首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of zolmitriptan in human plasma. After the addition of the internal standard (IS) and 1.0 M sodium hydroxide solution, plasma samples were extracted with methylene chloride:ethyl acetate mixture (20:80, v/v). The organic layer was evaporated under a stream of nitrogen at 40 degrees C. The residue was reconstituted with 100 microl mobile phase. The compounds were separated on a prepacked Lichrospher CN (5 microm, 150 mm x 2.0 mm) column using a mixture of methanol:water (10 mM NH(4)AC, pH 4.0) = 78:22 as mobile phase. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 0.30-16.0 ng/ml with a coefficient of determination (r) of 0.9998 and good back-calculated accuracy and precision. The intra- and inter-day precision (R.S.D.%) were lower than 15% and accuracy ranged from 85 to 115%. The lower limit of quantification was identifiable and reproducible at 0.30 ng/ml. The proposed method enables the unambiguous identification and quantification of zolmitriptan for pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

2.
A highly sensitive method for quantitation of tamsulosin in human plasma using 1-(2,6-dimethyl-3-hydroxylphenoxy)-2-(3,4-methoxyphenylethylamino)-propane hydrochloride as the internal standard (I.S.) was established using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). After alkalization with saturated sodium bicarbonate, plasma were extracted by ethyl acetate and separated by HPLC on a C18 reversed-phase column using a mobile phase of methanol-water-acetic acid-triethylamine (620:380:1.5:1.5, v/v). Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. LC-ESI-MS was performed in the selected ion monitoring (SIM) mode using target ions at m/z 228 for tamsulosin and m/z 222 for the I.S. Calibration curves, which were linear over the range 0.2-30 ng/ml, were analyzed contemporaneously with each batch of samples, along with low (0.5 ng/ml), medium (3 ng/ml) and high (30 ng/ml) quality control samples. The intra- and inter-assay variability ranged from 2.14 to 8.87% for the low, medium and high quality control samples. The extraction recovery of tamsulosin from plasma was in the range of 84.2-94.5%. The method has been used successfully to study tamsulosin pharmacokinetics in adult humans.  相似文献   

3.
A sensitive and specific high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS) method has been developed at our center for the determination of glimepiride in human plasma. After the addition of the internal standard, plasma samples were extracted by liquid-liquid extraction technique using diethyl ether. The compounds were separated on a prepacked C18 column using a mixture of acetonitrile, methanol and ammonium acetate buffer as mobile phase. A Finnigan LCQDUO ion trap mass spectrometer connected to an Alliance Waters HPLC was used to develop and validate the method. The analytical method was validated according to the FDA bioanalytical method validation guidance. The results were within the accepted criteria as stated in the aforementioned guidance. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 5.0-500.0 ng/ml with a coefficient of determination (r2) of 0.9998. Accuracy for glimepiride ranged from 100.58 to 104.48% at low, mid and high levels. The intra-day precision was better than 12.24%. The lower limit of quantitation (LLOQ) was identifiable and reproducible at 5.0 ng/ml with a precision of 7.96%. The proposed method enables the unambiguous identification and quantitation of glimepiride for pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

4.
An analytical method was developed for the determination of enantiomers of dencichine in plasma. Sample extraction from plasma was achieved by a solid-phase extraction (SPE) procedure using a C(18) cartridge, with carbocisteine as the internal standard. Plasma was deproteinized using inorganic acid and derivatizated before the SPE. Chiral separation of dencichine enantiomers was achieved by pre-column derivatization using o-phthaldialdehyde (OPA) and the chiral thiol N-isobutanoyl-L-cysteine (NIBC) to form diastereoisomeric isoindole derivatives that were separable by ODS column using a gradient solvent programme. The column eluent was monitored using mass spectrometry (MS). The conditions of MS detection were optimized, and selected ion monitoring was used to selectively detect D-dencichine and its arrangement isomer. High sensitivity and selectivity were obtained using this method. The limit of detection was determined to be 10 ng/ml for D-dencichine and 8 ng/ml for L-dencichine in plasma. The linearity was demonstrated over a wide range of concentrations, from 0.5 to 50 microg/ml for both enatiomers. The intra- and inter-day precision (C.V.), studied at four concentrations, was less than 7.0%. No interferences from endogenous amino acids and isomers of dencichine were found. The method was suitable for pharmacokinetic studies of dencichine enantiomers.  相似文献   

