首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential roles of TIMP-4 and TIMP-2 in pro-MMP-2 activation by MT1-MMP   总被引:3,自引:0,他引:3  
The tissue inhibitors of metalloproteinases (TIMPs) are specific inhibitors of MMP enzymatic activity. However, TIMP-2 can promote the activation of pro-MMP-2 by MT1-MMP. This process is mediated by the formation of a complex between MT1-MMP, TIMP-2, and pro-MMP-2. Binding of TIMP-2 to active MT1-MMP also inhibits the autocatalytic turnover of MT1-MMP on the cell surface. Thus, under certain conditions, TIMP-2 is a positive regulator of MMP activity. TIMP-4, a close homologue of TIMP-2 also binds to pro-MMP-2 and can potentially participate in pro-MMP-2 activation. We coexpressed MT1-MMP with TIMP-4 and investigated its ability to support pro-MMP-2 activation. TIMP-4, unlike TIMP-2, does not promote pro-MMP-2 activation by MT1-MMP. However, TIMP-4 binds to MT1-MMP inhibiting its autocatalytic processing. When coexpressed with TIMP-2, TIMP-4 competitively reduced pro-MMP-2 activation by MT1-MMP. A balance between TIMP-2 and TIMP-4 may be a critical factor in determining the degradative potential of cells in normal and pathological conditions.  相似文献   

2.
The actin binding protein profilin has dramatic effects on actin polymerization in vitro and in living cells. Plants have large multigene families encoding profilins, and many cells or tissues can express multiple profilin isoforms. Recently, we characterized several profilin isoforms from maize pollen for their ability to alter cytoarchitecture when microinjected into living plant cells and for their association with poly-L-proline and monomeric actin from maize pollen. In this study, we characterize a new profilin isoform from maize, which has been designated ZmPRO4, that is expressed predominantly in endosperm but is also found at low levels in all tissues examined, including mature and germinated pollen. The affinity of ZmPRO4 for monomeric actin, which was measured by two independent methods, is similar to that of the three profilin isoforms previously identified in pollen. In contrast, the affinity of ZmPRO4 for poly-L-proline is nearly twofold higher than that of native pollen profilin and the other recombinant profilin isoforms. When ZmPRO4 was microinjected into plant cells, the effect on actin-dependent nuclear position was significantly more rapid than that of another pollen profilin isoform, ZmPRO1. A gain-of-function mutant (ZmPRO1-Y6F) was created and found to enhance poly-L-proline binding activity and to disrupt cytoarchitecture as effectively as ZmPRO4. In this study, we demonstrate that profilin isoforms expressed in a single cell can have different effects on actin in living cells and that the poly-L-proline binding function of profilin may have important consequences for the regulation of actin cytoskeletal dynamics in plant cells.  相似文献   

3.
A key problem in community ecology is to understand how individual-level traits give rise to population-level trophic interactions. Here, we propose a synthetic framework based on ecological considerations to address this question systematically. We derive a general functional form for the dependence of trophic interaction coefficients on trophically relevant quantitative traits of consumers and resources. The derived expression encompasses—and thus allows a unified comparison of—several functional forms previously proposed in the literature. Furthermore, we show how a community’s, potentially low-dimens ional, effective trophic niche space is related to its higher-dimensional phenotypic trait space. In this manner, we give ecological meaning to the notion of the “dimensionality of trophic niche space.” Our framework implies a method for directly measuring this dimensionality. We suggest a procedure for estimating the relevant parameters from empirical data and for verifying that such data matches the assumptions underlying our derivation.  相似文献   

4.
GLUT1 is a major glucose facilitator expressed ubiquitously among tissues. Upregulation of its expression plays an important role in the development of many types of cancer and metabolic diseases. Thioredoxin-interacting protein (TXNIP) is an α-arrestin that acts as an adaptor for GLUT1 in clathrin-mediated endocytosis. It regulates cellular glucose uptake in response to both intracellular and extracellular signals via its control on GLUT1‐4. In order to understand the interaction between GLUT1 and TXNIP, we generated GLUT1 lipid nanodiscs and carried out isothermal titration calorimetry and single-particle electron microscopy experiments. We found that GLUT1 lipid nanodiscs and TXNIP interact in a 1:1 ratio and that this interaction requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2).  相似文献   

