首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two major proteolytic cleavages, one at NITEGE(373)/A(374)RGSVI and the other at VDIPEN(341)/F(342)FGVGG, have been shown to occur in vivo within the interglobular domain of aggrecan. The Glu(373)-Ala(374) site is cleaved in vitro by aggrecanase-1 (ADAMTS4) and aggrecanase-2 (ADAMTS5), whereas the other site, at Asn(341)-Phe(342), is efficiently cleaved by matrix metalloproteinases (MMPs) and by cathepsin B at low pH. Accordingly, the presence of the cleavage products globular domain 1 (G1)-NITEGE(373) and G1-VDIPEN(341) in vivo has been widely interpreted as evidence for the specific involvement of ADAMTS enzymes and MMPs/cathepsin B, respectively, in aggrecan proteolysis in situ. We show here, in digests with native human aggrecan, that purified ADAMTS4 cleaves primarily at the Glu(373)-Ala(374) site, but also, albeit slowly and secondarily, at the Asn(341)-Phe(342) site. Cleavage at the Asn(341)-Phe(342) site in these incubations was due to bona fide ADAMTS4 activity (and not a contaminating MMP) because the cleavage was inhibited by TIMP-3 (a potent inhibitor of ADAMTS4), but not by TIMP-1 and TIMP-2, at concentrations that totally blocked MMP-3-mediated cleavage at this site. Digestion of recombinant human G1-G2 (wild-type and cleavage site mutants) confirmed the dual activity of ADAMTS4 and supported the idea that the enzyme cleaves primarily at the Glu(373)-Ala(374) site and secondarily generates G1-VDIPEN(341) by removal of the Phe(342)-Glu(373) peptide from G1-NITEGE(373). These results show that G1-VDIPEN(341) is a product of both MMP and ADAMTS4 activities and challenge the widely held assumption that this product represents a specific indicator of MMP- or cathepsin B-mediated aggrecan degradation.  相似文献   

2.
We have expressed G1-G2 mutants with amino acid changes at the DIPEN(341) downward arrow(342)FFGVG and ITEGE(373) downward arrow(374)ARGSV cleavage sites, in order to investigate the relationship between matrix metalloproteinase (MMP) and aggrecanase activities in the interglobular domain (IGD) of aggrecan. The mutation DIPEN(341) to DIGSA(341) partially blocked cleavage by MMP-13 and MMP-8 at the MMP site, while the mutation (342)FFGVG to (342)GTRVG completely blocked cleavage at this site by MMP-1, -2, -3, -7, -8, -9, -13, -14. Each of the MMP cleavage site mutants, including a four-amino acid deletion mutant lacking residues ENFF(343), were efficiently cleaved by aggrecanase, suggesting that the primary sequence at the MMP site had no effect on aggrecanase activity in the IGD. The mutation (374)ARGSV to (374)NVYSV completely blocked cleavage at the aggrecanase site by aggrecanase, MMP-8 and atrolysin C but had no effect on the ability of MMP-8 and MMP-13 to cleave at the Asn(341) downward arrowPhe bond. Susceptibility to atrolysin C cleavage at the MMP site was conferred in the DIGSA(341) mutant but absent in the wild-type, (342)GTRVG, (374)NVYSV, and deletion mutants. To further explore the relationship between MMP and aggrecanase activities, sequential digest experiments were done in which MMP degradation products were subsequently digested with aggrecanase and vice versa. Aggrecanase-derived G1 domains with ITEGE(373) C termini were viable substrates for MMPs; however, MMP-derived G2 fragments were resistant to cleavage by aggrecanase. A 10-mer peptide FVDIPENFFG, which is a substrate analogue for the MMP cleavage site, inhibited aggrecanase cleavage at the Glu(373) downward arrowAla bond. This study demonstrates that MMPs and aggrecanase have unique substrate recognition in the IGD of aggrecan and suggests that sequences at the C terminus of the DIPEN(341) G1 domain may be important for regulating aggrecanase cleavage.  相似文献   