5.
Clozapine (CLZ), olanzapine (OLZ), risperidone (RIP) and quetiapine (QTP) have been widely used in the treatment of schizophrenia. However, no study (or little study) has been conducted to determine the four drugs simultaneously by the use of high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-MS/ESI). OBJECTIVE: To develop a sensitive method for simultaneous determination of CLZ, OLZ, RIP and QTP in human plasma by HPLC-MS/ESI. METHODS: The analytes were extracted twice by ether after samples had been alkalinized. The HPLC separation of the analytes was performed on a MACHEREY-NAGEL C(18) ( [Formula: see text] mm, 3 microm, Germany) column, using water (formic acid: 2.70 mmol/l, ammonium acetate: 10 mmol/l)-acetonitrile (53:47) as mobile phase, with a flow-rate of 0.16 ml/min. The compounds were ionized in the electrospray ionization (ESI) ion source of the mass spectrometer and were detected in the selected ion recording (SIR) mode. RESULTS: The calibration curves were linear in the ranges of 20-1000 ng/ml for CLZ and QTP, 1-50 ng/ml for OLZ and RIP, respectively. The average extraction recoveries for all the four analysts were at least above 80%. The methodology recoveries were higher than 91% for the analysts. The intra- and inter-day R.S.D. were less than 15%. CONCLUSION: The method is accurate, sensitive and simple for routine therapeutic drug monitoring (TDM) and for the study of the pharmacokinetics of the four drugs.  相似文献   

6.
Oberacher H  Parson W 《BioTechniques》2007,43(4):vii-xiii
The determination of the molecular mass of a DNA sequence has several benefits over conventional fragment-length analysis that are advantageous to the forensic field: (i) sequence variation is captured that increases the power of discrimination compared with that obtained by conventional fragment-length analysis. First experiments showed that this increase makes up to 20%-30% for STR analysis. The new technical approach does not invalidate established developments and data, but adds to this information with additional discriminative categories. (ii) ICEMS is faster and cheaper than electrophoresis, does not require internal size standards, allelic ladders, or spectral calibration, which are necessary for fluorescence-based electrophoresis. (iii) ICEMS can unequivocally detect any single sequence variation in DNA molecules with lengths up to 250 nucleotides. This allows for maximum discrimination of forensically relevant DNA fragments, covering all sorts of STRs, SNPs, and also the analysis of the hypervariable segments of mtDNA. More effort, however, needs to be put into software development that escorts the analysis and data interpretation processes to make this technology manageable for the practical user.  相似文献   

7.
A rapid, sensitive and specific method was developed and validated using LC/MS/MS for determination of sunitinib in human plasma. Sample preparation involved a liquid-liquid extraction by the addition of 0.2mL of plasma with 4.0mL tert-butyl-methyl-ether extraction solution containing 25ng/mL of the internal standard clozapine. Separation of compounds was achieved on a C18 (50mmx2.1mm i.d., 3.5microm) analytical column using a mobile phase consisting of acetonitrile/H20 (65:35, v/v) containing 0.1% formic acid and isocratic flow at 0.150mL/min for 3min. The analytes were monitored by tandem-mass spectrometry with electrospray positive ionization. Linear calibration curves in human plasma were generated over the range of 0.2-500ng/mL with values for the coefficient of determination of >0.9950. Within- and between day precision and accuracy were < or =10%. The method was applied to the quantitation of sunitinib in plasma samples from a patient receiving daily oral therapy with sunitinib.  相似文献   