5.
Recent papers have brought evidence against the hypothesis that the fucosyl branching of primary wall xyloglucans (Xg) are responsible for their higher capacity of binding to cellulose. Reinforcement of this questioning has been obtained in this work where we show that the binding capacity was improved when the molecular weight (MW) of the Xg polymers is decreased by enzymatic hydrolysis. Moreover, the enthalpy changes associated with the adsorption process between Xg and cellulose is similar for Xgs with similar MW (but differing in the fine structure such as the presence/absence of fucose). On the basis of these results, we suggest that the fine structure and MW of Xg determines the energy and amount of binding to cellulose, respectively. Thus, the occurrence of different fine structural domains of Xg (e.g. the presence of fucose and the distribution of galactoses) might have several different functions in the wall. Besides the structural function in primary wall, these results might have impact on the packing features of storage Xg in seed cotyledons, since the MW and absence of fucose could also be associated with the self-association capacity.  相似文献   

6.
Whole cell patch clamp investigations were carried out to clarify the pH sensitivity of native and recombinant P2X(3) receptors. In HEK293 cells permanently transfected with human (h) P2X(3) receptors (HEK293-hP2X(3) cells), an acidic pH shifted the concentration-response curve for alpha,beta-methylene ATP (alpha,beta-meATP) to the right and increased its maximum. An alkalic pH did not alter the effect of alpha,beta-meATP. Further, a low pH value increased the activation time constant (tau(on)) of the alpha,beta-meATP current; the fast and slow time constants of desensitization (tau(des1), tau(des2)) were at the same time also increased. Finally, acidification accelerated the recovery of P2X(3) receptors from the desensitized state. Replacement of histidine 206, but not histidine 45, by alanine abolished the pH-induced effects on hP2X(3) receptors transiently expressed in HEK293 cells. Changes in the intracellular pH had no effect on the amplitude or time course of the alpha,beta-meATP currents. The voltage sensitivity and reversal potential of the currents activated by alpha,beta-meATP were unaffected by extracellular acidification. Similar effects were observed in a subpopulation of rat dorsal root ganglion neurons expressing homomeric P2X(3) receptor channels. It is suggested that acidification may have a dual effect on P2X(3) channels, by decreasing the current amplitude at low agonist concentrations (because of a decrease in the rate of activation) and increasing it at high concentrations (because of a decrease in the rate of desensitization). Thereby, a differential regulation of pain sensation during e.g. inflammation may occur at the C fiber terminals of small DRG neurons in peripheral tissues.  相似文献   

7.
Troeberg L  Tanaka M  Wait R  Shi YE  Brew K  Nagase H 《Biochemistry》2002,41(50):15025-15035
The inhibitory properties of TIMP-4 for matrix metalloproteinases (MMPs) were compared to those of TIMP-1 and TIMP-2. Full-length human TIMP-4 was expressed in E. coli, folded from inclusion bodies, and the active component was purified by MMP-1 affinity chromatography. Progress curve analysis of MMP inhibition by TIMP-4 indicated that association rate constants (k(on)) and inhibition constants (K(i)) were similar to those for other TIMPs ( approximately 10(5) M(-)(1) s(-)(1) and 10(-)(9)-10(-)(12) M, respectively). Dissociation rate constants (k(off)) for MMP-1 and MMP-3 determined using alpha(2)-macroglobulin to capture MMP dissociating from MMP-TIMP complexes were in good agreement with values deduced from progress curves ( approximately 10(-)(4) s(-)(1)). K(i) and k(on) for the interactions of TIMP-1, -2, and -4 with MMP-1 and -3 were shown to be pH dependent. TIMP-4 retained higher reactivity with MMPs at more acidic conditions than either TIMP-1 or TIMP-2. Molecular interactions of TIMPs and MMPs investigated by IAsys biosensor analysis highlighted different modes of interaction between proMMP-2-TIMP-2 (or TIMP-4) and active MMP-2-TIMP-2 (or TIMP-4) complexes. The observation that both active MMP-2 and inactive MMP-2 (with the active site blocked either by the propeptide or a hydroxamate inhibitor) have essentially identical affinities for TIMP-2 suggests that there are two TIMP binding sites on the hemopexin domain of MMP-2: one with high affinity that is involved in proMMP-2 or hydroxamate-inhibited MMP-2; and the other with low affinity involved in formation of the complex of active MMP-2 and TIMP-2. Similar models of interaction may apply to TIMP-4. The latter low-affinity site functions in conjunction with the active site of MMP-2 to generate a tight enzyme-inhibitor complex.  相似文献   

