low, medium and high concentrations. The method has been successfully applied to a pharmacokinetic study in rats after an oral administration of atractylenolide III with a dose of 20.0 mg kg(-1). With the lower limits of quantification at 5 ng mL(-1) for atractylenolide III, this method was proved to be sensitive enough for the pharmacokinetics study of atractylenolide III.  相似文献   

14.
A new drug, quick-acting anti-motion capsule (QAAMC) composed of d-amphetamine sulfate, dimenhydrinate and ginger extraction has been studied for anti-motion-sickness use. We have developed a sensitive, specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantitative determination of d-amphetamine and diphenhydramine, the main effective components of the QAAMC, using pseudoephedrine as the internal standard. The analytes and internal standard were isolated from 200 microL plasma samples by a simple liquid-liquid extraction (LLE). Reverse-phase HPLC separation was accomplished on a Zorbax SB-C18 column (100 mm x 3.0 mm, 3.5 microm) with a mobile phase composed of methanol-water-formic acid (65:35:0.5, v/v/v) at a flow rate of 0.2 mL/min. The method had a chromatographic total run time of 5 min. A Varian 1200 L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 136.0-->91.0 (D-amphetamine), 256.0-->167.0 (diphenhydramine) and 166.1-->148.0 (IS) used for quantitation. The method was sensitive with a lower limit of quantitation (LLOQ) of 0.5 ng/mL for d-amphetamine and 1 ng/mL for diphenhydramine, with good linearity in the range 0.5-200 ng/mL for D-amphetamine and 1-500 ng/mL for diphenhydramine (r(2)> or =0.9990). All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic study of the QAAMC in beagle dogs.  相似文献   

15.
A selective, rapid and sensitive ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method was developed for the quantitative determination of mitiglinide in human plasma. With nateglinide as internal standard, sample pretreatment involved a one-step extraction with diethyl ether of 0.2 mL plasma. The separation was performed on an ACQUITY UPLCtrade mark BEH C(18) column (50 mm x 2.1 mm, i.d., 1.7 microm) with the mobile phase consisting of methanol and 10 mmol/L ammonium acetate (65:35, v/v) at a flow rate of 0.25 mL/min. The detection was carried out by means of electrospray ionization mass spectrometry in positive ion mode with multiple reaction monitoring (MRM). Linear calibration curves were obtained in the concentration range of 1.080-5400 ng/mL, with a lower limit of quantification of 1.080 ng/mL. The intra- and inter-day precision (RSD) values were below 15% and accuracy (RE) was from -3.5% to 7.3% at all QC levels. The method was fully validated and successfully applied to a clinical pharmacokinetic study of mitiglinide in 10 healthy volunteers following oral administration.  相似文献   

16.
A simple, sensitive and robust liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated for quantification of chlorpromazine in rat plasma and brain tissue. Chlorpromazine was extracted from rat plasma and brain homogenate using liquid-liquid extraction. The compounds were separated on a Waters Atlantis dC-18 (30 mm x 2.1 mm i.d., 3 microm) column using a mobile phase of acetonitrile/20 mM ammonium formate (pH 4.25 adjusted with formic acid) with gradient elution. Chlorpromazine was detected in positive ion mode using multiple reaction monitoring (MRM). The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. The LLOQ was 0.2 ng/ml for plasma and 0.833 ng/g for brain tissue. The method was linear over the concentration range from 0.2 to 200.0 ng/ml for plasma and from 0.833 to 833.3 ng/g for brain tissue. The correlation coefficient (R(2)) values were more than 0.998 for both plasma and brain homogenate. The precision and accuracy for intra-day and inter-day were better than 7.54%. The relative and absolute recovery was above 84.9% and matrix effects were lower than 5.6%. This validated method has been successfully used to quantify the rat plasma and brain tissue concentration of chlorpromazine after chronic treatment.  相似文献   

17.
A rapid, sensitive, robust and specific method was developed for the determination and quantitation of felodipine, in human blood plasma by liquid chromatography coupled with tandem mass spectrometry using nimodipine as internal standard. Felodipine was extracted from 0.5 mL human plasma by use of a liquid/liquid procedure using diethyl ether/hexane (80/20, v/v) as eluent. The method included a chromatographic run of 5 min using a C(18) analytical column (100 mm x 4.6 mm i.d.) and the calibration curve was linear over the range from 0.02 to 10 ng mL(-1) (r(2) > 0.994). The between-run precision, determined as relative standard deviation of replicate quality controls, was 5.7% (0.06 ng mL(-1)), 7.1% (0.6 ng mL(-1)) and 6.8% (7.5 ng mL(-1)). The between-run accuracy was +/- 0.0, 2.1 and 3.1% for the above-mentioned concentrations, respectively.  相似文献   

