首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential therapeutic target in cardiovascular and cancerous diseases. PAI-1 circulates in blood as a complex with vitronectin. A PAI-1 variant (N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-3-diazole (NBD) P9 PAI-1) with a fluorescent tag at the reactive center loop (RCL) was used to study the effects of vitronectin and monoclonal antibodies (mAbs) directed against alpha-helix F (Mab-2 and MA-55F4C12) on the reactions of PAI-1 with tissue-type and urokinase-type plasminogen activators. Both mAbs delay the RCL insertion and induce an increase in the stoichiometry of inhibition (SI) to 1.4-9.5. Binding of vitronectin to NBD P9 PAI-1 does not affect SI but results in a 2.0-6.5-fold decrease in the limiting rate constant (klim) of RCL insertion for urokinase-type plasminogen activator at pH 6.2-8.0 and for tissue-type plasminogen activator at pH 6.2. Binding of vitronectin to the complexes of NBD P9 PAI-1 with mAbs results in a decrease in klim and in a 1.5-22-fold increase in SI. Thus, vitronectin and mAbs demonstrated additivity in the effects on the reaction with target proteinases. The same step in the reaction mechanism remains limiting for the rate of RCL insertion in the absence and presence of Vn and mAbs. We hypothesize that vitronectin, bound to alpha-helix F on the side opposite to the epitopes of the mAbs, potentiates the mAb-induced delay in RCL insertion and the associated substrate behavior by selectively decreasing the rate constant for the inhibitory branch of PAI-1 reaction (ki). These results demonstrate that mAbs represent a valid approach for inactivation of vitronectin-bound PAI-1 in vivo.  相似文献   

2.
Mechanism-based inhibition of proteinases by serpins involves enzyme acylation and fast insertion of the reactive center loop (RCL) into the central beta-sheet of the serpin, resulting in mechanical inactivation of the proteinase. We examined the effects of ligands specific to alpha-helix F (alphaHF) of plasminogen activator inhibitor-1 (PAI-1) on the stoichiometry of inhibition (SI) and limiting rate constant (k(lim)) of RCL insertion for reactions with beta-trypsin, tissue-type plasminogen activator (tPA), and urokinase. The somatomedin B domain of vitronectin (SMBD) did not affect SI for any proteinase or k(lim) for tPA but decreased the k(lim) for beta-trypsin. In contrast to SMBD, monoclonal antibodies MA-55F4C12 and MA-33H1F7, the epitopes of which are located at the opposite side of alphaHF, decreased k(lim) and increased SI for every enzyme. These effects were enhanced in the presence of SMBD. RCL insertion for beta-trypsin and tPA is limited by different subsequent steps of PAI-1 mechanism as follows: enzyme acylation and formation of a loop-displaced acyl complex (LDA), respectively. Stabilization of LDA through the disruption of the exosite interactions between PAI-1 and tPA induced an increase in the k(lim) but did not affect the SI. Thus it is unlikely that LDA contributes significantly to the outcome of the serpin reaction. These results demonstrate that the rate of RCL insertion is not necessarily correlated with SI and indicate that an intermediate, different from LDA, which forms during the late steps of PAI-1 mechanism, and could be stabilized by ligands specific to alphaHF, controls bifurcation between the inhibitory and the substrate pathways.  相似文献   

3.
Serpins inhibit serine proteinases through formation of stable 1:1 complexes. In this study we have evaluated the effects of PAI-1 neutralizing antibodies (MA) on the stability of PAI-1/proteinase complexes, partially destabilized through prolongation of the reactive center loop. MA-8H9D4, reacting with residues Arg(300), Gln(303), and Asp(305), had no effect on the stability. In contrast, MA-33H1F7 and MA-55F4C12, reacting with alpha-helix F and the turn connecting hF with s3A, affected significantly and proteinase-dependently formed PAI-1/proteinase complexes. That is, MA-33H1F7 increased the stability of both PAI-1/t-PA and u-PA complexes (7- and 3-fold, respectively) whereas MA-55F4C12 stabilized PAI-1/t-PA complexes (3-fold) but destabilized PAI-1/u-PA complexes (2-fold). It is concluded that interference with the docking site of the cognate proteinase in the preformed serpin/proteinase complex may affect the intrinsic stability. We hypothesize that this is the consequence of a decreased or increased torsion of the RCL on the catalytic triad in the proteinase.  相似文献   