3.
Aggrecan is responsible for the mechanical properties of cartilage. One of the earliest changes observed in arthritis is the depletion of cartilage aggrecan due to increased proteolytic cleavage within the interglobular domain. Two major sites of cleavage have been identified in this region at Asn(341)-Phe(342) and Glu(373)-Ala(374). While several matrix metalloproteinases have been shown to cleave at Asn(341)-Phe(342), an as yet unidentified protein termed "aggrecanase" is responsible for cleavage at Glu(373)-Ala(374) and is hypothesized to play a pivotal role in cartilage damage. We have identified and cloned a novel disintegrin metalloproteinase with thrombospondin motifs that possesses aggrecanase activity, ADAMTS11 (aggrecanase-2), which has extensive homology to ADAMTS4 (aggrecanase-1) and the inflammation-associated gene ADAMTS1. ADAMTS11 possesses a number of conserved domains that have been shown to play a role in integrin binding, cell-cell interactions, and extracellular matrix binding. We have expressed recombinant human ADAMTS11 in insect cells and shown that it cleaves aggrecan at the Glu(373)-Ala(374) site, with the cleavage pattern and inhibitor profile being indistinguishable from that observed with native aggrecanase. A comparison of the structure and expression patterns of ADAMTS11, ADAMTS4, and ADAMTS1 is also described. Our findings will facilitate the study of the mechanisms of cartilage degradation and provide targets to search for effective inhibitors of cartilage depletion in arthritic disease.  相似文献   

4.
Mature human aorta contains a 70-kDa versican fragment, which reacts with a neoepitope antiserum to the C-terminal peptide sequence DPEAAE. This protein therefore appears to represent the G1 domain of versican V1 (G1-DPEAAE(441)), which has been generated in vivo by proteolytic cleavage at the Glu(441)-Ala(442) bond, within the sequence DPEAAE(441)-A(442)RRGQ. Because the equivalent aggrecan product (G1-NITEGE(341)) and brevican product (G1-EAVESE(395)) are generated by ADAMTS-mediated cleavage of the respective proteoglycans, we tested the capacity of recombinant ADAMTS-1 and ADAMTS-4 to cleave versican at Glu(441)-Ala(442). Both enzymes cleaved a recombinant versican substrate and native human versican at the Glu(441)-Ala(442) bond and the mature form of ADAMTS-4 was detected by Western analysis of extracts of aortic intima. We conclude that versican V1 proteolysis in vivo can be catalyzed by one or more members of the ADAMTS family of metalloproteinases.  相似文献   

5.
A recombinant human aggrecan G1-G2 fragment comprising amino acids Val(1)-Arg(656) has been expressed in Sf21 cells using a baculovirus expression system. The recombinant G1-G2 (rG1-G2) was purified to homogeneity by hyaluronan-Sepharose affinity chromatography followed by high performance liquid chromatography gel filtration, and gave a single band of M(r) 90,000-95,000 by silver stain or immunoblotting with monoclonal antibody 1-C-6. The expressed G1-G2 bound to both hyaluronan and link protein indicating that the immunoglobulin-fold motif and proteoglycan tandem repeat loops of the G1 domain were correctly folded. Further analysis of secondary structure by rotary shadowing electron microscopy confirmed a double globe appearance, but revealed that the rG1-G2 was more compact than its native counterpart. The size of rG1-G2 by SDS-polyacrylamide gel electorphoresis was unchanged following digestion with keratanase and keratanase II and reduced by only 2-5 kDa following digestion with either O-glycosidase or N-glycosidase F. Recombinant G1-G2 was digested with purified matrix metalloproteinases (MMP), isolated aggrecanase, purified atrolysin C, or proteinases present in conditioned medium from cartilage explant cultures, and the products analyzed on SDS gels by silver stain and immunoblotting. Neoepitope antibodies recognizing the N-terminal F(342)FGVG or C-terminal DIPEN(341) sequences were used to confirm MMP cleavage at the Asn(341) downward arrow Phe bond, while neoepitope antibodies recognizing the N-terminal A(374)RGSV or C-terminal ITEGE(373) sequences were used to confirm aggrecanase cleavage at the Glu(373) downward arrow Ala bond. Cleavage at the authentic MMP and aggrecanase sites revealed that these proteinases have the same specificity for rG1-G2 as for native aggrecan. Incubation of rG1-G2 with conditioned medium from porcine cartilage cultures revealed that active soluble aggrecanase but no active MMPs, was released following stimulation with interleukin-1alpha or retinoic acid. Atrolysin C, which cleaves native bovine aggrecan at both the aggrecanase and MMP sites, efficiently cleaved rG1-G2 at the aggrecanase site but failed to cleave at the MMP site. In contrast, native glycosylated G1-G2 with or without keratanase treatment was cleaved by atrolysin C at both the aggrecanase and MMP sites. The results suggest that the presence or absence per se of keratan sulfate on native G1-G2 does not affect the activity of atrolysin C toward the two sites.  相似文献   

