首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The genus Shewanella produces a unique small tetraheme cytochrome c that is implicated in the iron oxide respiration pathway. It is similar in heme content and redox potential to the well known cytochromes c(3) but related in structure to the cytochrome c domain of soluble fumarate reductases from Shewanella sp. We report the crystal structure of the small tetraheme cytochrome c from Shewanella oneidensis MR-1 in two crystal forms and two redox states. The overall fold and heme core are surprisingly different from the soluble fumarate reductase structures. The high resolution obtained for an oxidized orthorhombic crystal (0.97 A) revealed several flexible regions. Comparison of the six monomers in the oxidized monoclinic space group (1.55 A) indicates flexibility in the C-terminal region containing heme IV. The reduced orthorhombic crystal structure (1.02 A) revealed subtle differences in the position of several residues, resulting in decreased solvent accessibility of hemes and the withdrawal of a positive charge from the molecular surface. The packing between monomers indicates that intermolecular electron transfer between any heme pair is possible. This suggests there is no unique site of electron transfer on the surface of the protein and that electron transfer partners may interact with any of the hemes, a process termed "electron-harvesting." This optimizes the efficiency of intermolecular electron transfer by maximizing chances of productive collision with redox partners.  相似文献   

2.
Cytochrome c peroxidase and cytochrome c form a noncovalent electron transfer complex in the course of the peroxidase-catalyzed reduction of H2O2. The two hemoproteins were cross-linked in 40% yield to a covalent 1:1 complex with the aid of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The covalent complex was found to be a valid model of the noncovalent electron transfer complex for the following reasons. The covalent complex had only 5% residual peroxidase activity toward exogeneous ferrocytochrome c indicating that the cross-linked cytochrome c covers the electron-accepting site of cytochrome c peroxidase. The residual peroxidase activity was almost independent of ionic strength indicating that the electron-accepting site is much less accessible even when ionic bonds between the two cross-linked hemoproteins are severed. The rate of reduction of heme c by ascorbate is 15 times slower in the covalent complex than in free cytochrome c and is independent of ionic strength. Although the covalent complex may not have been entirely pure with respect to the number and location of the cross-links, two major cross-links could be localized to within a few residues. One is from Lys 13 of cytochrome c to an acidic residue in positions 32, 33, 34, 35, or 37 of cytochrome c peroxidase, the other from Lys 86 of cytochrome c to a carboxyl group in the same cluster of acidic residues. The result stresses the importance of a peculiar stretch of acidic residues of cytochrome c peroxidase and of Lys 13 and 86 of cytochrome c.  相似文献   

3.
Circular dichroism and 1H and 31P nuclear magnetic resonance spectroscopy have been used to investigate complex formation between cytochrome c and the flavodoxins from Azotobacter vinelandii and Clostridium pasteurianum. Such complexes are known to be involved in the mechanism of electron transfer between these two redox proteins. A large increase in ellipticity in the Soret band of the cytochrome heme was observed upon formation of the Clostridium flavodoxin complex, whereas much smaller changes were found for the complexes with either Azotobacter flavodoxin or an 8 alpha-imidazolyl-FMN-substituted Clostridium flavodoxin analogue. Similarly, the magnitudes of the perturbations of the contact-shifted heme proton resonances obtained upon complexation of cytochrome c by Azotobacter flavodoxin were much smaller than those previously shown for Clostridium flavodoxin [Hazzard, J. T., & Tollin, G. (1985) Biochem. Biophys. Res. Commun. 130, 1281-1286]. 31P nuclear magnetic resonance measurements were also consistent with differences in the interactions between the components in the complexes of the two flavodoxins with cytochrome c. It is suggested that these spectral changes are due to a loosening or opening of the heme crevice upon Clostridium flavodoxin binding, which allows closer contact between the heme and flavin prosthetic groups and results in a faster rate of electron transfer. The implications of these observations for biological oxidation-reduction processes are considered.  相似文献   

