首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A 1162 bp rat liver cDNA clone encoding the immunoregulatory plasma protein alpha 1-microglobulin was isolated and sequenced. The open reading frame encoded a 349 amino acid polyprotein, including alpha 1-microglobulin, 182 amino acids, and bikunin, the light chain of the plasma protein inter-alpha-trypsin inhibitor, 145 amino acids. The alpha 1-microglobulin/bikunin mRNA was found only in the liver when different tissues were examined. Free alpha 1-microglobulin and a polyprotein, containing both alpha 1-microglobulin and inter-alpha-trypsin inhibitor epitopes, were found in the microsomal fraction from rat liver homogenates.  相似文献   

2.
Inter-alpha-trypsin inhibitor was purified by a modification of published procedures which involved fewer steps and resulted in higher yields. The preparation was used to study the clearance of the inhibitor and its complex with trypsin from the plasma of mice and to examine degradation of the inhibitor in vivo. Unlike other plasma proteinase inhibitor-proteinase complexes, inter-alpha-trypsin inhibitor reacted with trypsin did not clear faster than the unreacted inhibitor. Studies using 125I-trypsin provided evidence for the dissociation of complexes of proteinase and inter-alpha-trypsin inhibitor in vivo, followed by rapid removal of proteinase by other plasma proteinase inhibitors, particularly alpha 2-macroglobulin and alpha 1-proteinase inhibitor. Studies in vitro also demonstrated the transfer of trypsin from inter-alpha-trypsin inhibitor to alpha 2-macroglobulin and alpha 1-proteinase inhibitor but at a much slower rate. The clearance of unreacted 125I-inter-alpha-trypsin inhibitor was characterized by a half-life ranging from 30 min to more than 1 h. Murine and human inhibitors exhibited identical behavior. Multiphasic clearance of the inhibitor was not due to degradation, aggregation, or carbohydrate heterogeneity, as shown by competition studies with asialoorosomucoid and macroalbumin, but was probably a result of extravascular distribution or endothelial binding. 125I-inter-alpha-trypsin inhibitor cleared primarily in the liver. Analysis of liver and kidney tissue by gel filtration chromatography and sodium dodecyl sulfate gel electrophoresis showed internalization and limited degradation of 125I-inter-alpha-trypsin inhibitor in these tissues. No evidence for the production of smaller proteinase inhibitors from 125I-inter-alpha-trypsin inhibitor injected intravenously or intraperitoneally was detected, even in casein-induced peritoneal inflammation. No species of molecular weight similar to that of urinary proteinase inhibitors, 19,000-70,000, appeared in plasma, liver, kidney, or urine following injection of inter-alpha-trypsin inhibitor.  相似文献   

3.
A close molecular relationship exists between the protease inhibitors of porcine serum and those of human serum as shown by studying their immunological cross-reactivities with gel diffusion and immunoelectrophoretic methods. On studying seven different antisera to human protease inhibitors, five were found to cross-react with porcine serum, and on this bisis it was possible to identify alpha 2 -macroglobulin f, alpha 2 -macroglobulin s, alpha 1 -protease inhibitor, inter-alpha-trypsin inhibitor, antithrombin and alpha 2 -antiplasmin in porcine serum. Antisera to four of these porcine serum inhibitors (alpha 2 -macroglobulin f, alpha 2 -macroglobulin s, alpha 1 -protease inhibitor and inter-alpha-trypsin inhibitor) were produced and were shown to react immunologically with their human serum protease inhibitor counterparts.  相似文献   

4.
alpha(1)-Microglobulin: a yellow-brown lipocalin   总被引:2,自引:0,他引:2  
alpha(1)-Microglobulin, also called protein HC, is a lipocalin with immunosuppressive properties. The protein has been found in a number of vertebrate species including frogs and fish. This review summarizes the present knowledge of its structure, biosynthesis, tissue distribution and immunoregulatory properties. alpha(1)-Microglobulin has a yellow-brown color and is size and charge heterogeneous. This is caused by an array of small chromophore prosthetic groups, attached to amino acid residues at the entrance of the lipocalin pocket. A gene in the lipocalin cluster encodes alpha(1)-microglobulin together with a Kunitz-type proteinase inhibitor, bikunin. The gene is translated into the alpha(1)-microglobulin-bikunin precursor, which is subsequently cleaved and the two proteins secreted to the blood separately. alpha(1)-Microglobulin is found in blood and in connective tissue in most organs. It is most abundant at interfaces between the cells of the body and the environment, such as in lungs, intestine, kidneys and placenta. alpha(1)-Microglobulin inhibits immunological functions of white blood cells in vitro, and its distribution is consistent with an anti-inflammatory and protective role in vivo.  相似文献   