6.
Aggrecan, the major proteoglycan of cartilage that provides its mechanical properties of compressibility and elasticity, is one of the first matrix components to undergo measurable loss in arthritic diseases. Two major sites of proteolytic cleavage have been identified within the interglobular domain (IGD) of the aggrecan core protein, one between amino acids Asn(341)-Phe(342) which is cleaved by matrix metalloproteinases and the other between Glu(373)-Ala(374) that is attributed to aggrecanase. Although several potential aggrecanase-sensitive sites had been identified within the COOH terminus of aggrecan, demonstration that aggrecanase cleaved at these sites awaited isolation and purification of this protease. We have recently cloned human aggrecanase-1 (ADAMTS-4) (Tortorella, M. D., Burn, T. C., Pratta, M. A., Abbaszade, I., Hollis, J. M., Liu, R., Rosenfeld, S. A., Copeland, R. A., Decicco, C. P., Wynn, R., Rockwell, A., Yang, F., Duke, J. L., Solomon, K., George, H., Bruckner, R., Nagase, H., Itoh, Y., Ellis, D. M., Ross, H., Wiswall, B. H., Murphy, K., Hillman, M. C., Jr., Hollis, G. F., Newton, R. C., Magolda, R. L., Trzaskos, J. M., and Arner, E. C. (1999) Science 284, 1664-1666) and herein demonstrate that in addition to cleavage at the Glu(373)-Ala(374) bond, this protease cleaves at four sites within the chondroitin-sulfate rich region of the aggrecan core protein, between G2 and G3 globular domains. Importantly, we show that this cleavage occurs more efficiently than cleavage within the IGD at the Glu(373)-Ala(374) bond. Cleavage occurred preferentially at the KEEE(1667-1668)GLGS bond to produce both a 140-kDa COOH-terminal fragment and a 375-kDa fragment that retains an intact G1. Cleavage also occurred at the GELE(1480-1481)GRGT bond to produce a 55-kDa COOH-terminal fragment and a G1-containing fragment of 320 kDa. Cleavage of this 320-kDa fragment within the IGD at the Glu(373)-Ala(374) bond then occurred to release the 250-kDa BC-3-reactive fragment from the G1 domain. The 140-kDa GLGS-reactive fragment resulting from the preferential cleavage was further processed at two additional cleavage sites, at TAQE(1771)-(1772)AGEG and at VSQE(1871-1872)LGQR resulting in the formation of a 98-kDa fragment with an intact G3 domain and two small fragments of approximately 20 kDa. These data elucidate the sites and efficiency of cleavage during aggrecan degradation by aggrecanase and suggest potential tools for monitoring aggrecan cleavage in arthritis.  相似文献   