4.
Zhang H  Osyczka A  Moser CC  Dutton PL 《Biochemistry》2006,45(48):14247-14255
Typically, c hemes are bound to the protein through two thioether bonds to cysteines and two axial ligands to the heme iron. In high-potential class I c-type cytochromes, these axial ligands are commonly His-Met. A change in this methionine axial ligand is often correlated with a dramatic drop in the heme redox potential and loss of function. Here we describe a bacterial cytochrome c with an unusual tolerance to the alternations in the heme ligation pattern. Substitution of the heme ligating methionine (M185) in cytochrome c1 of the Rhodobacter sphaeroides cytochrome bc1 complex with Lys and Leu lowers the redox midpoint potential but not enough to prevent physiologically competent electron transfer in these fully functional variants. Only when Met-185 is replaced with His is the drop in the redox potential sufficiently large to cause cytochrome bc1 electron transfer chain failure. Functional mutants preserve the structural integrity of the heme crevice: only the nonfunctional His variant allows carbon monoxide to bind to reduced heme, indicating a significant opening of the heme environment. This range of cytochrome c1 ligand mutants exposes both the relative resilience to sixth axial ligand change and the ultimate thermodynamic limits of operation of the cofactor chains in cytochrome bc1.  相似文献   

5.
Phanerochaete chrysosporium cellobiose oxidoreductase (CBOR) comprises two redox domains, one containing flavin adenine dinucleotide (FAD) and the other protoheme. It reduces both two-electron acceptors, including molecular oxygen, and one-electron acceptors, including transition metal complexes and cytochrome c. If the latter reacts with the flavin, the reduced heme b acts merely as a redox buffer, but if with the b heme, enzyme action involves a true electron transfer chain. Intact CBOR fully reduced with cellobiose, CBOR partially reduced by ascorbate, and isolated ascorbate-reduced heme domain, all transfer electrons at similar rates to cytochrome c. Reduction of cationic one-electron acceptors via the heme group supports an electron transfer chain model. Analogous reactions with natural one-electron acceptors can promote Fenton chemistry, which may explain evolutionary retention of the heme domain and the enzyme's unique character among secreted sugar dehydrogenases.  相似文献   

6.
The kinetics of reduction of free flavin semiquinones of the individual components of 1:1 covalent and electrostatic complexes of yeast ferric and ferryl cytochrome c peroxidase and ferric horse cytochrome c have been studied. Covalent cross-linking between the peroxidase and cytochrome c at low ionic strength results in a complex that has kinetic properties both similar to and different from those of the electrostatic complex. Whereas the cytochrome c heme exposure to exogenous reductants is similar in both complexes, the apparent electrostatic environment near the cytochrome c heme edge is markedly different. In the electrostatic complex, a net positive charge is present, whereas in the covalent complex, an essentially neutral electrostatic charge is found. Intracomplex electron transfer within the two complexes is also different. For the covalent complex, electron transfer from ferrous cytochrome c to the ferryl peroxidase has a rate constant of 1560 s-1, which is invariant with respect to changes in the ionic strength. The rate constant for intracomplex electron transfer within the electrostatic complex is highly ionic strength dependent. At mu = 8 mM a value of 750 s-1 has been obtained [Hazzard, J. T., Poulos, T. L., & Tollin, G. (1987) Biochemistry 26, 2836-2848], whereas at mu = 30 mM the value is 3300 s-1. This ionic strength dependency for the electrostatic complex has been interpreted in terms of the rearrangement of the two proteins comprising the complex to a more favorable orientation for electron transfer. In the case of the covalent complex, such reorientation is apparently impeded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cytochrome c6A is a unique dithio-cytochrome present in land plants and some green algae. Its sequence and occurrence in the thylakoid lumen suggest that it is derived from cytochrome c6, which functions in photosynthetic electron transfer between the cytochrome b6f complex and photosystem I. Its known properties, however, and a strong indication that the disulfide group is not purely structural, indicate that it has a different, unidentified function. To help in the elucidation of this function the crystal structure of cytochrome c6A from Arabidopsis thaliana has been determined in the two redox states of the heme group, at resolutions of 1.2 A (ferric) and 1.4 A (ferrous). These two structures were virtually identical, leading to the functionally important conclusion that the heme and disulfide groups do not communicate by conformational change. They also show, however, that electron transfer between the reduced disulfide and the heme is feasible. We therefore suggest that the role of cytochrome c6A is to use its disulfide group to oxidize dithiol/disulfide groups of other proteins of the thylakoid lumen, followed by internal electron transfer from the dithiol to the heme, and re-oxidation of the heme by another thylakoid oxidant. Consistent with this model, we found a rapid electron transfer between ferro-cytochrome c6A and plastocyanin, with a second-order rate constant, k2=1.2 x 10(7) M(-1) s(-1).  相似文献   