4.
A binding protein for plasminogen activator inhibitor 1 (PAI-1-BP) was isolated from human plasma by a four-step procedure. 1) The 7 S globulin fraction of plasma was isolated by gel filtration on Sephacryl S-300. 2) Human endothelial cell-type plasminogen activator inhibitor (PAI-1), pretreated with 12 M urea, was added to this fraction (22 micrograms of PAI-1/ml of plasma), and a PAI-1 antigen peak with apparent mass 450 kDa (representing 65% of PAI-1 antigen and 85% of PAI activity) was isolated by gel filtration of this mixture. 3) The PAI-1.PAI-1-BP complex was further purified by immunoadsorption on an immobilized murine monoclonal antibody directed against PAI-1 (MA-7D4) and by elution with 4 M KSCN. 4) The complex was then dissociated by addition of excess human tissue-type plasminogen activator (t-PA), and t-PA and PAI-1 antigen (t-PA.PAI-1 complexes and free t-PA and PAI-1) were removed by immunoadsorption on monoclonal antibodies directed against t-PA (MA-62E8) and against PAI-1 (MA-7D4 and MA-12A4). Sodium dodecyl sulfate-gel electrophoresis of the purified material under nonreducing conditions revealed two bands with apparent mass approximately equal to 150 kDa and two bands with mass 74 and 68 kDa. Reduced sodium dodecyl sulfate-gel electrophoresis displayed two main bands with apparent masses of 73 and 64 kDa. The PAI-1-BP reacts with urea-treated, but not with inactive PAI-1. t-PA dissociates the complex between PAI-1 and PAI-1-BP. PAI-1 in complex with PAI-1-BP is 2-3-fold more stable at 37 degrees C than purified PAI-1, suggesting that PAI-1-BP may stabilize PAI-1 in blood. The concentration of PAI-1-BP in plasma determined by titration with PAI-1 is approximately 130 mg/liter. The isolated PAI-1-BP was shown to be identical to S protein (vitronectin) both by cross-reactivity with monospecific rabbit antisera and by NH2-terminal amino acid sequence analysis. The gel filtration behavior, mobility on sodium dodecyl sulfate-gel electrophoresis, and concentration in plasma suggest that PAI-1-BP is a multimer (presumably a dimer) of S protein accounting for approximately 35% of the S protein in plasma.  相似文献   

5.
We have delineated two different reaction mechanisms of monoclonal antibodies (mAbs), MA-8H9D4 and either MA-55F4C12 or MA-33H1F7, that convert plasminogen activator inhibitor 1 (PAI-1) to a substrate for tissue (tPA)- and urokinase plasminogen activators. MA-8H9D4 almost completely (98-99%) shifts the reaction to the substrate pathway by preventing disordering of the proteinase active site. MA-8H9D4 does not affect the rate-limiting constants (k(lim)) for the insertion of the reactive center loop cleaved by tPA (3.5 s(-1)) but decreases k(lim) for urokinase plasminogen activator from 25 to 4.0 s(-1). MA-8H9D4 does not cause deacylation of preformed PAI-1/proteinase complexes and probably acts prior to the formation of the final inhibitory complex, interfering with displacement of the acylated serine from the proteinase active site. MA-55F4C12 and MA-33H1F7 (50-80% substrate reaction) do not interfere with initial PAI-1/proteinase complex formation but retard the inhibitory pathway by decreasing k(lim) (>10-fold for tPA). Interaction of two mAbs with the same molecule of PAI-1 has been directly demonstrated for pairs MA-8H9D4/MA-55F4C12 and MA-8H9D4/MA-33H1F7 but not for MA-55F4C12/MA-33H1F7. The strong functional additivity observed for MA-8H9D4 and MA-55F4C12 demonstrates that these mAbs interact independently and affect different steps of the PAI-1 reaction mechanism.  相似文献   