7.
An aggrecan G1-G2 substrate was used to determine sites within the interglobular domain that were susceptible to cleavage by MT1-MMP. Degradation products were identified by Western blotting with neo-epitope antibodies specific for MMP-derived N- and C-terminal sequences. The results showed that MT1-MMP cleaved at the N341-F342 and D441-L442 bonds, as shown for other MMPs, and also at a site 13 amino acids C-terminal to the N341-F342 site. The G2 product of this additional cleavage was identified by sequence analysis and revealed an N-terminus commencing T355VxxPDVELPLP. The data are consistent with MT1-MMP cleavage at three sites in the aggrecan interglobular domain; one at N342-F342, a second at D441-L442 and a third at Q354-T355.  相似文献   

8.
Pertussis toxin catalyzes the transfer of ADP-ribose from NAD to the guanine nucleotide-binding regulatory proteins Gi, Go, and transducin. Based on a partial amino acid sequence for a tryptic peptide of ADP-ribosylated transducin, asparagine had been characterized as the site of pertussis toxin-catalyzed ADP-ribosylation. Subsequently, cDNA data for the alpha subunit of transducin indicated that the putative asparagine residue was, in fact, not present in the protein. To determine the amino acid that served as the ADP-ribose acceptor, radiolabel from [adenine-U-14C]NAD was incorporated, in the presence of pertussis toxin, into the alpha subunit of transducin (0.3 mol/mol). An ADP-ribosylated, tryptic peptide was purified and fully sequenced by automated Edman degradation. The amino acid sequence, Glu-Asn 343-Leu-Lys-Asp 346-X-Gly 348-Leu-Phe, corresponds to the cDNA sequence coding the carboxyl-terminal nonapeptide, Glu 342-Phe 350, which includes by cDNA sequence cysteine at position 347. Neither Asn 343 nor Asp 346 appeared to be modified; residue 347 adhered to the sequencing resin. Cysteine, the missing residue, was eluted from the sequencing resin with acetic acid along with 76% of the peptide-associated radioactivity, half of which, presumably ADP-ribosylcysteine, eluted from an anion exchange column between NAD and ADP-ribose; the other half had a retention time corresponding to 5'-AMP. We conclude that Cys 347 and not Asn 343 or Asp 346 is the site of pertusis toxin-catalyzed ADP-ribosylation in transducin.  相似文献   

9.
The partial degradation of proteoglycan aggregate by human leucocyte elastase yielded products that banded with Mr 190,000, 140,000, 88,000, and 71,000 when analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis. Analysis of these bands revealed that the 190,000- and 140,000-Da bands contained chondroitin and keratan sulfate stubs and had N-terminal amino acid sequences corresponding to a sequence starting at residue 398 of the core protein of rat or human aggrecan. With increased time of digestion, the staining intensities of the 190,000-, 140,000-, and 88,000-Da bands decreased relative to the 71,000-Da band. Analysis of the 88,000- and 71,000-Da bands showed that they contained peptides substituted only with keratan sulfate stubs and that each band contained two peptides with different N-terminal sequences. One of these corresponded to a sequence that started at residue 398 of rat or human aggrecan and the other to the N-terminal sequence of bovine aggrecan. Under conditions of complete digestion, bands of 71,000 and 56,000 Da which contained only keratan sulfate stubs were observed on SDS-polyacrylamide electrophoresis. The 71,000-Da band was shown to have a single sequence similar to that starting at residue 398 of human and rat aggrecan and thus represents the globular domain 2 (G2) of the core protein of aggrecan. The 56,000-Da band was shown to have a sequence similar to that of the N-terminal sequence of bovine aggrecan indicating that this peptide corresponds to the globular domain 1 (G1) of the molecule. These results suggest that leucocyte elastase cleaves the core protein of aggrecan between valine 397 and isoleucine 398, which are located in the interglobular domain linking the G1 and G2 domains of the core protein of aggrecan. Further digestion of the proteoglycan aggregate with elastase resulted in the cleavage of the core protein within the chondroitin sulfate attachment domains.  相似文献   