8.
The cytochrome bc1 complex from bovine heart mitochondria is a multi-functional enzyme complex. In addition to electron and proton transfer activity, the complex also processes an activatable peptidase activity and a superoxide generating activity. The crystal structure of the complex exists as a closely interacting functional dimer. There are 13 transmembrane helices in each monomer, eight of which belong to cytochrome b, and five of which belong to cytochrome c1, Rieske iron-sulfur protein (ISP), subunits 7, 10 and 11, one each. The distances of 21 A between bL heme and bH heme and of 27 A between bL heme and the iron-sulfur cluster (FeS), accommodate well the observed fast electron transfers between the involved redox centers. However, the distance of 31 A between heme c1 and FeS, makes it difficult to explain the high electron transfer rate between them. 3D structural analyses of the bc1 complexes co-crystallized with the Qu site inhibitors suggest that the extramembrane domain of the ISP may undergo substantial movement during the catalytic cycle of the complex. This suggestion is further supported by the decreased in the cytochrome bc1 complex activity and the increased in activation energy for mutants with increased rigidity in the neck region of ISP.  相似文献   

9.
Flavocytochrome c552 from Chromatium vinosum catalyzes the oxidation of sulfide to sulfur using a soluble c-type cytochrome as an electron acceptor. Mitochondrial cytochrome c forms a stable complex with flavocytochrome c552 and may function as an alternative electron acceptor in vitro. The recognition site for flavocytochrome c552 on equine cytochrome c has been deduced by differential chemical modification of cytochrome c in the presence and absence of flavocytochrome c552 and by kinetic analysis of the sulfide:cytochrome c oxidoreductase activity of m-trifluoromethylphenylcarbamoyl-lysine derivatives of cytochrome c. As with mitochondrial redox partners, interaction occurs around the exposed heme edge at the "front face" of cytochrome c. However, the domain recognized by flavocytochrome c552 seems to extend to the right of the heme edge, whereas the site of interaction with mitochondrial cytochrome c oxidase and reductase is more to the left. Km but not Vmax of the electron transfer reaction with mitochondrial cytochrome c increases with increasing ionic strength. The correlation of chemical modification and ionic strength dependence data indicates that the electrostatic interaction between the two hemoproteins involves fewer ionic bonds than that with other redox partners of cytochrome c.  相似文献   

10.
Oxidative redox titrations of the mitochondrial cytochromes were performed in near-anoxic RAW 264.7 cells by inhibiting complex I. Cytochrome oxidation changes were measured with multi-wavelength spectroscopy and the ambient redox potential was calculated from the oxidation state of endogenous cytochrome c. Two spectral components were separated in the α-band range of cytochrome oxidase and they were identified as the difference spectrum of heme a when it has a high (a(H)) or low (a(L)) midpoint potential (E(m)) by comparing their occupancy during redox titrations carried out when the membrane potential (ΔΨ) was dissipated with a protonophore to that predicted by the neoclassical model of redox cooperativity. The difference spectrum of a(L) has a maximum at 605nm whereas the spectrum of a(H) has a maximum at 602nm. The ΔΨ-dependent shift in the E(m) of a(H) was too great to be accounted for by electron transfer from cytochrome c to heme a against ΔΨ but was consistent with a model in which a(H) is formed after proton uptake against ΔΨ suggesting that the spectral changes are the result of protonation. A stochastic simulation was implemented to model oxidation states, proton uptake and E(m) changes during redox titrations. The redox anti-cooperativity between heme a and heme a(3), and proton binding, could be simulated with a model where the pump proton interacted with heme a and the substrate proton interacted with heme a(3) with anti-cooperativity between proton binding sites, but not with a single proton binding site coupled to both hemes.  相似文献   