18.
A simple, selective and sensitive isocratic HPLC method with triple quadrupole mass spectrometry detection has been developed and validated for simultaneous quantification of zopiclone and its metabolites in human plasma. The analytes were extracted using solid phase extraction, separated on Symmetry shield RP8 column (150 mm x 4.6 mm i.d., 3.5 microm particle size) and detected by tandem mass spectrometry with a turbo ion spray interface. Metaxalone was used as an internal standard. The method had a chromatographic run time of 4.5 min and linear calibration curves over the concentration range of 0.5-150 ng/mL for both zopiclone and N-desmethyl zopiclone and 1-150 ng/mL for zopiclone-N-oxide. The intra-batch and inter-batch accuracy and precision evaluated at lower limit of quantification and quality control levels were within 89.5-109.1% and 3.0-14.7%, respectively, for all the analytes. The recoveries calculated for the analytes and internal standard were > or = 90% from spiked plasma samples. The validated method was successfully employed for a comparative bioavailability study after oral administration of 7.5 mg zopiclone (test and reference) to 16 healthy volunteers under fasted condition.  相似文献   

19.
A liquid chromatography-mass spectrometry based method for determination of muscarine in human urine was developed and validated. The method involved a solid phase extraction of muscarine from urine using Strata X-CW column. Separation of muscarine was achieved within 16.0 min on a reversed phase Gemini C18 analytical column (150 mm × 2.0mm i.d., 5 μm) with a mobile phase consisted of aqueous 8 mmol/L heptafluorobutyric acid and acetonitrile in a gradient mode. Mass spectrometric detection was performed at m/z 174 and m/z 216 for muscarine and acetylmuscarine (internal standard), respectively. The linearity was satisfactory with a coefficient of determination (R(2)) 0.9993 at concentration range from 0.3 ng/mL to 2.0 μg/mL, LOD and LOQ for muscarine was 0.09 ng/mL and 0.3 ng/mL, respectively. The found out recoveries of muscarine were 96% or 95% for concentration 0.3 ng/mL and 0.2 μg/mL or 2.0 μg/mL, respectively. The precision in the intra-assay-study varied from 0.48% to 1.39% and in the inter-assay-study from 2.39% to 5.49%. The accuracy ranged from -3.3% to -6%. The validation results demonstrated that the method fulfilled satisfactory requirements for precision and accuracy across the calibration curve. The applicability of the method has been demonstrated by analyzing clinical urine samples. The method offers the fast objective identification of intoxication by muscarine and can become a routine screening alternative to more difficult microscopic examination of spores in the gastric content in clinical practice.  相似文献   

20.
A selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the determination of cycloserine in human plasma is developed using niacin as internal standard (IS). The analyte and IS were extracted from 500 μL of human plasma via solid phase extraction on Waters Oasis MCX cartridges. Chromatographic separation was achieved on a Peerless Basic C18 (100 mm × 4.6mm, 3 μm) column under isocratic conditions. Detection of analyte and IS was done by tandem mass spectrometry, operating in positive ion and multiple reaction monitoring (MRM) acquisition mode. The protonated precursor to product ion transitions monitored for cycloserine and niacin were at m/z 103.1 → 75.0 and 124.1 → 80.1 respectively. The method was fully validated for its selectivity, interference check, sensitivity, carryover check, linearity, precision and accuracy, reinjection reproducibility, recovery, matrix effect, ion suppression/enhancement, stability and dilution integrity. The limit of detection (LOD) and lower limit of quantitation of the method were 0.0013 and 0.20 μg/mL respectively with a linear dynamic range of 0.20-30.00 μg/mL for cycloserine. The intra-batch and inter-batch precision (%CV) across six quality control levels was less than 8.0% for cycloserine. The method was successfully applied to a bioequivalence study of 250 mg cycloserine capsule formulation in 24 healthy Indian male subjects under fasting condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号