8.
A sensitive and specific high-performance liquid chromatography (HPLC)-electrospray ionization tandem mass spectrometry (MS-MS) was developed for the determination of bulleyaconitine A (BLA) in human plasma. BLA and internal standard (I.S.) ketoconazole were extracted from the plasma by a liquid-liquid extraction. The supernatant was evaporated to complete dryness and reconstituted with acetonitrile containing 0.1% acetic acid before injecting into an ODS MS column. The gradient mobile phase was composed of a mixture of acetonitrile (containing 0.1% acetic acid, v/v) and 0.1% acetic acid aqueous solution eluted at 0.3 ml/min. BLA and I.S. were determined by multiple reaction monitoring using precursor-->product ion combinations at m/z 644.6-->584.3 and 531.2-->81.6, respectively. Linearity was established for the concentration range of 0.12-6 ng/ml. The recoveries of BLA ranged from 96.93 to 113.9% and the R.S.D. was within 20%. The method is rapid and applicable to the pharmacokinetic studies of BLA in human.  相似文献   

9.
Wang H  Ma C  Zhou J  Liu XQ 《Chirality》2009,21(5):531-538
A specific and relatively sensitive high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) was developed for the quantitative analysis of tiopronin enantiomers in rat plasma. The method is based on the derivatization of (+)-tiopronin and (-)-tiopronin with 2,3,4,6-tetra-O-acetyl-beta-glucopyranosyl isothiocyanate (GITC) in acetonitrile. The separation of resulting diastereomic derivatives was performed on C18 column (150 mm x 2.0 mm ID, packed with 5.0 mum C(18) silica RP particle), using a mobile phase of methanol/water (containing 5.3 mM formic acid) with gradient elution. LC-MS was performed in the selected ion monitoring and positive ion mode using target ions at m/z: 575 for the diastereomic derivatives of tiopronin and m/z: 603 for the derivative of N-isobutyryl-D-cysteine (internal standard). The method was validated in terms of specificity, linearity, sensitivity, precision, accuracy, matrix effect, and stability. The calibration curves were linear over the concentration range of 0.025-5 microg/ml for both enantiomers of tiopronin. For both enantiomers of tiopronin, the interbatch and intrabatch variability values were less than 15%, and the accuracy was within +/-17% in terms of relative error. The method was successfully applied to a pharmacokinetic study of rac-tiopronin in rat.  相似文献   

10.
A sensitive and specific high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS) method has been developed for the simultaneous determination of amiodarone and desethylamiodarone in human plasma. After the addition of the internal standard tamoxifen, plasma samples were extracted using Oasis MCX solid-phase extraction cartridges. The compounds were separated on a 5 microm Symmetry C18 (Waters) column (150 x 3.0 mm, internal diameter) with a mobile phase of acetonitrile-0.1% forrmic acid (46:54, v/v) at a flow-rate of 0.5 ml/min. The overall extraction efficiency was more than 89% for both compounds. The assay was sensitive down to 1 microg/l for amiodarone and down to 0.5 microg/l for desethylamiodarone. Within-run accuracies for quality-control samples were between 95 and 108% of the target concentration, with coefficients of variation <8%. The proposed method enables the unambiguous identification and quantitation of amiodarone and desethylamiodarone in both clinical and forensic specimens.  相似文献   

11.
A fast and sensitive LC-ESI-MS method is described for the comparative quantification of 16 estrogen metabolites based on the derivatization of estrogens with a novel derivatizing reagent, N-methyl-nicotinic acid N-hydroxysuccinimide ester (C1-NA-NHS). The process introduces a quaternary amine to the analytes, making the analytes permanently charged regardless of the pH of the high-performance liquid chromatography (HPLC) mobile phase. This quaternization resulted in a highly efficient separation of 16 estrogen metabolites in 7 min at a detection level below 1 ng/mL. By using a deuterated derivatizing reagent (C1-d(3)-NA-NHS), a complete set of deuterated standards was utilized and used as internal standards in a comparative quantification and recovery study, demonstrating acceptable results over a wide concentration range. A pooled breast cancer serum sample was analyzed using the described method, and 15 estrogens were detected in the range of 80-530 pg/mL.  相似文献   

