首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Old adults show a decreased recovery performance compared to young ones after unexpected perturbations increasing the risk of falls. Therefore, the purpose of the present study was to examine the effect of a specific training of mechanisms responsible for dynamic stability on the recovery performance of old adults after simulated forward falls and the contribution of muscle strength exercise. 38 old adults (two experimental groups each n=13 and a control group, n=12) participated in the study. Group 1 exercised the mechanisms responsible for dynamic stability like increase in base of support and counter-rotating segments around the centre of mass by practicing specific tasks including these mechanisms. Group 2 exercised these mechanisms of dynamic stability and muscle strength. The exercise volume was equal in both interventions (14 weeks, two times per week and ~1.5 h per session). Stability performance has been examined by simulated forward falls before and after the intervention. The two experimental groups improved in a similar extent (~35%) their ability to regain balance during forward falls after the intervention. The reason was a faster increase in base of support. Further, the performance enhancement was related to an increase in the rate of hip moment generation. Exercising the mechanisms responsible for dynamic stability control in old adults affects their ability to regain balance after forward falls. A faster utilization of these mechanisms due to improved neuromuscular coordination resulted in the significant performance enhancement.  相似文献   

2.
The yeast S-phase cyclins Clb5 and Clb6 are closely related proteins that are synthesized late in G1. Although often grouped together with respect to function, Clb5 and Clb6 exhibit differences in their ability to promote S-phase progression. DNA replication is significantly slowed in clb5Delta mutants but not in clb6Delta mutants. We have examined the basis for the differential functions of Clb5 and Clb6 and determined that unlike Clb5, which is stable until mitosis, Clb6 is degraded rapidly at the G1/S border. N-terminal deletions of CLB6 were hyperstabilized, suggesting that the sequences responsible for directing the destruction of Clb6 reside in the N terminus. Clb6 lacks the destruction box motif responsible for the anaphase promoting complex-mediated destruction of Clb5 but contains putative Cdc4 degron motifs in the N terminus. Clb6 was hyperstabilized in cdc34-3 and cdc4-3 mutants at restrictive temperatures and when S/T-P phosphorylation sites in the N terminus were mutated to nonphosphorylatable residues. Efficient degradation of Clb6 requires the activities of both Cdc28 and Pho85. Finally, hyperstabilized Clb6 expressed from the CLB6 promoter rescued the slow S-phase defect exhibited by clb5Delta cells. Taken together, these findings suggest that the SCF(Cdc4) ubiquitin ligase complex regulates Clb6 turnover and that the functional differences exhibited by Clb5 and Clb6 arise from the distinct mechanisms controlling their stability.  相似文献   

3.
This study aimed to examine the reliability and sex- and age-related differences of step tests with stipulated tempos as well as to clarify useful test parameters and tempos. One hundred forty elderly people and fifty young adults conducted tapping and stepping tests, matching the tempo provided by a metronome. Both tests involve movements where the subject touches a sheet with both the right and left hands or right and left legs at a designated spot. Evaluation parameters were the time difference between the beep sound and the time at which the sheet was touched in both tests as well as two-leg support and one-leg support times in the step test. The trial-to-trial reliability of the parameters in both tests was high. The time differences of both 40 bpm tests in the elderly were larger in males than in females. In the step test, the time difference and two-leg support times of the elderly were larger, in the order of 40, 60, and 120 bpm, and the one-leg support time was less in 40 bpm than 60 bpm or 120 bpm. The one-leg support time of the young subjects was larger, in the order of 40, 60, and 120 bpm. A significant age-related difference was found in the 40 bpm and 60 bpm test, and the time difference and two-leg support time were larger in the elderly while the one-leg support time was larger in the young subjects. The time difference at 40 bpm in the elderly was larger in the step test than in the tap test. There was no significant difference between both tests in the young subjects. In conclusion, the step test with the slow tempo, because it requires a long one-leg support phase, is effective for evaluating dynamic balance in the elderly. The time difference and two-leg and one-leg support times are effective evaluation parameters of the step test.  相似文献   