10.
Erosion of cartilage is a major feature of joint diseases, i.e., osteoarthritis and rheumatoid arthritis, which leads with time to a loss of joint function. Proteolytic cleavage of the aggrecan core protein is a key event in the progress of these joint diseases. Aggrecan degradation has been believed to be mediated by a putative proteinase, aggrecanase. We identified aggrecanase activity in conditioned medium from explant culture of bovine nasal cartilage stimulated by retinoic acid. The activity was partially purified more than 10,000-fold. The enzyme cleaves at the aggrecanase site (Glu(373)-Ala(374)) but not at the MMP site (Asn(341)-Phe(342)) in the interglobular domain of the aggrecan. It also cleaves at Glu(1971)-Leu(1972), which is located in the gap region in the chondroitin sulfate attachment region prior to the aggrecanase site. The enzyme is a typical Ca(2+)-dependent metalloproteinase with a unique salt-dependency and is inhibited by several hydroxamate-based inhibitors for matrix metalloproteinases. Heparin and chondroitin sulfate inhibited the enzyme in a dose-dependent manner, suggesting that the large carbohydorate in aggrecan is important for substrate recognition by aggrecanase.  相似文献   

11.
Mathys S  Evans TC  Chute IC  Wu H  Chong S  Benner J  Liu XQ  Xu MQ 《Gene》1999,231(1-2):1-13
The determinants governing the self-catalyzed splicing and cleavage events by a mini-intein of 154 amino acids, derived from the dnaB gene of Synechocystis sp. were investigated. The residues at the splice junctions have a profound effect on splicing and peptide bond cleavage at either the N- or C-terminus of the intein. Mutation of the native Gly residue preceding the intein blocked splicing and cleavage at the N-terminal splice junction, while substitution of the intein C-terminal Asn154 resulted in the modulation of N-terminal cleavage activity. Controlled cleavage at the C-terminal splice junction involving cyclization of Asn154 was achieved by substitution of the intein N-terminal cysteine residue with alanine and mutation of the native C-extein residues. The C-terminal cleavage reaction was found to be pH-dependent, with an optimum between pH6.0 and 7.5. These findings allowed the development of single junction cleavage vectors for the facile production of proteins as well as protein building blocks with complementary reactive groups. A protein sequence was fused to either the N-terminus or C-terminus of the intein, which was fused to a chitin binding domain. The N-terminal cleavage reaction was induced by 2-mercaptoethanesulfonic acid and released the 43kDa maltose binding protein with an active C-terminal thioester. The 58kDa T4 DNA ligase possessing an N-terminal cysteine was generated by a C-terminal cleavage reaction induced by pH and temperature shifts. The intein-generated proteins were joined together through a native peptide bond. This intein-mediated protein ligation approach opens up novel routes in protein engineering.  相似文献   

12.
Aggrecan degradation involves proteolytic cleavage of the core protein within the interglobular domain. Because aggrecan is highly glycosylated with chondroitin sulfate (CS) and keratan sulfate (KS), we investigated whether glycosylation affects digestion by aggrecanase at the Glu(373)-Ala(374) bond. Treatment of bovine aggrecan monomers to remove CS and KS resulted in loss of cleavage at this site, suggesting that glycosaminoglycans (GAGs) play a role in cleavage at the Glu(373)-Ala(374) bond. In contrast, MMP-3 cleavage at the Ser(341)-Phe(342) bond was not affected by glycosidase treatment of aggrecan. Removal of KS, but not CS, prevented cleavage at the Glu(373)-Ala(374) bond. Thus, KS residues may be important for recognition of this cleavage site by aggrecanase. KS glycosylation has been observed at sites adjacent to the Glu(373)-Ala(374) bond in steer aggrecan, but not in calf aggrecan (Barry, F. P., Rosenberg, L. C., Gaw, J. U., Gaw, J. U., Koob, T. J., and Neame, P. J. (1995) J. Biol. Chem. 270, 20516-20524). Interestingly, although we found that aggrecanase degraded both calf and steer cartilage aggrecan, the proportion of fragments generated by cleavage at the Glu(373)-Ala(374) bond was higher in steer than in calf, consistent with our observations using aggrecan treated to remove KS. We conclude that the GAG content of aggrecan influences the specificity of aggrecanase for cleavage at the Glu(373)-Ala(374) bond and suggest that age may be a factor in aggrecanase degradation of cartilage.  相似文献   