12.
Concentrations of tryptophan and its metabolites in plasma are of great interest in determining proper diagnosis and medication of several neurological diseases like, for example, Alzheimer's disease. A method of standard addition was developed to determine total level of tryptophan and two of its metabolites, kynurenine and kynurenic acid, in human plasma by capillary liquid chromatography-electrospray ionization tandem mass spectrometry. Plasma samples were simply deproteinized by addition of diluted perchloric acid. Samples were then mixed with trichloroacetic acid and injected onto a capillary column. Analytes were separated by a fast gradient elution of the injected samples. Detection was performed by sheathless electrospray tandem mass spectrometry in the multiple reaction monitoring mode. Linear calibration curves were obtained for spiked plasma sample with up to 100% of the expected analytes concentrations. The determined concentrations were well within ranges previously reported (i.e., 6 nM-95 microM) and limit of detections were around 3 nM for each analyte.  相似文献   

13.
A sensitive, specific, and rapid liquid chromatography-mass spectrometry (LC-MS) method was developed and validated for analysis of lasiodonin, oridonin, ponicidin, and rabdoternin A in rat plasma using sulfamethoxazole as an internal standard (IS). The plasma samples were pretreated and extracted by liquid-liquid extraction. Chromatographic separation was performed on a C18 column with linear gradient elution using water and methanol, both of which were acidified with 0.1% aqueous formic acid, at a flow rate of 0.8 ml/min. Detection was accomplished by scanning with multiple reaction monitoring (MRM) via an electrospray ionization (ESI) source. Higher sensitivity was achieved by setting three scanning periods in a novel detection mode. The optimized mass transition ion pairs (m/z) for quantitation were 365.3/347.3 for lasiodonin and oridonin, 361.2/343.2 for ponicidin, 363.2/283.1 for rabdoternin A, and 254.1/156.0 for IS. The total run time was 13.50 min between injections. The specificity, linearity, accuracy, precision, recovery, matrix effect, and several stabilities were validated for all analytes in the rat plasma samples. In conclusion, the validation results demonstrate that this method is robust and specific. The proposed method was further applied to investigate the pharmacokinetics of all analytes after a single oral administration of Isodon rubescens extract to rats.  相似文献   

14.
A screening procedure was developed for the identification and quantification of distigmine bromide in serum samples by using liquid chromatography (LC)-electrospray ionization (ESI)-mass spectrometry (MS). In this method, distigmine bromide was analyzed in 0.5 mL serum by using pancuronium bromide as the internal standard, and gradient elution was performed using a reversed-phase column and a mixture of 10 mM-ammonium formate and methanol as the mobile phase. A highly sensitive assay could be performed with simple solid phase extraction using a cation exchange cartridge column by carrying out selected ion monitoring analysis in the positive ion detection mode. The procedure was validated in terms of linearity (0.9973 at 2.5 ng/mL). The inter- and intra-day precisions (coefficient of variation; CV%) were <8.5% and < 9.7%, respectively. The analytes were evaluated for stability and were found to be stable in serum for 1 week at 4 degrees C and 4 weeks at -30 degrees C, and successfully applied to in the analysis of two overdose cases. This method is sensitive and useful for the detection, quantification, and confirmation of distigmine bromide in serum.  相似文献   

15.
A screening procedure was developed for the identification and the quantification of eight quaternary nitrogen muscle relaxants, including d-tubocurarine, alcuronium, pancuronium, vecuronium, atracurium, mivacurium, rocuronium and mebezonium, in blood samples. The procedure involves ion-pair extraction with methylene chloride at pH 5.4, reversed-phase HPLC separation and electrospray ionization mass spectrometry detection. The procedure was validated in terms of linearity (0.9295 for all the target compounds at 0.1 mg/l). The screening test was found satisfactory and applied in two fatal deaths. In the first case, toxicological investigations on biological fluids collected during the autopsy revealed the presence of vecuronium (1.2 and 0.6 mg/l in blood and urine, respectively) and its desacetylated metabolite, 3-hydroxy-vecuronium (4.4 and 0.7 mg vecuronium equivalent/l in blood and urine, respectively). In the second forensic case, blood analysis showed high levels of mebezonium (6.5 mg/l). The developed procedure was found suitable for forensic investigations.  相似文献   