4.
The purpose of this study was to examine the age-related predictive and feedback adaptive locomotor improvements in the components of dynamic stability control during disturbed walking. Thirteen old (62–74 yrs) and ten young (23–30 yrs) male subjects performed a gait protocol on a gangway, which included one covered element. By exchanging this element, the subjects walked either solely over hard surface or experienced a perturbation of the gait on the soft surface element. The gait protocol consisted of a baseline on hard surface and an adaptation phase with 19 trials on soft or hard (2nd, 8th and 19th) surface. The investigation of dynamic stability was made by using the margin of stability (MS), which was calculated as the difference between the base of support and the extrapolated center of mass (CM). Horizontal velocity of CM and its vertical projection in anterior–posterior direction as well as the eigenfrequency of an inverted pendulum generate the extrapolated CM. As a result of the first unexpected disturbance, MS was decreased in the step following the perturbation compared to baselines in both age-groups. This decrease was higher for the old participants compared to the young ones, indicating a more unstable position in the step after the perturbation for the elderly. In the following adaptation phase, MS returned to baseline values in both age-groups. In the hard trial after the first unexpected perturbation, both age-groups increased MS at touchdown of the disturbed leg compared to baseline, reflecting fast predictive adjustments. Our findings show that the well-known age-related biological impairments did not inhibit the adaptive improvements in the components of dynamic stability in the elderly. However, the feedback corrections after the first unexpected perturbation were less effective for the elderly. This may increase the risk of falling.  相似文献   

5.
6.
Bacteria need a high degree of genetic stability to maintain their species identities over long evolutionary times while retaining some mutability to adapt to the changing environment.It is a long unanswered question that how bacteria reconcile these seemingly contradictory biological properties.We hypothesized that certain mechanisms must maintain a dynamic balance between genetic stability and mutability for the survival and evolution of bacterial species.To identify such mechanisms,we analyzed bacterial genomes,focusing on the Salmonella mismatch repair(MMR)system.We found that the MMR gene mutL functions as a genetic switch through a slipped-strand mispairing mechanism,modulating and maintaining a dynamic balance between genetic stability and mutability during bacterial evolution.This mechanism allows bacteria to maintain their phylogenetic status,while also adapting to changing environments by acquiring novel traits.In this review,we outline the history of research into this genetic switch,from its discovery to the latest findings,and discuss its potential roles in the genomic evolution of bacteria.  相似文献   

7.
After perturbation of the gait, feedback information may help regaining balance adequately, but it remains unknown whether adaptive feedback responses are possible after repetitive and unexpected perturbations during gait and if there are age-related differences. Prior experience may contribute to improved reactive behavior. Fourteen old (59-73 yrs) and fourteen young (22-31 yrs) males walked on a walkway which included one covered element. By exchanging this element participants either stepped on hard surface or unexpectedly on soft surface which caused a perturbation in gait. The gait protocol contained 5 unexpected soft trials to quantify the reactive adaptation. Each soft trial was followed by 4-8 hard trials to generate a wash-out effect. The dynamic stability was investigated by using the margin of stability (MoS), which was calculated as the difference between the anterior boundary of the base of support and the extrapolated position of the center of mass in the anterior-posterior direction. MoS at recovery leg touchdown were significantly lower in the unexpected soft trials compared to the baseline, indicating a less stable posture. However, MoS increased (p<0.05) in both groups within the disturbed trials, indicating feedback adaptive improvements. Young and old participants showed differences in the handling of the perturbation in the course of several trials. The magnitude of the reactive adaptation after the fifth unexpected perturbation was significantly different compared to the first unexpected perturbation (old: 49±30%; young: 77±40%), showing a tendency (p=0.065) for higher values in the young participants. Old individuals maintain the ability to adapt to feedback controlled perturbations. However, the locomotor behavior is more conservative compared to the young ones, leading to disadvantages in the reactive adaptation during disturbed walking.  相似文献   