5.
alpha-1-Inhibitor3 (alpha-I3), a new enzyme-binding protein, was isolated from rat plasma by a combination of ammonium sulfate precipitation, ion exchange chromatography on DEAE cellulose and gel filtration on ultrogel AcA34. Agarose gel electrophoresis of the purified inhibitor showed a single protein band with alpha1-mobility giving a single precipitation line on immunoelectrophoresis against anti-rat serum. A specific antiserum against the purified inhibitor was raised in rabbits. alpha1-I3 showed immunologic cross-reaction with human inter-alpha-trypsin inhibitor. alpha1-I3 formed a complex with trypsin, which was thereby inhibited; the electrophoretic mobility of the complex was less than that of free inhibitor. Inflammation, induced by turpentine, caused a decrease in the serum concentration of alpha1-I3 to 36% of the initial value within 48 h. alpha2 acute phase macroglobulin (alpha2-AP) showed a simultaneous increase to 7.1 g/l and alpha1-antitrypsin (alpha1-AT) to twice its normal value.  相似文献   

6.
Plasma inter-alpha-trypsin inhibitor (I alpha TI) is a major representative of the superfamily of Kunitz-type protease inhibitors in mammals. Formerly, I alpha TI was considered to be a single polypeptide, but recent molecular genetic studies have demonstrated an unexpected multipolypeptide chain structure. The newly discovered genes and gene products form the basis of a new family of I alpha TI-related protease inhibitors.  相似文献   

7.
8.
Two new human cell lines, RCM-1 and CoCM-1, have been established from primary colorectal adenocarcinomas. Both cell lines were unique in that the cultures secreted trypsin inhibitors in vitro. The activities of these inhibitors were accumulated in serum-free media of both cell lines over a period of several days. Two inhibitors (PI-1 and PI-2) were isolated from serum-free conditioned medium in which RCM-1 was grown by anion-exchange and gel filtration high-performance liquid chromatography. PI-1 inhibited trypsin and chymotrypsin strongly, and pancreatic elastase weakly. Its molecular weight was about 57 kilodaltons (Kd) as determined by gel filtration chromatography. It cross-reacted with the antiserum elicited against human alpha 1-antitrypsin in double immunodiffusion. PI-1 corresponding to alpha 1-antitrypsin was also demonstrated immunohistochemically in both cell lines. PI-2 inhibited trypsin strongly, and chymotrypsin, kallikrein and plasmin weakly. It had higher molecular weight (200-300 Kd) than that of PI-1, and did not cross-react with antisera against human alpha 1-antitrypsin, alpha 2-macroglobulin, alpha 1-antichymotrypsin, alpha 2-plasmin inhibitor, inter-alpha-trypsin inhibitor and urinary trypsin inhibitor. RCM-1 and CoCM-1 are the first colorectal adenocarcinoma cell lines that secrete functionally active trypsin inhibitors, including alpha 1-antitrypsin in vitro, and are useful for the study of tumor-cell derived proteinase inhibitors.  相似文献   