6.
The serpin plasminogen activator inhibitor-1 (PAI-1) slowly converts to an inactive latent form by inserting a major part of its reactive center loop (RCL) into its beta-sheet A. A murine monoclonal antibody (MA-33B8), raised against the human plasminogen activator (tPA).PAI-1 complex, rapidly inactivates PAI-1. Results presented here indicate that MA-33B8 induces acceleration of the active-to-latent conversion. The antibody-induced inactivation of PAI-1 labeled with the fluorescent probe N, N'-dimethyl-N-(acetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethylene diamine (NBD) at P9 in the RCL caused a fluorescence enhancement and shift identical to those accompanying the spontaneous conversion of the P9.NBD PAI-1 to the latent form. Like latent PAI-1, antibody-inactivated PAI-1 was protected from cleavage by elastase. The rate constants for MA-33B8 binding, measured by NBD fluorescence or inactivation, were similar (1.3-1.8 x 10(4) M-1 s-1), resulting in a 4000-fold faster inactivation at 4.2 microM antibody binding sites. The apparent antibody binding rate constant, at least 1000 times slower than one limited by diffusion, indicates that exposure of its epitope depends on an unfavorable equilibrium of PAI-1. Our observations are consistent with this idea and suggest that the equilibrium involves partial insertion of the RCL into sheet A: latent, RCL-cleaved, and tPA-complexed PAI-1, which are inactive loop-inserted forms, bound much faster than active PAI-1 to MA-33B8, whereas two loop-extracted forms of PAI-1, modified to prevent loop insertion, did not bind or bound much more weakly to the antibody.  相似文献   

7.
The serpin plasminogen activator inhibitor type 1 (PAI-1) is an important protein in the regulation of fibrinolysis and inhibits its target proteinases through formation of a covalent complex. In the present study, we have identified the epitope of two PAI-1 neutralizing monoclonal antibodies (MA-33H1F7 and MA-55F4C12). Based upon differential cross-reactivity data of these monoclonals with PAI-1 from different species and on a sequence alignment between these PAI-1s, combined with the three-dimensional structure, we predicted that the residues Glu(128)-Val(129)-Glu(130)-Arg(131) and Lys(154) (at the hinge region between alpha-helix F and the main part of the PAI-1-molecule) might form the major site of interaction. Therefore a variety of alanine mutants were generated and evaluated for their affinity toward both monoclonal antibodies. The affinity constants of MA-55F4C12 and MA-33H1F7 for PAI-1 were 2.7 +/- 1.6 x 10(9) M(-1) and 5.4 +/- 1.7 x 10(9) M(-1), respectively, but decreased between 13- and 270-fold upon mutation of Lys(154) to Ala(154) or Glu(128)-Val(129)-Glu(130)-Arg(131) to Ala-Ala-Ala-Ala. The combined mutations (PAI-1-EVER/K), however, resulted in an absence of binding to either of the antibodies. Both antibodies bound to PAI-1-wt/t-PA complexes with a similar affinity as to PAI-1-wt (K(A) = 4-5 x 10(9) M(-1)). The epitope localization reveals the molecular basis for the neutralizing properties of both monoclonal antibodies. In addition, it provides new insights into the validity of various models that have been proposed for the serpin/proteinase complex, excluding full insertion of the reactive-site loop.  相似文献   