8.
BackgroundBesides their role in copper metabolism, Sco proteins from different organisms have been shown to play a defensive role against oxidative stress. In the present study, we set out to identify crucial amino acid residues for the antioxidant activity.MethodsNative and mutated Sco proteins from human, Arabidopsis thaliana and the yeast Kluyveromyces lactis were expressed in the model organism Saccharomyces cerevisiae. The oxidative stress resistance of the respective transformants was determined by growth and lipid peroxidation assays.ResultsA functionally important site, located 15 amino acids downstream of the well-conserved copper binding CxxxC motif, was identified. Mutational analysis revealed that a positive charge at this position has a detrimental effect on the antioxidant capacity. Bioinformatic analysis predicts that this site is surface-exposed, and according to Co-IP data it is required for binding of proteins that are connected to known antioxidant pathways.ConclusionThis study shows that the antioxidant capacity of eukaryotic Sco proteins is conserved and depends on the presence of functional site(s) rather than the extent of overall sequence homology.General significanceThese findings provide an insight into the conserved functional sites of eukaryotic Sco proteins that are crucial for combating oxidative stress. This capacity is probably not due to an enzymatic activity but rather is indirectly mediated by interaction with other proteins.  相似文献   

9.
Pseudomonas aeruginosa exotoxin A (ETA) catalyzes the transfer of the ADP-ribose moiety of NAD+ onto eucaryotic elongation factor 2 (EF-2). To study the ETA site of interaction with EF-2, an immobilized EF-2 binding assay was developed. This assay demonstrates that ETA, in the presence of NAD+, binds to immobilized EF-2. Additionally, diphtheria toxin was also found to bind to the immobilized EF-2 in the presence of NAD+. Comparative analysis was performed with a mutated form of ETA (CRM 66) in which a histidine residue at position 426 has been replaced with a tyrosine residue. This immunologically cross-reactive, ADP-ribosyl transferase-deficient toxin does not bind to immobilized EF-2, thus explaining its lack of ADPRT activity. ETA bound to immobilized EF-2 cannot bind the monoclonal antibody TC-1 which specifically recognizes the ETA epitope containing His426. Immunoprecipitation of native ETA by mAb TC-1 is only achieved by incubating ETA in the presence of NAD+. Diethyl pyrocarbonate modification of the His426 residue blocks ETA binding to EF-2 and prevents the binding of the TC-1 antibody. Analogs of NAD+ containing a reduced nicotinamide ring or modified adenine moieties cannot substitute for NAD+ in the immobilized binding assay. Collectively, these data support our proposal that the site of ETA interaction with EF-2 includes His426 and that a molecule of NAD+ is required for stable interaction.  相似文献   

10.
11.
Local adaptation has central importance in the understanding of co-evolution, maintenance of sexual reproduction, and speciation. We investigated local adaptation in the alkaloid-bearing legume Crotalaria pallida and its seed predator, the arctiid moth Utetheisa ornatrix , at different spatial scales. When we studied three populations from south-east Brazil (150 km apart), we did not find evidence of local adaptation, although we did find interpopulational differences in herbivore performance, and a significant interaction between herbivore sex and plant population. These results indicate that both moth and plant populations are differentiated at the regional scale. In a comparison of populations from Brazil and Florida, the herbivore showed local adaptation to its host plant; for both moth populations, the pupae were heavier when the larvae ate the sympatric than the allopatric host population. We discuss the scale dependence of our results and the possible causes for the lack of local adaptation at the regional scale, even in the presence of plant and moth differentiation. The results obtained demonstrate the importance of studying co-evolution and local adaptation at different geographical scales.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 494–502.  相似文献   

12.
Considerable evidence supports a role for the Src family protein tyrosine kinase Lck in regulating multiple aspects of thymocyte development. In this report, we establish that early events in T lymphopoiesis are restored to Lck-deficient mice by provision of a transgene encoding a version of Lck that cannot interact with the coreceptors CD4 and CD8. In addition, we demonstrate that later events in thymocyte development, specifically, the processes of positive and negative selection, are compromised in mice where the only Lck available cannot associate with either CD4 or CD8. We conclude that not only is Lck activity required for positive and negative selection, but that that activity must be coupled to the CD4 and CD8 coreceptors.  相似文献   