13.
The action of three matrix metalloproteinases (MMPs), 72- and 95-kDa gelatinases (MMP-2 and MMP-9) and PUMP (MMP-7), and a cysteine proteinase, cathepsin B, were investigated on aggrecan the major proteoglycan of cartilage. All the enzymes cleaved aggrecan although the activity of the 95-kDa gelatinase was very low. Specific cleavage sites were investigated following incubation with a purified aggrecan G1-G2 domain fragment (150 kDa). Both gelatinases produced 110-kDa G2 and 56-kDa G1 products by a single cleavage at an Asn-Phe bond within the interglobular domain close to the G1 domain. This was similar to the action of stromelysin (MMP-3) (Fosang, A. J., Neame, P. J., Hardingham, T. E., Murphy, G., and Hamilton, J. A. (1991) J. Biol. Chem. 266, 15579-15582). Cathepsin B also produced two fragments from a single cleavage at a Gly-Val bond only three amino acids C-terminal to the metalloproteinase cleavage site. PUMP cleaved at the metalloproteinase Asn-Phe site, but in addition produced a low yield of a smaller G2 fragment (56 kDa) corresponding to cleavage between Asp441 and Leu442 (human sequence), within the interglobular domain, close to the G2 domain. The apparent difference in size between the two G2 fragments released by PUMP (110 and 56 kDa) was much greater than predicted from the peptide length between the cleavage sites (100 amino acids). However, keratanase digestion greatly reduced the size of the 110-kDa G2 fragment, while producing only a small reduction in size of the 56-kDa product, showing that there was approximately 30-40 kDa of keratan sulfate attached to the interglobular domain between the PUMP cleavage sites. This new structural information on aggrecan may account for the previously observed stiffness of the interglobular domains when viewed by rotary shadowing electron microscopy (Paulsson, M., Morgelin, M., Wiedemann, H., Beardmore-Gray, M., Dunham, D. G., Hardingham, T. E., Heinegard, D., Timpl, R., and Engel, J. (1987) Biochem. J. 245, 763-772). These results show that in spite of a high keratan sulfate content the interglobular domain provides important sites for cleavage by different proteinases, including several members of the matrix metalloproteinase family.  相似文献   

14.
The N-terminal amino-acid sequence of human ITI has been found to be identical with that of the acid-stable human 30-kDa inhibitors (HI-30) from urine, serum, and those released from inter-alpha-trypsin inhibitor by trypsin or chymotrypsin. Serum HI-30 and HI-30 released by trypsin differ from the urinary inhibitor by an additional C-terminal arginine residue. Compared to these two inhibitors the inhibitor released by chymotryptic proteolysis is elongated C-terminally by an additional phenylalanine residue. These results strongly favour HI-30 as the N-terminus of the inter-alpha-trypsin inhibitor and its release from this inhibitor in vivo by cleavage of the Arg123-Phe124 peptide bond by trypsin-like proteinases.  相似文献   