8.
9.
This study aimed to examine the relationships among various stepping parameters, sex, and age in the elderly. Healthy elderly Japanese individuals 60-85 years old (50 males and 61 females) performed 4 types of stepping motions for 20 s. Stepping motions included bilateral stepping (back/forth and right/left) and unilateral stepping (back/forth and right/left). The number of steps, the average connecting time of a foot during one step, and the average time of both feet touching the floor at the same time (bilateral connecting time) were measured with a foot switch sheet. The trial-to-trial reliability was very high (above 0.86) except for the bilateral connecting time in the bilateral stepping back/forth test for 70-85 year olds (males: 0.67, females: 0.68). With age, the number of steps was significantly smaller, and the average connecting time and the bilateral connecting time were shorter in all stepping tests. There were significant sex differences in bilateral connecting time for bilateral stepping right and left and the number of steps for the bilateral stepping back and forth and the unilateral stepping right and left tests. The number of steps and average connecting time showed high correlations between bilateral stepping right/left and back/forth (r=0.71-0.94) and between unilateral stepping back/forth and right/left (r=0.87-0.99). There were significant correlations of the average connecting time between bilateral and unilateral stepping motions (r=0.51-0.83), but both stepping motions are considered to have different motion properties from the viewpoint of center of gravity sway. The correlations between the bilateral connecting time and the number of steps in bilateral stepping were relatively low (males: /r/<0.70, females: /r/<0.57). The bilateral connecting time was near 0 s in many males; thus, it may depend greatly on individual or sex differences in stepping strategy. These results suggest that the stepping motions used in this study can evaluate dynamic balance ability, and that the unilateral test may be useful for the elderly who cannot walk independently with ease.  相似文献   

10.
Human postural sway, as measured by fluctuations of the center of pressure (COP) under the feet of a quietly standing individual, can be characterized as a stochastic process. The fluctuation-dissipation theorem (FDT) provides a linear relationship between the fluctuations of a quasi-static, stochastic system to the same system's relaxation to equilibrium following a perturbation. We applied a similar linear relationship, based on the FDT, to the human postural control system to explore whether anterior-posterior (AP) fluctuations of the COP during quiet stance can be used to predict the AP response of the postural control system to a weak posteriorly directed mechanical perturbation (tug or pull at the waist). We tested 10 healthy elderly (mean age of 69yr) and 10 healthy young (mean age of 25yr) adult subjects. We found that this linear relationship was applicable to the postural control system of all 10 young and eight of the 10 elderly adult subjects. These results suggest that it is possible to predict an individual's dynamic response to a mild perturbation using quiet-stance data, regardless of age. The existence of this FDT-based linear relationship with respect to the human postural control system suggests that, for a given individual, the postural control system may use the same control mechanisms during quiet stance and mild-perturbation conditions, regardless of age.  相似文献   

11.
We studied the effects of a concurrent cognitive task on predictive motor control, a feedforward mechanism of dynamic stability control, during disturbed gait in young and old adults. Thirty-two young and 27 elderly male healthy subjects participated and were randomly assigned to either control or dual task groups. By means of a covered exchangeable element the surface condition on a gangway could be altered to induce gait perturbations. The experimental protocol included a baseline on hard surface and an adaptation phase with twelve trials on soft surface. After the first, sixth and last soft surface trial, the surface condition was changed to hard (H1-3), to examine after-effects and, thus, to quantify predictive motor control. Dynamic stability was assessed using the 'margin of stability (MoS)' as a criterion for the stability state of the human body (extrapolated center of mass concept). In H1-3 the young participants significantly increased the MoS at touchdown of the disturbed leg compared to baseline. The magnitude and the rate of these after-effects were unaffected by the dual task condition. The old participants presented a trend to after-effects (i.e., increase of MoS) in H3 but only under the dual task condition.In conclusion, the additional cognitive demand did not compromise predictive motor control during disturbed walking in the young and old participants. In contrast to the control group, the old dual task group featured a trend to predictive motor adjustments, which may be a result of a higher state of attention or arousal due to the dual task paradigm.  相似文献   

12.
Two hundred and forty-three elderly people aged 60 to 96 years were questioned about their falls, and their sway was measured. For comparison sway was also measured in 63 younger subjects. Sway increased with age and was higher in women at all ages. There was no difference in sway between those with no history of falls and those who fell only because of tripping. In both sexes sway was significantly increases in people who fell because of loss of balance and in women whose falls were due to giddiness, drop attacks, turning the head, and rising from bed or a chair. This suggests that there is a physiological decline in postural control with advancing age and also a decline due to disease of the central nervous system.  相似文献   