9.
Human inter-alpha-trypsin inhibitor is a plasma protein of Mr 180,000 which has long been described as a single polypeptide chain. However, we have previously demonstrated that it is synthesized in liver by two different mRNA populations coding for heavy or light polypeptide chains [Bourguignon, J. et al. (1983) FEBS Lett. 162, 379-383] and cDNA clones for the heavy or light chains have recently been isolated and characterized [Bourguignon, J. et. al. (1985) Biochem. Biophys. Res. Commun. 131, 1146-1153; Salier, J.P. et al. (1987) Proc. Natl Acad. Sci. USA 84, 8272-8276]. In the present study, we show that human poly(A)-rich RNAs hybrid-selected with various heavy-chain-encoding cDNA clones translate three different heavy chains, designated H1 (Mr 92,000), H2 (Mr 98,000) and H3 (Mr 107,000). We previously characterized two heavy-chain cDNA clones. We now report that they correspond to H1 and H2 chains. We have also determined the sequence of an additional cDNA clone which codes for H3 chain. Its insert size is 1.79 kb with a single open reading frame and a poly(A) tail. The deduced amino acid sequence of the H3 chain is highly similar to those of the H1 (54%) and H2 (44%) chains. Northern analysis of human liver poly(A)-rich RNAs with the three heavy-chain cDNAs as probes clearly identified a single major mRNA population of 3.3 +/- 0.1 kb. Chromosomal localization by in situ hybridization shows that inter-alpha-trypsin inhibitor genes are located on three different human chromosomes. The H1 and H3 genes are located in the p211-p212 region of chromosome 3, whereas the H2 gene resides in the p15 band of chromosome 10. The light-chain gene is located in the q32-q33 region of chromosome 9. These results indicate that heavy and light chains of inter-alpha-trypsin inhibitor are encoded by at least four functional genes.  相似文献   

10.
1. The glycopeptide carrying the glycosaminoglycan chain of the urinary trypsin inhibitor (immunologically and structurally related to inter-alpha-trypsin inhibitor) was isolated. 2. The data from amino acid composition and part sequencing of this glycopeptide unambiguously demonstrate that the glycosaminoglycan is covalently linked to serine-10 of the peptide chain of UTI.  相似文献   

11.
The polypeptide chain composition of protein material referred to in the literature as "inter-alpha-trypsin inhibitor" was investigated. The material was found to consist of distinct proteins of 125,000 and 225,000 Da, each of which contained more than one polypeptide chain. The links that assemble each protein were found to be stable to various strong denaturants, but susceptible to treatment with trifluoromethanesulfonic acid or hyaluronidase, indicating a glycan nature. The 225,000-Da protein migrated with inter-alpha mobility on agarose gel electrophoresis and is designated inter-alpha-trypsin inhibitor, whereas the 125,000-Da protein migrated with pre-alpha mobility, and we designate it pre-alpha-trypsin inhibitor. Analysis of the proteins, the separated chains, and proteolytic derivatives thereof revealed that each protein contained a single, identical, trypsin-inhibitory chain of 30,000 Da. Inter-alpha-trypsin inhibitor contains noninhibitory heavy chains of 65,000 and 70,000 Da, whereas pre-alpha-trypsin inhibitor contains a heavy chain of 90,000 Da. Our data allow identification of several recently reported cDNA clones and clarify the confusion surrounding the composition of plasma proteins referred to as inter-alpha-trypsin inhibitor.  相似文献   

12.
The plasma peptide component (PPC) from ten melanoma (Mel), breast cancer (BC) and healthy individuals was examined by a combination of RP-HPLC, surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) and tandem mass spectrometry. A three peak pattern (2023, 2039, 2053.5 m/z) was primarily observed in melanoma. Two peaks (2236.1 and of 2356.3 m/z) were found only in BC samples. Fibrinogen alpha and inter-alpha-trypsin inhibitor heavy chain H4 fragments were absent in both tumor samples.  相似文献   

13.
ABSTRACT: BACKGROUND: Refractory anemia with excess blasts subtype 1 (RAEB-1) is a subgroup of myelodysplastic syndrome. It represents a heterogeneous group of oncohematological bone marrow diseases, which occur particularly in elderly patients. The aim of this proteomic study was to search for plasma protein alterations in RAEB-1 patients. RESULTS: A total of 24 plasma samples were depleted of fourteen high-abundant plasma proteins, analyzed with 2D SDS-PAGE, compared, and statistically processed with Progenesis SameSpots software. Proteins were identified by nanoLC-MS/MS. Retinol-binding protein 4 and leucine-rich alpha-2-glycoprotein were relatively quantified using mass spectrometry. 56 significantly differing spots were found; and in 52 spots 50 different proteins were successfully identified. Several plasma proteins that changed either in their level or modification have been described herein. The plasma level of retinol-binding protein 4 was decreased, while leucine-rich alpha-2-glycoprotein was modified in RAEB-1 patients. Changes in the inter-alpha-trypsin inhibitor heavy chain H4, altered protein fragmentation, or fragments modifications were observed. CONCLUSIONS: This study describes proteins, which change quantitatively or qualitatively in the plasma of RAEB-1 patients. It is the first report on qualitative changes in the leucine-rich alpha-2-glycoprotein in the RAEB-1 subgroup of myelodysplastic syndrome. Described changes in the composition or modification of inter-alpha-trypsin inhibitor heavy chain H4 fragments in RAEB-1 are in agreement with those changes observed in previous study of refractory cytopenia with multilineage dysplasia, and thus H4 fragments could be a marker specific for myelodysplastic syndrome.  相似文献   