8.
Considerable progress in understanding the mechanism of inhibition of proteinases by serpins has been obtained from different biochemical studies. These studies reveal that stable serpin/proteinase complex formation involves insertion of the reactive-site loop of the serpin and occurs at the acyl-enzyme stage. Even though no three-dimensional structure of a serpin/proteinase complex is resolved, structural information is available on some of the individual compounds. Molecular modeling techniques combined with recently acquired biochemical/biophysical data were used to provide insight into the stable complex formation between plasminogen activator inhibitor-1 (PAI-1) and the target proteinases: tissue-type plasminogen activator, urokinase-type plasminogen activator, and thrombin. This study reveals that PAI-1 initially interacts with its target proteinase when its reactive-site loop is solvent exposed and thereby accessible for the proteinase. Stable complex formation, however, involves the insertion of the reactive-site loop up to P7 and results in a tight binding geometry between PAI-1 and its target proteinase. The influence of different biologically relevant molecules on PAI-1/proteinase complex formation and the differences in inhibition rate constants observed for the different proteinases can be explained from these models.  相似文献   

9.
The serpin plasminogen activator inhibitor-1 (PAI-1) has a dual function: 1) it plays an important role as a direct inhibitor of the plasminogen activation system, and 2) its interaction with the adhesive glycoprotein vitronectin suggests a role in tissue remodeling and metastasis, independent from its proteinase inhibitory properties. Unique to this serpin is the close association between its conformational and functional properties. Indeed, PAI-1 can occur in an active and a latent conformation, but both functions are exclusively present in the active conformation. We report here the epitope localization and functional effects of a monoclonal antibody (MA-124K1) that inhibits rat PAI-1 activity and simultaneously increases the binding of inactive PAI-1 to vitronectin (the affinity constant of PAI-1 for vitronectin is 2 x 10(7) m(-1) in the absence of MA-124K1 and 160 x 10(7) m(-1) in the presence of MA-124K1). To the best of our knowledge, this is the first monoclonal antibody dissociating the proteinase inhibitory properties from the vitronectin binding properties in PAI-1. Mutation of Glu(212) and/or Glu(220) in rat PAI-1 to Ala results in a strongly reduced affinity or absence of binding to MA-124K1. The three-dimensional structure of PAI-1 reveals that these residues constitute a conformational epitope close to the reactive-site loop and compatible with the effect of MA-124K1 on the inhibitory properties of PAI-1. However, the vitronectin binding site is localized at the opposite site of the molecule, indicating that the effect of MA-124K1 involves an allosteric modulation of the vitronectin binding site. Cell culture experiments revealed a significant reduction of cell attachment and migration in the presence of MA-124K1, providing evidence for the functional relevance of this antibody-mediated up-regulation of the vitronectin binding properties of PAI-1. In conclusion, a novel mechanism for interference with PAI-1 functions has been identified and is of importance in the modulation of cell migration and related events (e.g. tumor metastasis).  相似文献   

10.
The serpin plasminogen activator inhibitor type 1 (PAI-1) plays a regulatory role in various physiological processes (e.g. fibrinolysis and pericellular proteolysis) and forms a potential target for therapeutic interventions. In this study we identified the epitopes of three PAI-1 inhibitory monoclonal antibodies (MA-44E4, MA-42A2F6, and MA-56A7C10). Differential cross-reactivities of these monoclonals with PAI-1 from different species and sequence alignments between these PAI-1s, combined with the three-dimensional structure, revealed several charged residues as possible candidates to contribute to the respective epitopes. The production, characterization, and subsequent evaluation of a variety of alanine mutants using surface plasmon resonance revealed that the residues His(185), Arg(186), and Arg(187) formed the major sites of interaction for MA-44E4. In contrast, the epitopes of MA-42A2F6 and MA-56A7C10 were found to be conformational. The epitope of MA-42A2F6 comprises residues Lys(243) and Glu(350), whereas the epitope of MA-56A7C10 comprises residues Glu(242), Lys(243), Glu(244), Glu(350), Asp(355), and Arg(356). The participation of Glu(350), Asp(355), and Arg(356) provides a molecular explanation for the differential exposure of this epitope in the different conformations of PAI-1 and for the effect of these antibodies on the kinetics of the formation of the initial PAI-1-proteinase complexes. The localization of the epitopes of MA-44E4, MA42A2F6, and MA-56A7C10 elucidates two previously unidentified molecular mechanisms to modulate PAI-1 activity and opens new perspectives for the rational development of PAI-1 neutralizing compounds.  相似文献   