15.
We have studied aggrecan catabolism mediated by matrix metalloproteinases (MMPs) in a porcine cartilage culture system. Using antibodies specific for DIPEN(341) and (342)FFGVG neoepitopes, we have detected MMP-derived fragments in conditioned medium and cultured cartilage, by radioimmunoassay, Western blotting, and immunolocalization. Radioimmunoassay revealed that the amount (pmol of epitope/mg of total glycosaminoglycan) of (342)FFGVG epitope released from cartilage remained constant over a 5-day culture period and was not increased by IL-1alpha or retinoate. However, the proportion (pmol of epitope/mg of released glycosaminoglycan) of (342)FFGVG epitope released was decreased upon stimulation, consistent with the involvement of a non-MMP proteinase, such as aggrecanase. The data suggest that in vitro MMPs may be involved in the base-line catabolism of aggrecan. Immunolocalization experiments showed that DIPEN(341) and ITEGE(373) epitopes were increased by treatment with IL-1alpha and retinoate. Confocal microscopy revealed that ITEGE(373) epitope was largely intracellular but with matrix staining in the superficial zone, whereas DIPEN(341) epitope was cell-associated and widely distributed in the matrix. Surprisingly, the majority of (342)FFGVG epitope, determined by radioimmunoassay and Western blotting, was retained in the tissue despite the absence of a G1 domain anchor. Interleukin-1alpha stimulation caused a marked increase in tissue DIPEN(341) and (342)FFGVG epitope, and the (342)FFGVG fragments retained in the tissue were larger than those released into the medium. Active porcine aggrecanase was unable to cleave (342)FFGVG fragments at the downward arrowGlu(373) downward arrowAla(374) bond but cleaved intact aggrecan at this site, suggesting that (342)FFGVG fragments are not substrates for aggrecanase. The apparent retention of large (342)FFGVG fragments within cartilage, and their resistance to N-terminal cleavage by aggrecanase suggests that (342)FF6V6 fragments may have a role in cartilage homeostasis.  相似文献   

16.
C Marriq  P J Lejeune  N Venot  L Vinet 《FEBS letters》1989,242(2):414-418
At moderate iodination levels (20 iodine atoms/mol) human thyroglobulin (hTg) produces after reduction a hormone-rich peptide of 26 kDa which contains the preferential hormonogenic 'acceptor' tyrosine (Tyr 5) of the protein. The site of cleavage of the hTg chain was demonstrated by analysis of the 26 kDa tryptic hydrolysis products. It consistently yielded the peptide Gln-82-Val-129 which consequently made it possible to localize the hTg chain cleavage at tyrosine residue 130. Evidence for tyrosine involvement in hTg cleavage during thyroid hormone formation supports the hypothesis that peptide bond cleavage would occur at the 'donor' tyrosine residue and suggests that tyrosine 130 would be the donor site reacting with the major hormone-forming acceptor site (Tyr 5) of hTg.  相似文献   

17.
Normal and pathological turnover of proteoglycans in articular cartilage involves its cleavage close to the N-terminal G1 domain responsible for aggregation. A fragment containing G1 and G2 N-terminal domains of pig cartilage proteoglycans was therefore used as a substrate to investigate its degradation by the metalloproteinase stromelysin and related recombinant stromelysin enzymes. The stromelysins produced an apparent single cleavage yielding a G1 fragment of 56 kDa and a G2 fragment of 110 kDa. Rabbit bone stromelysin was much more active against the G1-G2 fragment and against proteoglycan aggregates than recombinant human stromelysin-1 and stromelysin-2. All metalloproteinase preparations were active against proteoglycan and the G1-G2 fragment at acid (pH 5.5) and neutral pH (7.4). N-terminal sequencing of the G2 fragment derived from the action of recombinant human stromelysin-1 revealed that cleavage between G1 and G2 occurred at the N-terminal end of the interglobular domain, close to the last cysteine in G1. The specific cleavage site was between an asparagine and a pair of phenylalanine residues, where the asparagine corresponds to residue 341 in human and rat mature core protein sequence.  相似文献   

18.
Characterization of aggrecan core protein peptides appearing in the medium of adult articular cartilage maintained in tissue culture showed that eight major peptides could be detected. The two largest peptides had the same N-terminal sequence as bovine aggrecan core protein and probably represent partly degraded aggrecan lost to the medium in the form of the proteoglycan aggregate. The three next smallest peptides were all shown to have another N-terminal sequence which corresponded to a sequence in the interglobular domain starting at alanine residue 393 of the human aggrecan core protein (K. Doege et al., 1991, J. Biol. Chem. 266, 894-902). Two other peptides were isolated and shown to have two different N-terminal amino sequences corresponding to sequences in the chondroitin sulfate attachment domain 2 of the core protein starting at alanine residue 1839 and leucine residue 1939 of human aggrecan. This suggests that the catabolism of aggrecan by adult articular cartilage occurs by the proteolytic cleavage of the core protein of this proteoglycan at three separate sites. Examination of the amino acid sequences around each of these cleavage sites showed a similar pattern TEGE decreases ARGS, TAQE decreases AGEG, and VSQE decreases LGQR, suggesting that a single proteinase may be involved in the catabolism of aggrecan. Analysis of synovial fluids and serum of age-matched animals revealed the presence of aggrecan core protein peptides corresponding in size to those detected in vitro, thus indicating the cleavage observed in explant culture is the same as that which occurs in vivo.  相似文献   