14.
The partition of labelled rat pancreatic elastase (EC 3.4.21.11) between the different protease inhibitors of rat plasma was studied at different levels of saturation of the inhibitors of rat plasma was studied at different levels of saturation of the inhibitor capacity of plasma with the enzyme. The reaction mixtures were analysed by immunoelectrophoretic methods utilizing specific antisera against the different inhibitors and by gel filtration on Sephadex G-200. Rat serum was shown to contain four elastase binding proteins. alpha 1-antitrypsin, alpha 1-macroglobulin and alpha 2-acute phase protein and alpha 1-inhibitor 3 which exhibits immunologic cross-reaction with human inter-alpha-trypsin inhibitor and is of similar molecular weight. With minute amounts of labelled elastase the partition among the binding protein was alpha 1-macroglobulin 60%, alpha 1-antitrypsin 24% and alpha 1-I3 16%. The 60% value of alpha 1-M bound radioactivity in normal serum corresponds to the sum of alpha 1-M and alpha 2-AP labelling in inflammatory serum.  相似文献   

15.
Characterization of the trypsin-, chymotrypsin- and elastase-inhibiting properties of porcine serum was carried out by gel filtration on Ultrogel, AcA 44, and agarose gel electrophoresis with subsequent processing for protease-inhibiting activity. Moreover, by allowing the fractions obtained from gel filtration to react with antibodies to porcine serum protease inhibitors, the specific inhibiting properties of these inhibitor molecules were identified. At least six protease inhibitors were identified and partially characterized in porcine serum. Two alpha 2 -macroglobulins (alpha 2 Mf and alpha 2 Ms), homologues to human alpha 2 -macroglobulin, with slightly different electrophoretic mobilities, were both found to exhibit trypsin, chymotrypsin and elastase inhibiting activity. Alpha 1 -Protease inhibitor (Mr 51 000), a homologue to human alpha 1 -protease inhibitor (alpha 1 -antitrypsin), also showed trypsin-, chymotrypsin- and elastase-inhibiting properties. Inter-alpha-trypsin inhibitor (Mr 162 000 and 129000), a porcine serum counterpart to human inter-alpha-trypsin inhibitor, showed trypsin- and chymo-trypsin-inhibiting properties. In addition, a specific trypsin inhibitor, alpha 2 -antigrypsin (Mr 58 000), and a specific elastase inhibitor, beta-elastase inhibitor, were characterized in porcine serum, and these seem to have no counterparts in human serum.  相似文献   

16.
In this pilot study we used a proteomic approach to compare the urinary protein patterns of healthy smokers and non-smokers. Proteins were resolved by two-dimensional gel electrophoresis and identified by mass spectrometry. The relative abundance of three inflammatory proteins (S100A8, inter-alpha-trypsin inhibitor heavy chain 4, CD59) and that of two isoforms of pancreatic alpha amylase was significantly higher in smokers. Zinc-alpha-2-glycoprotein was the only protein down-regulated in smokers. Its abundance was significantly correlated with urinary glucocorticoids. Most of the proteins identified may be non-specific biomarkers of tobacco effects, since they are involved in inflammatory responses associated with several diseases. Of greater interest are the changes in abundance of pancreatic alpha amylase and zinc-alpha-2-glycoprotein, which after proper validation, might be candidate biomarkers of diseases resulting from exposure to tobacco smoke. The data also show for the first time that smoking can affect the expression profile of urinary proteins.  相似文献   