13.
Embryonic morphogenesis involves the coordinate behaviour of multiple cells and requires the accurate balance of forces acting within different cells through the application of appropriate brakes and throttles. In C. elegans, embryonic elongation is driven by Rho-binding kinase (ROCK) and actomyosin contraction in the epidermis. We identify an evolutionary conserved, actin microfilament-associated RhoGAP (RGA-2) that behaves as a negative regulator of LET-502/ROCK. The small GTPase RHO-1 is the preferred target of RGA-2 in vitro, and acts between RGA-2 and LET-502 in vivo. Two observations show that RGA-2 acts in dorsal and ventral epidermal cells to moderate actomyosin tension during the first half of elongation. First, time-lapse microscopy shows that loss of RGA-2 induces localised circumferentially oriented pulling on junctional complexes in dorsal and ventral epidermal cells. Second, specific expression of RGA-2 in dorsal/ventral, but not lateral, cells rescues the embryonic lethality of rga-2 mutants. We propose that actomyosin-generated tension must be moderated in two out of the three sets of epidermal cells surrounding the C. elegans embryo to achieve morphogenesis.  相似文献   

14.
This study investigated the influence of gait speed on the control of mediolateral dynamic stability during gait initiation. Thirteen healthy young adults initiated gait at three self-selected speeds: Slow, Normal and Fast. The results indicated that the duration of anticipatory postural adjustments (APA) decreased from Slow to Fast, i.e. the time allocated to propel the centre of mass (COM) towards the stance-leg side was shortened. Likely as an attempt at compensation, the peak of the anticipatory centre of pressure (COP) shift increased. However, COP compensation was not fully efficient since the results indicated that the mediolateral COM shift towards the stance-leg side at swing foot-off decreased with gait speed. Consequently, the COM shift towards the swing-leg side at swing heel-contact increased from Slow to Fast, indicating that the mediolateral COM fall during step execution increased as gait speed rose. However, this increased COM fall was compensated by greater step width so that the margin of stability (the distance between the base-of-support boundary and the mediolateral component of the “extrapolated centre of mass”) at heel-contact remained unchanged across the speed conditions. Furthermore, a positive correlation between the mediolateral extrapolated COM position at heel-contact and step width was found, indicating that the greater the mediolateral COM fall, the greater the step width. Globally, these results suggest that mediolateral APA and step width are modulated with gait speed so as to maintain equivalent mediolateral dynamical stability at the time of swing heel-contact.  相似文献   

15.
The effects of low-intensity muscle training with heel-raises on dynamic balance associated with bilateral arm flexion were investigated in postmenopausal elderly women. Twenty-six elderly women were evenly grouped into training and control groups. Training group subjects performed 100 heel raises per day for 2 months. The training was aimed at hypertrophy of the soleus muscle, which has a relatively high proportion (ca. 90%) of slow-twitch muscle fibers and is one of the main postural muscles. Dynamic balance was measured while arm flexion was performed in response to a visual stimulus (simple-reaction condition) or at the subjects' own pace (own-timing condition). The following parameters were compared before and after the training period: plantar flexion strength, thicknesses of the gastrocnemius and soleus (by ultrasound), reaction time of the anterior deltoid in the simple-reaction condition, activation onset timing of postural muscles with respect to the deltoid, movement angles of ankle and hip joints, and postural fluctuation. In the training group only, the following training-related effects were demonstrated: (a) increase in plantar flexor strength and thickness of the soleus, (b) shortening of the deltoid reaction time, (c) earlier activation of the erector spinae in the simple-reaction condition and the soleus in the own-timing condition, and (d) increase in ankle movement in the own-timing condition and a decrease in postural fluctuation. This heel-raise training in the elderly can increase soleus thickness within the triceps surae and improve postural control modality and stability that are effectively contributed to by the leg muscle. This training consists of a low-intensity exercise that requires neither special machines nor a specific environment and can be performed safely for all old-aged groups.  相似文献   