11.
The serpin plasminogen activator inhibitor-1 (PAI-1) is a fast and specific inhibitor of the plasminogen activating serine proteases tissue-type and urokinase-type plasminogen activator and, as such, an important regulator in turnover of extracellular matrix and in fibrinolysis. PAI-1 spontaneously loses its antiproteolytic activity by inserting its reactive centre loop (RCL) as strand 4 in beta-sheet A, thereby converting to the so-called latent state. We have investigated the importance of the amino acid sequence of alpha-helix F (hF) and the connecting loop to s3A (hF/s3A-loop) for the rate of latency transition. We grafted regions of the hF/s3A-loop from antithrombin III and alpha1-protease inhibitor onto PAI-1, creating eight variants, and found that one of these reversions towards the serpin consensus decreased the rate of latency transition. We prepared 28 PAI-1 variants with individual residues in hF and beta-sheet A replaced by an alanine. We found that mutating serpin consensus residues always had functional consequences whereas mutating nonconserved residues only had so in one case. Two variants had low but stable inhibitory activity and a pronounced tendency towards substrate behaviour, suggesting that insertion of the RCL is held back during latency transition as well as during complex formation with target proteases. The data presented identify new determinants of PAI-1 latency transition and provide general insight into the characteristic loop-sheet interactions in serpins.  相似文献   

12.
Plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of the serine proteases tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). To systematically investigate the roles of the reactive center P1 and P1' residues in PAI-1 function, saturation mutagenesis was utilized to construct a library of PAI-1 variants. Examination of 177 unique recombinant proteins indicated that a basic residue was required at P1 for significant inhibitory activity toward uPA, whereas all substitutions except proline were tolerated at P1'. P1Lys variants exhibited lower inhibition rate constants and greater sensitivity to P1' substitutions than P1Arg variants. Alterations at either P1 or P1' generally had a larger effect on the inhibition of tPA. A number of variants that were relatively specific for either uPA or tPA were identified. P1Lys-P1'Ala reacted 40-fold more rapidly with uPA than tPA, whereas P1Lys-P1'Trp showed a 6.5-fold preference for tPA. P1-P1' variants containing additional mutations near the reactive center demonstrated only minor changes in activity, suggesting that specific amino acids in this region do not contribute significantly to PAI-1 function. These findings have important implications for the role of reactive center residues in determining serine protease inhibitor (serpin) function and target specificity.  相似文献   

13.
We have prepared a series of bovine serum albumins (BSA) that have been site-selectively labeled at cysteine-34 with one of four different sulfhydryl-selective boron dipyrromethene difluoride (BODIPY) fluorescent probes (BODIPY FL IA, BODIPY FL C(1) IA, BODIPY 530/550 IA, and BODIPY 493/503 MB). We determine how the choice of extrinsic probe structure dictates the recovered BSA-BODIPY dynamics under thermal (10-80 degrees C) and chemical (0-5M guanidine hydrochloride) denaturation conditions. The results of these experiments show that the global protein dynamics are sensed equally by each fluorescent probe; however, the probe itself influences the local probe dynamics within the cybotactic region that surrounds cysteine-34. Thus, it seems inappropriate to think of these extrinsic fluorescent probes as passive, nonparticipatory viewers of local protein dynamics.  相似文献   