17.
Two different forms of alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein were found in primary cultures of rat hepatocytes. After a 2.5-h labeling period with [35S]methionine the high-mannose-type precursor of alpha 1-proteinase inhibitor (Mr 49000) and alpha 1-acid glycoprotein (Mr 39 000) and the mature-complex-type alpha 1-proteinase inhibitor (Mr 54 000) and alpha 1-acid glycoprotein (Mr 43 000-60 000) could be immunoprecipitated from the cells, but only the complex-type forms of the two glycoproteins were secreted into the hepatocyte media. When hepatocytes were incubated with the mannosidase I inhibitor 1-deoxymannojirimycin at a concentration of 4 mM, the 49 000-Mr form of alpha 1-proteinase inhibitor and the 39 000-Mr form of alpha 1-acid glycoprotein could be detected in the cells as well as in their media. Neither the secretion of alpha 1-proteinase inhibitor nor that of alpha 1-acid glycoprotein was impaired by 1-deoxymannojirimycin. While alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, secreted by control cells, were resistant to endoglucosaminidase H, alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, secreted by hepatocytes treated with 4 mM 1-deoxymannojirimycin, could be deglycosylated by endoglucosaminidase H. When the [3H]mannose-labeled oligosaccharides of alpha 1-proteinase inhibitor, secreted by 1-deoxymannojirimycin-treated hepatocytes, were cleaved off by endoglucosaminidase H and analyzed by Bio-Gel P-4 chromatography, they eluted at the position of Man9GlcNAc, indicating that mannosidase I had been efficiently inhibited. 1-Deoxymannojirimycin did not inhibit the synthesis or the cotranslational N-glycosylation of alpha 1-proteinase inhibitor or alpha 1-acid glycoprotein.  相似文献   

18.
MTJ1/ERdj1 and its human homologue HTJ1 are membrane proteins that interact with the molecular chaperone BiP through their J-domain. HTJ1 also contains a C-terminal cytosolic region of unknown function that consists of two SANT domains separated by a spacer region. We recently showed that the second SANT domain of HTJ1 (SANT2) binds to alpha1-antichymotrypsin and alters its serpin activity [B. Kroczynska, C.M. Evangelista, S.S. Samant, E.C. Elguindi, S.Y. Blond, The SANT2 domain of the murine tumor cell DnaJ-like protein 1 human homologue interacts with alpha1-antichymotrypsin and kinetically interferes with its serpin inhibitory activity, J. Biol. Chem. 279 (2004) 11432-11443]. Here, we identified a new variant of human inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) that also interacts with the SANT2 domain of HTJ1. Biochemical, mutagenesis, and fluorescence studies demonstrate that SANT2 binds to a carboxyl-terminal fragment that corresponds to the last third of the new ITIH4 isoform sequence (residues 588-930). ITIH4 and MTJ1 co-immunoprecipitate from total liver protein extracts and SANT2 protects the ITIH4(588-930) recombinant fragment from being processed by kallikrein in vitro. This work reveals that the SANT2 domain of HTJ1 is a genuine protein-protein interaction module.  相似文献   

19.
20.
1. The serum proteinase inhibitors alpha 1-antitrypsin, alpha 2-macroglobulin, inter-alpha-trypsin inhibitor and C1-esterase inhibitor were found not to affect the catalytic activity of human enterokinase, whereas bovine trypsin activity was modified essentially as expected. Enterokinase was also not inhibited by Trasylol (trypsin inhibitor from bovine lung) or bovine pancreatic trypsin inhibitor. No other component in human or mouse serum complexing with enterokinase was identified. 2. Human enterokinase administered intravenously into mice was rapidly cleared from the circulation with a half-life of 2.5 min. This removal was not the result of the difference in species, since partially purified mouse enterokinase was cleared at the same rate as the human enzyme. Clearance was mediated by recognition of the carbohydrate portion of enterokinase and not through specific recognition of its catalytic site. Immunofluorescent staining showed that the enzyme accumulated in the liver. Attempts to block the clearance by the simultaneous infusion of competing glycoproteins suggested that enterokinase was taken up by hepatocytes. Of the glycoproteins tested only two, human lactoferrin (terminal fucosyl alpha 1 leads to 3 N-acetylglucosamine) and bovine asialo-fetuin (terminal galactosyl beta 1 leads to 4 N-acetylglucosamine) were weakly competitive. Two inhibitors of endocytosis, Intralipid and Triton WR1339, failed to delay the removal of enterokinase. It is proposed that enterokinase is cleared from the circulation by an as yet uncharacterized hepatocyte receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号