16.
Postural control adaptability to floor oscillation in the elderly   总被引:1,自引:0,他引:1  
We established a method to evaluate postural control adaptability, applying it to 341 subjects, aged 18-29 years (young subjects) and 50-79 years, in order to investigate the influences of age and gender on adaptability. Subjects stood with eyes closed on a force plate fixed to a floor oscillator, which was sinusoidally oscillated in the anteroposterior direction with 0.5 Hz frequency and 2.5 cm amplitude. Five trials of 1-minute oscillation were conducted, with a short rest between trials. The mean speed of fluctuation of the center of foot pressure (CFP), as detected by the force plate, was calculated as an index of postural steadiness. Mean CFP speed decreased significantly in all age groups with trial repetition. The adaptability capability of elderly subjects was categorized as "good," "moderate," or "poor," as evaluated against a standard value, based on the variation of the regression of mean CFP speed between the 1st and 5th trials in young subjects. Results showed that the magnitude of reduction in the mean speed, with practice, was linearly related to the initial mean speed. We found a general decline in adaptability, and increase in initial mean speed, in subjects aged 60 years and older, with no gender difference detected in any age group. The proportion of subjects exhibiting moderate and poor adaptability increased gradually with age. In conclusion, age, but not gender, appears to affect adaptation of postural sway with short-term practice, although some elderly subjects maintain postural sway velocity and adaptability capabilities similar to those of young subjects.  相似文献   

17.
Recent work has cast a spotlight on the brain as a nutrient-sensing organ that regulates the body's metabolic processes. Here we discuss the physiological and molecular mechanisms of brain lipid sensing and compare these mechanisms to liver lipid sensing. A direct comparison between the lipid-sensing mechanisms in the brain and liver reveals similar biochemical/molecular but opposing physiological mechanisms in operation. We propose that an imbalance between the lipid-sensing mechanisms in the brain and liver may contribute to obesity-associated type 2 diabetes.  相似文献   

18.
19.
Few studies have examined balance training of elderly people using wobble boards. This study assessed the effects of wobble board balance training on physical function in institutionalized elderly people. This study examined 23 subjects (age 84.2 ± 5.9 years) who lived in a nursing home. The exercise program for the training group comprised balance training standing on a wobble board for 9 weeks, twice a week. In all, 11 training group subjects and 11 control group subjects completed this study. After 9 weeks, standing time on a wobble board, standing time on a balance mat, and maximum displacement distance of anterior-posterior center of pressure in the training group were significantly greater than those of the control group. Frequency analysis revealed that the power spectrum in 0.1-0.2 Hz significantly increased in the training group. These results suggest that wobble board training is effective for elderly people to improve their standing balance, by which they frequently control their center of gravity and maintain a standing posture on unstable surface conditions.  相似文献   

20.
We investigated the relationships between the ability to maintain balance in an upright stance and center-of-pressure (COP) dynamic properties in young adults. Included in this study were 10 healthy male subjects in each of two groups with respect to balance ability. Balance ability was evaluated according to the length of time a subject stood on one leg with his eyes closed. The means and ranges of this one-leg balancing time were 17.9 s (3-43 s) and 118.3 s (103-120 s) for the off-balance and balance groups, respectively. The time-varying displacements of the COP under a subject's feet during quiet two-leg (normal) standing were measured by an instrumented force platform. Each subject was tested in both the eyes-open and eyes-closed conditions. The COP trajectories were analyzed as fractional Brownian motions according to the procedure of 'stabilogram-diffusion analysis', proposed by Collins and De Luca (1993). The extracted parameters were the effective diffusion coefficients (D) for the short-term (less than about 1.0 s) and long-term intervals, respectively, as well as the Hurst exponents (H) for the short-term and long-term intervals, and some critical-point coordinates (i.e., critical mean square displacements and critical time intervals). The off-balance group showed significantly higher values for short-term D, short-term H, and critical mean square displacements than the balance group. No significant differences between the groups were found in the long-term D and H or in the critical time intervals. That is, for the off-balance subjects, an increase in the stochastic activity and positively correlated (persistent) behavior of the postural sway during shorter timescales may cause postural instability. These results suggest that the difference in balance ability for young adults is related to the open-loop (i.e., short-term) control mechanisms but not to the corrective feedback (i.e., long-term) mechanisms used to maintain balance in an upright stance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号