11.
Redox protein complexes between type I and type II tetraheme cytochromes c(3) from Desulfovibrio vulgaris Hildenborough are here analyzed using theoretical methodologies. Various complexes were generated using rigid-body docking techniques, and the two lowest energy complexes (1 and 2) were relaxed using molecular dynamics simulations with explicit solvent and subjected to further characterization. Complex 1 corresponds to an interaction between hemes I from both cytochromes c(3). Complex 2 corresponds to an interaction between the heme IV from type I and the heme I from type II cytochrome c(3). Binding free energy calculations using molecular mechanics, Poisson-Boltzmann, and surface accessibility methods show that complex 2 is more stable than complex 1. Thermodynamic calculations on complex 2 show that complex formation induces changes in the reduction potential of both cytochromes c(3), but the changes are larger in the type I cytochrome c(3) (the largest one occurring on heme IV, of approximately 80 mV). These changes are sufficient to invert the global titration curves of both cytochromes, generating directionally in electron transfer from type I to type II cytochrome c(3), a phenomenon of obvious thermodynamic origin and consequences, but also with kinetic implications. The existence of processes like this occurring at complex formation may constitute a natural design of efficient redox chains.  相似文献   

12.
Electron transfer within complexes of cytochrome c (Cc) and cytochrome c peroxidase (CcP) was studied to determine whether the reactions are gated by fluctuations in configuration. Electron transfer in the physiological complex of yeast Cc (yCc) and CcP was studied using the Ru-39-Cc derivative, in which the H39C/C102T variant of yeast iso-1-cytochrome c is labeled at the single cysteine residue on the back surface with trisbipyridylruthenium(II). Laser excitation of the 1:1 Ru-39-Cc-CcP compound I complex at low ionic strength results in rapid electron transfer from RuII to heme c FeIII, followed by electron transfer from heme c FeII to the Trp-191 indolyl radical cation with a rate constant keta of 2 x 10(6) s-1 at 20 degrees C. keta is not changed by increasing the viscosity up to 40 cP with glycerol and is independent of temperature. These results suggest that this reaction is not gated by fluctuations in the configuration of the complex, but may represent the elementary electron transfer step. The value of keta is consistent with the efficient pathway for electron transfer in the crystalline yCc-CcP complex, which has a distance of 16 A between the edge of heme c and the Trp-191 indole [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755]. Electron transfer in the complex of horse Cc (hCc) and CcP was examined using Ru-27-Cc, in which hCc is labeled with trisbipyridylruthenium(II) at Lys-27. Laser excitation of the Ru-27-Cc-CcP complex results in electron transfer from RuII to heme c FeII with a rate constant k1 of 2.3 x 10(7) s-1, followed by oxidation of the Trp-191 indole to a radical cation by RuIII with a rate constant k3 of 7 x 10(6) s-1. The cycle is completed by electron transfer from heme c FeII to the Trp-191 radical cation with a rate constant k4 of 6.1 x 10(4) s-1. The rate constant k4 decreases to 3.4 x 10(3) s-1 as the viscosity is increased to 84 cP, but the rate constants k1 and k3 remain the same. The results are consistent with a gating mechanism in which the Ru-27-Cc-CcP complex undergoes fluctuations between a major state A with the configuration of the hCc-CcP crystalline complex and a minor state B with the configuration of the yCc-CcP complex. The hCc-CcP complex, state A, has an inefficient pathway for electron transfer from heme c to the Trp-191 indolyl radical cation with a distance of 20.5 A and a predicted value of 5 x 10(2) s-1 for k4A. The observed rate constant k4 is thus gated by the rate constant ka for conversion of state A to state B, where the rate of electron transfer k4B is expected to be 2 x 10(6) s-1. The temperature dependence of k4 provides activation parameters that are consistent with the proposed gating mechanism. These studies provide evidence that configurational gating does not control electron transfer in the physiological yCc-CcP complex, but is required in the nonphysiological hCc-CcP complex.  相似文献   