14.
Recently, we found that alpha(1)-acid glycoprotein (AGP), one of the major acute-phase proteins, forms a function-stabilizing complex with plasminogen activator inhibitor 1 (PAI-1). In this study we describe the mechanism by which AGP, as well as its recombinant fragment AGP(118)(-)(201), interacts exclusively with the active form of PAI-1 and stabilizes its conformation. The binding domain of PAI-1 for AGP was initially mapped by antibodies reacting with the well-defined PAI-1 epitopes and then verified in binding assays utilizing a library of PAI-1 mutants. The latter consisted of PAI-1 molecules with individual, tandem, or grouped mutations in the epitope region of MA-55F4C12, MA-33B8, MA-33H1F7, MA-44E4, and MA-8H9D4. Solid-phase binding experiments showed that only MA-8H9D4 did not bind to the PAI-1/AGP complex, indicating that its epitope is hidden upon binding of PAI-1 to AGP. Consistently, only PAI-1 mutants with substitutions in the region of R300-D305, constituting the MA-8H9D4 epitope, showed a lack of binding or severe deficit in both the capacity and affinity of binding to AGP. These results support a location of the binding site close to the epitope within the segment connecting the regions hI with S5A. In conclusion, our present data suggest that AGP binding stabilizes the active conformation of PAI-1 by restricting the movement of beta-sheet A and thereby preventing insertion of the reactive center loop.  相似文献   

15.
The endothelium may contribute to fibrinolysis through the binding of plasminogen activators or plasminogen activator inhibitors to the cell surface. Using a solid-phase radioimmunoassay, we observed that antibodies to recombinant tissue-type plasminogen activator (rt-PA) and plasminogen activator inhibitor type 1 (PAI-1) bound to the surface of cultured human umbilical vein endothelial cells (HUVEC). HUVEC also specifically bound added radiolabeled rt-PA with apparent steady-state binding being reached by 1 h at 4 degrees C. When added at low concentrations (less than 5 nM), rt-PA bound with high affinity mainly via the catalytic site, forming a sodium dodecyl sulfate-stable 105-kDa complex which dissociates from the cell surface over time and which could be immunoprecipitated by a monoclonal antibody to PAI-1. rt-PA bound to this high affinity site retained less than 5% of its expected plasminogen activator activity. At higher concentrations, binding did not require the catalytic site and was rapidly reversible. rt-PA initially bound to this site retained plasminogen activator activity. These studies suggest that tissue-type plasminogen activator and PAI-1 are expressed on the surface of cultured HUVEC. HUVEC also express unoccupied binding sites for exogenous tissue-type plasminogen activator. The balance between the expression of plasminogen activator inhibitors and these unoccupied binding sites for plasminogen activators on the endothelial surface may contribute to the regulation of fibrinolysis.  相似文献   

16.
The serine proteinase inhibitor plasminogen activator inhibitor type-1 (PAI-1) is the primary physiological inhibitor of the tissue-type and the urokinase-type plasminogen activator (tPA and uPA, respectively) and as such an important regulator of proteolytic events taking place in the circulation and in the extracellular matrix. Moreover, a few non-proteolytic functions have been ascribed to PAI-1, mediated by its interaction with vitronectin or the interaction between the uPA-PAI-1 complex bound to the uPA receptor and members of the low density lipoprotein receptor family. PAI-1 belongs to the serpin family, characterised by an unusual conformational flexibility, which governs its molecular interactions. In this review we describe the anti-proteolytic and non-proteolytic functions of PAI-1 from both a biological and a biochemical point of view. We will relate the various biological roles of PAI-1 to its biochemistry in general and to the different conformations of PAI-1 in particular. We put emphasis on the intramolecular rearrangements of PAI-1 that are required for its antiproteolytic as well as its non-proteolytic functions.  相似文献   

17.
The endothelial cell-type plasminogen activator inhibitor (PAI-1) may exist in an inactive, latent form that can be converted into an active form upon treatment of the protein with denaturants, such as sodium dodecyl sulfate, guanidine HCl, or urea. The present paper demonstrates that latent PAI-1 can be activated by lipid vesicles containing the negatively charged phospholipids phosphatidylserine (PS) or phosphatidylinositol. The presence of a net negative charge on the phospholipid headgroup is essential for activation, since lipid vesicles consisting exclusively of zwitterionic phospholipids, such as phosphatidylcholine and phosphatidylethanolamine, do not activate PAI-1. In the presence of PS vesicles, PAI-1 inhibited tissue-type plasminogen activator 50-fold more effectively than in the absence of phospholipids, whereas sodium dodecyl sulfate enhanced PAI-1 activity by 25-fold. In mixed phospholipid vesicles containing PS and phosphatidylcholine in various molar ratios, the extent of PAI-1 activation was directly related to the PS content of the phospholipid membrane. Ca2+ ions interfered with the inhibitory activity of PS-activated PAI-1, suggesting that Ca2+ ions may regulate PAI-1 activity in the presence of negatively charged phospholipids. An important consequence of these findings is that, as in blood coagulation, negatively charged phospholipids may play an important regulatory role in controlling the fibrinolytic system by activating an inhibitor of tissue-type plasminogen activator.  相似文献   