13.
Synaptophysin interacts with synaptobrevin in membranes of adult small synaptic vesicles. The synaptophysin/synaptobrevin complex promotes synaptobrevin to built up functional SNARE complexes thereby modulating synaptic efficiency. Synaptophysin in addition is a cholesterol-binding protein. Depleting the membranous cholesterol content by filipin or beta-methylcyclodextrin (beta-MCD) decreased the solubility of synaptophysin in Triton X-100 with less effects on synaptobrevin. In small synaptic vesicles from rat brain the synaptophysin/synaptobrevin complex was diminished upon beta-MCD treatment as revealed by chemical cross-linking. Mice with a genetic mutation in the Niemann-Pick C1 gene developing a defect in cholesterol sorting showed significantly reduced amounts of the synaptophysin/synaptobrevin complex compared to their homo- or heterozygous littermates. Finally when using primary cultures of mouse hippocampus the synaptophysin/synaptobrevin complex was down-regulated after depleting the endogenous cholesterol content by the HMG-CoA-reductase inhibitor lovastatin. Alternatively, treatment with cholesterol up-regulated the synaptophysin/synaptobrevin interaction in these cultures. These data indicate that the synaptophysin/synaptobrevin interaction critically depends on a high cholesterol content in the membrane of synaptic vesicles. Variations in the availability of cholesterol may promote or impair synaptic efficiency by interfering with this complex.  相似文献   

14.
The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, because a detailed characterization at the structural level is lacking. Antigen-presenting dendritic cells (DCs), strategically located at mucosal surfaces and in the skin, may play an important role in anti-Candida protective immunity. However, the contribution of the various Candida-associated molecular patterns and their counter-receptors to DC function remains unknown. Here, we demonstrate that two C-type lectins, DC-SIGN and the macrophage mannose receptor, specifically mediate C. albicans binding and internalization by human DCs. Moreover, by combining a range of C. albicans glycosylation mutants with receptor-specific blocking and cytokine production assays, we determined that N-linked mannan but not O-linked or phosphomannan is the fungal carbohydrate structure specifically recognized by both C-type lectins on human DCs and directly influences the production of the proinflammatory cytokine IL-6. Better insight in the carbohydrate recognition profile of C-type lectins will ultimately provide relevant information for the development of new drugs targeting specific fungal cell wall antigens.  相似文献   

15.
Intestinal fatty acid-binding protein (IFABP) is highly expressed in the intestinal epithelium and it belongs to the family of soluble lipid binding proteins. These proteins are thought to participate in most aspects of the biology of lipids, regulating its availability for specific metabolic pathways, targeting and vectorial trafficking of lipids to specific subcellular compartments. The present study is based on the ability of IFABP to interact with phospholipid membranes, and we characterized its immersion into the bilayer's hydrophobic central region occupied by the acyl-chains. We constructed a series of Trp-mutants of IFABP to selectively probe the interaction of different regions of the protein, particularly the elements forming the portal domain that is proposed to regulate the exit and entry of ligands to/from the binding cavity. We employed several fluorescent techniques based on selective quenching induced by soluble or membrane confined agents. The results indicate that the portal region of IFABP penetrates deeply into the phospholipid bilayer, especially when CL-containing vesicles are employed. The orientation of the protein and the degree of penetration were highly dependent on the lipid composition, the superficial net charge and the ionic strength of the medium. These results may be relevant to understand the mechanism of ligand transfer and the specificity responsible for the unique functions of each member of the FABP family.  相似文献   

16.
A phospholipid-controlled interaction between the N-terminal and C-terminal domains of vinculin is thought to be a major mechanism that regulates binding activities of the protein. To probe the mechanisms underlying these interactions we used chemical modification and site-directed mutagenesis directed at histidine residues. Diethylpyrocarbonate (DEPC) modification of the C-terminal, but not the N-terminal, domain greatly decreased affinity of the N-terminal-C-terminal binding, implicating histidine residues in the C-terminal. Mutation of either or both C-terminal histidines (at positions 906 and 1026), however, did not affect N-C binding at neutral pH. The H906A mutation did prevent DEPC effects and also prevented the normal decrease in binding affinity for the N-terminal at lower pH. We found that the wild type C-terminal domain, but not the H906A mutant, underwent a conformational change at pH 6.5, reflected in an altered circular dichroism spectrum and apparent oligomerization. Phospholipid also induced conformational changes in the wild type C-terminal domain but not in the H906A mutant, even though the mutant protein did bind to the phospholipid. Finally, the sensitivity of the N-C interaction to phospholipid was much reduced by the H906A mutation. These results show that H906 plays a key role in the conformational dynamics of the C-terminal domain and thus the regulation of vinculin.  相似文献   