13.
14.
A number of surface residues of cytochrome c(6) from the cyanobacterium Anabaena sp. PCC 7119 have been modified by site-directed mutagenesis. Changes were made in six amino acids, two near the heme group (Val-25 and Lys-29) and four in the positively charged patch (Lys-62, Arg-64, Lys-66, and Asp-72). The reactivity of mutants toward the membrane-anchored complex photosystem I was analyzed by laser flash absorption spectroscopy. The experimental results indicate that cytochrome c(6) possesses two areas involved in the redox interaction with photosystem I: 1) a positively charged patch that may drive its electrostatic attractive movement toward photosystem I to form a transient complex and 2) a hydrophobic region at the edge of the heme pocket that may provide the contact surface for the transfer of electrons to P(700). The isofunctionality of these two areas with those found in plastocyanin (which acts as an alternative electron carrier playing the same role as cytochrome c(6)) are evident.  相似文献   

15.
The effect of ionic strength on the rate constant for electron transfer has been used to determine the magnitude and charge sign of the net electrostatic potential which exists in close proximity to the sites of electron transfer on various c-type cytochromes. The negatively charged ferricyanide ion preferentially reacts at the positively charged exposed heme edge region on the front side of horse cytochrome c and Paracoccus cytochrome c2. In contrast, at low ionic strength, the positively charged cobalt phenanthroline ion interacts with the negatively charged back side of cytochrome c2, and at high ionic strength at a positively charged site on the front side of the cytochrome. With horse cytochrome c, over the ionic strength range studied, cobalt phenanthroline reacts only at a positively charged site which is probably not at the heme edge. These inorganic oxidants do not react at the relatively uncharged exposed heme edge sites on Azotobacter cytochrome c5 and Pseudomonas cytochrome c-551, but rather at a negatively charged site which is away from the heme edge. The results demonstrate that at least two electron-transferring sites on a single cytochrome can be functional, depending on the redox reactant used and the ionic strength. Electrostatic interactions between charge distributions on the cytochrome surface and the other reactant, or interactions involving uncharged regions on the protein(s), are critical in determining the preferred sites of electron transfer and reaction rate constants. When unfavorable electrostatic effects occur at a site near the redox center, less optimal sites at a greater distance can become kinetically important.  相似文献   

16.
A hypothetical three-dimensional model of the cytochrome c peroxidase . tuna cytochrome c complex is presented. The model is based on known x-ray structures and supported by chemical modification and kinetic data. Cytochrome c peroxidase contains a ring of aspartate residues with a spatial distribution on the molecular surface that is complementary to the distribution of highly conserved lysines surrounding the exposed edge of the cytochrome c heme crevice, namely lysines 13, 27, 72, 86, and 87. These lysines are known to play a functional role in the reaction with cytochrome c peroxidase, cytochrome oxidase, cytochrome c1, and cytochrome b5. A hypothetical model of the complex was constructed with the aid of a computer-graphics display system by visually optimizing hydrogen bonding interactions between complementary charged groups. The two hemes in the resulting model are parallel with an edge separation of 16.5 A. In addition, a system of inter- and intramolecular pi-pi and hydrogen bonding interactions forms a bridge between the hemes and suggests a mechanism of electron transfer.  相似文献   