18.
Plasminogen activator inhibitor type 1 (PAI-1) is a member of the serine protease inhibitor (serpin) superfamily. Its highly mobile reactive-center loop (RCL) is thought to account for both the rapid inhibition of tissue-type plasminogen activator (t-PA), and the rapid and spontaneous transition of the unstable, active form of PAI-1 into a stable, inactive (latent) conformation (t(1/2) at 37 degrees C, 2.2 hours). We determined the amino acid residues responsible for the inherent instability of PAI-1, to assess whether these properties are independent and, consequently, whether the structural basis for inhibition and latency transition is different. For that purpose, a hypermutated PAI-1 library that is displayed on phage was pre-incubated for increasing periods (20 to 72 hours) at 37 degrees C, prior to a stringent selection for rapid t-PA binding. Accordingly, four rounds of phage-display selection resulted in the isolation of a stable PAI-1 variant (st-44: t(1/2) 450 hours) with 11 amino acid mutations. Backcrossing by DNA shuffling of this stable mutant with wt PAI-1 was performed to eliminate non-contributing mutations. It was shown that the combination of mutations at positions 50, 56, 61, 70, 94, 150, 222, 223, 264 and 331 increases the half-life of PAI-1 245-fold. Furthermore, within the limits of detection the stable mutants isolated are functionally indistinguishable from wild-type PAI-1 with respect to the rate of inhibition of t-PA, cleavage by t-PA, and binding to vitronectin. These stabilizing mutations constitute largely reversions to the stable "serpin consensus sequence" and are located in areas implicated in PAI-1 stability (e.g. the vitronectin-binding domain and the proximal hinge). Collectively, our data provide evidence that the structural requirements for PAI-1 loop insertion during latency transition and target proteinase inhibition can be separated.  相似文献   

19.
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators.  相似文献   

20.
Complex DNA viruses have tapped into cellular serpin responses that act as key regulatory steps in coagulation and inflammatory cascades. Serp-1 is one such viral serpin that effectively protects virus-infected tissues from host inflammatory responses. When given as purified protein, Serp-1 markedly inhibits vascular monocyte invasion and plaque growth in animal models. We have investigated mechanisms of viral serpin inhibition of vascular inflammatory responses. In vascular injury models, Serp-1 altered early cellular plasminogen activator (tissue plasminogen activator), inhibitor (PAI-1), and receptor (urokinase-type plasminogen activator) expression (p < 0.01). Serp-1, but not a reactive center loop mutant, up-regulated PAI-1 serpin expression in human endothelial cells. Treatment of endothelial cells with antibody to urokinase-type plasminogen activator and vitronectin blocked Serp-1-induced changes. Significantly, Serp-1 blocked intimal hyperplasia (p < 0.0001) after aortic allograft transplant (p < 0.0001) in PAI-1-deficient mice. Serp-1 also blocked plaque growth after aortic isograft transplant and after wire-induced injury (p < 0.05) in PAI-1-deficient mice indicating that increase in PAI-1 expression is not required for Serp-1 to block vasculopathy development. Serp-1 did not inhibit plaque growth in uPAR-deficient mice after aortic allograft transplant. We conclude that the poxviral serpin, Serp-1, attenuates vascular inflammatory responses to injury through a pathway mediated by native uPA receptors and vitronectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号