17.
Bacterial ATPases belonging to the ParA family assure partition of their replicons by forming dynamic assemblies which move replicon copies into the new cell-halves. The mechanism underlying partition is not understood for the Walker-box ATPase class, which includes most plasmid and all chromosomal ParAs. The ATPases studied both polymerize and interact with non-specific DNA in an ATP-dependent manner. Previous work showed that in vitro, polymerization of one such ATPase, SopA of plasmid F, is inhibited by DNA, suggesting that interaction of SopA with the host nucleoid could regulate partition. In an attempt to identify amino acids in SopA that are needed for interaction with non-specific DNA, we have found that mutation of codon 340 (lysine to alanine) reduces ATP-dependent DNA binding > 100-fold and correspondingly diminishes SopA activities that depend on it: inhibition of polymer formation and persistence, stimulation of basal-level ATP hydrolysis and localization over the nucleoid. The K340A mutant retained all other SopA properties tested except plasmid stabilization; substitution of the mutant SopA for wild-type nearly abolished mini-F partition. The behaviour of this mutant indicates a causal link between interaction with the cell's non-specific DNA and promotion of the dynamic behaviour that ensures F plasmid partition.  相似文献   

18.
Matrix metalloproteinase 10 (MMP-10, stromelysin-2) is a secreted metalloproteinase with functions in skeletal development, wound healing, and vascular remodeling; its overexpression is also implicated in lung tumorigenesis and tumor progression. To understand the regulation of MMP-10 by tissue inhibitors of metalloproteinases (TIMPs), we have assessed equilibrium inhibition constants (K(i)) of putative physiological inhibitors TIMP-1 and TIMP-2 for the active catalytic domain of human MMP-10 (MMP-10cd) using multiple kinetic approaches. We find that TIMP-1 inhibits the MMP-10cd with a K(i) of 1.1 × 10(-9) M; this interaction is 10-fold weaker than the inhibition of the similar MMP-3 (stromelysin-1) catalytic domain (MMP-3cd) by TIMP-1. TIMP-2 inhibits the MMP-10cd with a K(i) of 5.8 × 10(-9) M, which is again 10-fold weaker than the inhibition of MMP-3cd by this inhibitor (K(i) = 5.5 × 10(-10) M). We solved the x-ray crystal structure of TIMP-1 bound to the MMP-10cd at 1.9 ? resolution; the structure was solved by molecular replacement and refined with an R-factor of 0.215 (R(free) = 0.266). Comparing our structure of MMP-10cd·TIMP-1 with the previously solved structure of MMP-3cd·TIMP-1 (Protein Data Bank entry 1UEA), we see substantial differences at the binding interface that provide insight into the differential binding of stromelysin family members to TIMP-1. This structural information may ultimately assist in the design of more selective TIMP-based inhibitors tailored for specificity toward individual members of the stromelysin family, with potential therapeutic applications.  相似文献   

19.
We have identified the metalloproteinase inhibitor TIMP-2 as a secreted product of human alveolar macrophages. In contrast to human fibroblasts, TIMP-2 was released from macrophages free of any apparent complexed metalloproteinases. Also in marked distinction to fibroblasts, TIMP-2 secretion from mononuclear phagocytes was subject to modulation by a variety of agents. TIMP-2 was synthesized by macrophages placed in culture under basal conditions in amounts approximately 30% of those secreted by fibroblasts on a per cell basis. The additions of lipopolysaccharide, denatured type I collagen, and zymosan to culture medium each resulted in a dose-dependent and profound decrease in macrophage TIMP-2 protein production and steady-state mRNA levels. In contrast, all of these agents markedly enhanced the biosynthesis of macrophage interstitial collagenase and TIMP-1 as assessed by analysis of identical cell and conditioned media samples. In human fibroblasts, TIMP-2 biosynthesis was unaffected by interleukin-1, tumor necrosis factor-alpha, platelet-derived growth factor, and phorbol ester despite the massive collagenase stimulation induced by each of these agents. We conclude that TIMP-2 is a potentially important mononuclear phagocyte product whose biosynthesis is regulated in a distinct and completely opposite manner to that of collagenase and TIMP-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号