17.
Cytochrome-c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) forms a noncovalent 1:1 complex with horse cytochrome c in low ionic strength solution that is detectable by proton NMR spectroscopy. When the entire proton hyperfine-shifted spectrum is considered only five hyperfine resonances exhibit unambiguously detectable shifts: the heme 8-CH3 and 3-CH3 resonances, single proton resonances near 19 ppm and -4 ppm and the methionine-80 methyl group. These shifts are very similar to those observed for the covalently crosslinked complex of cytochrome-c peroxidase and horse cytochrome c, but different from those reported for cytochrome c complexes with flavodoxin and cytochrome b5. By comparison with the shifts reported for lysine-13-modified cytochrome c we conclude that the results reported here support the Poulos-Kraut proposed structure for the molecular redox complex between cytochrome-c peroxidase and cytochrome c. These results indicate that the principal site of interaction with cytochrome-c peroxidase is the exposed heme edge of horse cytochrome c, in proximity to lysine-13 and the heme pyrrole II. The noncovalent cytochrome-c peroxidase-cytochrome c complex exists in the rapid-exchange time limit even at 500 mHz proton frequency. Our data provide an improved estimate of the minimum off-rate for exchanging cytochrome c as 1133 (+/- 120) s-1 at 23 degrees C.  相似文献   

18.
Cytochrome c peroxidase forms an electron transfer complex with cytochrome c. The complex is governed by ionic bonds between side chain amino groups of cytochrome c and carboxyl groups of peroxidase. To localize the binding site for cytochrome c on the peroxidase, we have used the method of differential chemical modification. By this method the chemical reactivity of carboxyl groups (toward carbodiimide/aminoethane sulfonate) was compared in free and in complexed peroxidase. When ferricytochrome c was bound to cytochrome c peroxidase, acidic residues 33, 34, 35, 37, 221, 224, and 1 to 3 carboxyls at the C terminus became less reactive by a factor of approximately 4, relative to the remaining 39 carboxylates of peroxidase. Of the less reactive residues those in the 30-40 region and the 221/224 pair are on opposite sides of the surface area which contains the heme propionates. We, therefore, propose that the binding site for cytochrome c on cytochrome c peroxidase spans the area where one heme edge comes close to the molecular surface. The results are in very good agreement with chemical cross-linking studies (Waldmeyer, B., and Bosshard, H.R. (1985) J. Biol. Chem. 260, 5184-5190); they also support a hypothetical model predicted on the basis of the known crystal structures of cytochrome c and peroxidase (Poulos, T.L., and Kraut, J. (1980) J. Biol. Chem. 255, 10322-10330).  相似文献   

19.
Yeast cytochrome c peroxidase: mechanistic studies via protein engineering   总被引:1,自引:0,他引:1  
Cytochrome c peroxidase (CcP) is a yeast mitochondrial enzyme that catalyzes the reduction of hydrogen peroxide to water by ferrocytochrome c. It was the first heme enzyme to have its crystallographic structure determined and, as a consequence, has played a pivotal role in developing ideas about structural control of heme protein reactivity. Genetic engineering of the active site of CcP, along with structural, spectroscopic, and kinetic characterization of the mutant proteins has provided considerable insight into the mechanism of hydrogen peroxide activation, oxygen-oxygen bond cleavage, and formation of the higher-oxidation state intermediates in heme enzymes. The catalytic mechanism involves complex formation between cytochrome c and CcP. The cytochrome c/CcP system has been very useful in elucidating the complexities of long-range electron transfer in biological systems, including protein-protein recognition, complex formation, and intracomplex electron transfer processes.  相似文献   

20.
Cytochrome c3 from Desulfovibrio gigas is electrostatically adsorbed on Ag electrodes coated with self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid. The redox equilibria and electron transfer dynamics of the adsorbed four-heme protein are studied by surface enhanced resonance Raman spectroscopy. Immobilization on the coated electrodes does not cause any structural changes in the redox sites. The potential-dependent stationary experiments distinguish the redox potential of heme IV (-0.19 V versus normal hydrogen electrode) from those of the other hemes for which an average value of -0.3 V is determined. Taking into account the interfacial potential drops, these values are in good agreement with the redox potentials of the protein in solution. The heterogenous electron transfer between the electrode and heme IV of the adsorbed cytochrome c3 is analyzed on the basis of time-resolved experiments, leading to a formal electron transfer rate constant of 15 s(-1), which is a factor of 3 smaller than that of the monoheme protein cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号