19.
Mapping the ankyrin-binding site of the human erythrocyte anion exchanger   总被引:9,自引:0,他引:9  
This report describes initial efforts to map the ankyrin-binding site of the cytoplasmic domain of the human erythrocyte anion exchanger. The conclusions are that this site is likely to involve a fairly extended sequence in the midregion of the cytoplasmic domain and requires interactions that are not provided by isolated peptides. The region of the sequence involving residues 174-186 is likely to participate in the ankyrin-binding site based on several experiments. Limited tryptic cleavage in the midregion of the cytoplasmic domain (residues 174 and/or 181) nearly abolished the ability of the cytoplasmic domain to inhibit binding of ankyrin to the anion exchanger. Ankyrin protected the cytoplasmic domain from tryptic digestion. Finally, peptide-specific antibodies against the sequence encompassing the site(s) of tryptic cleavage (residues 174-186) blocked binding of ankyrin to the anion exchanger. However, the sequence comprising the tryptic site is not sufficient for high affinity binding of ankyrin. A 39-amino acid peptide (residues 161-200) that includes the tryptic cleavage site(s) was inactive in inhibiting binding of ankyrin to the anion exchanger. Further evidence for a complex ankyrin-binding site is that peptide-specific antibodies against two different, noncontiguous regions (residues 118-162 and 174-186) both inhibited binding of ankyrin to the anion exchanger and were only 10-20% as effective as antibody against the entire cytoplasmic domain. Finally, the ankyrin-binding site of the anion exchanger did not renature following sodium dodecyl sulfate electrophoresis and transfer to nitrocellulose paper even though spectrin did recover ability to bind ankyrin under the same conditions. Thus, the ankyrin-binding site is not defined by a short continuous sequence. A simple consensus sequence for ankyrin-binding regions in other proteins is not likely.  相似文献   

20.
Aggrecanase cleavage at the Glu(373)-Ala(374) site in the interglobular domain of the cartilage proteoglycan aggrecan is a key event in arthritic diseases. The observation that substrates representing only the aggrecanase cleavage site are not catabolized efficiently by aggrecanase prompted us to investigate the requirement of aggrecanase for additional structural elements of its substrate other than the actual cleavage site. Based on the recombinant substrate rAgg1mut we constructed deletion mutants with successively truncated N- or C-termini of the interglobular domain. Catabolism by aggrecanase activities induced in rat chondrosarcoma cells, porcine chondrocytes, and by human recombinant ADAMTS4 showed a gradually decreasing catabolism of progressively shortened, N-terminal deletion mutants of the substrate rAgg1mut. A reduction to 32 amino acids N-terminal to the aggrecanase site resulted in a decrease of at least 42% of aggrecanase cleavage products as compared with the wild-type substrate. When only 16 amino acids preceded the Glu(373)-Ala(374) site, aggrecanase cleavage was completely inhibited. In contrast, C-terminal deletions did not negatively affect aggrecanase cleavage up to the reduction to 13 amino acids C-terminal to the cleavage site. Unlike aggrecanase(s), membrane type 1-matrix metalloprotease (MT1-MMP), able to cleave rAgg1mut both at the aggrecanase and the MMP site, was insensitive to N-terminal deletions regarding aggrecanase cleavage, indicating that the importance of the N-terminus is characteristic for aggrecanase(s). Taken together, the results demonstrate that the amino-terminus of rAgg1mut, containing the MMP site, plays an important role for efficient cleavage by aggrecanase(s), possibly by serving as a further site of interaction between the enzyme and its substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号