16.
A method for the sensitive and specific determination of eight green tea catechins, consisting of catechin (C), epicatechin (EC), gallocatechin (GC), epigallocatechin (EGC), catechin-3-gallate (CG), epicatechin-3-gallate (ECG), gallocatechin-3-gallate (GCG) and epigallocatechin-3-gallate (EGCG), in human plasma was established. For optimization of conditions for LC-ESIMS, the separation of the eight catechins was achieved chromatographically using Inertsil ODS-2 column combined with a gradient elution system of 0.1M aqueous acetic acid and 0.1M acetic acid in acetonitrile. Detection using a mass spectrometer was performed with selected ion monitoring at m/z=289 for E and EC, 305 for GC and EGC, 441 for CG and ECG, and 457 for GCG and EGCG under negative ESI. A preparative procedure, consisting of the addition of perchloric acid and acetonitrile to the plasma for deproteinizing and the subsequent addition of potassium carbonate solution to remove excess acid, was developed. In six different plasma with the eight catechins spiked at two different concentrations, the average recoveries were in the range between 72.7 and 84.1%, which resulted from the matrix effect and preparative loss, with coefficients of variance being 8.2-19.8% among individuals. The levels of the catechins in prepared plasma solutions that were kept at 5 degrees C within 24h were stable, which allows us to simply analyze many prepared plasma solutions using an autosampler overnight. When using this method to analyze the eight catechins in human plasma after oral ingestion of a commercial green tea beverage, we detected all the catechins absorbed into human blood for the first time. This also suggested that extremely small amounts of the eight catechins orally ingested may be absorbed based on each absorptive property for the catechins. The method should enable pharmacokinetic studies of green tea catechins in humans.  相似文献   

17.
An analytical method for simultaneous determination of erythromycin propionate and its active metabolite, erythromycin base, in human plasma by high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESI-MS) was developed and validated. Roxithromycin was selected as the internal standard. The samples were directly injected after simple deproteinized procedure only. The separation was achieved on a Johnson Spherigel analytical column packed with 5 microm C18 silica, employing acetonitrile -0.1% formic acid aqueous solution (50:50) as mobile phase. The quantification of target compounds was obtained by using a selected ion monitoring (SIM) at m/z 790.7 for erythromycin propionate, m/z 734.7 for erythromycin base and m/z 837.8 for roxithromycin. The correlation coefficients of the calibration curves were better than 0.997 (n=6), in the ranges from 2 ng/ml to 1 microg/ml, and from 1 to 10 microg/ml for erythromycin propionate and base. The method can provide the necessary sensitivity, precision and accuracy to allow the simultaneous determination of both compounds in a patient's plasma following a single administration of erythromycin stinoprate capsule (500 mg erythromycin base equivalent).  相似文献   

18.
A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) is described for quantitation of salbutamol in human urine using nadolol as the internal standard (I.S.). Urine samples were hydrolyzed with beta-glucuronidase followed by a solid-phase extraction procedure using Bond Elut-Certify cartridges. The HPLC column was an Agilent Zorbax SB-C(18) column. A mixture of 0.01 M ammonium formate buffer (pH 3.5)-acetonitrile (85:15, v/v) was used as the mobile phase. Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. Selected ion monitoring (SIM) mode was used to monitor m/z 166 for salbutamol and m/z 310 for I.S. Good linearity was obtained in the range of 10.0-2000.0 ng/ml. The limit of quantification was 10.0 ng/ml. The intra- and inter-run precision, calculated from quality control (QC) samples was less than 7.3%. The accuracy as determined from QC samples was within +/-2.6%. The method was applied for determining excretion curves of salbutamol.  相似文献   

19.
Aristolochic acid (AA), derived from the herbal genus Aristolochia and Asarum, has recently been shown to be associated with the development of nephropathy. Upon enzyme activation, AA is metabolized to the aristolactam-nitrenium ion intermediate, which reacts with the exocyclic amino group of the DNA bases via an electrophilic attack at its C7 position, leading to the formation of the corresponding DNA adducts. The AA-DNA adducts are believed to be associated with the nephrotoxic and carcinogenic effects of AA. In this study, liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS) was used to identify and quantify the AA-DNA adducts isolated from the kidney and liver tissues of the AA-dosed rats. The deoxycytidine adduct of AA (dC-AA) and the deoxyadenosine-AA adduct (dA-AA) were detected and quantified in the tissues of rats with one single oral dose (5mg or 30mg AA/kg body weight). The deoxyguanosine adduct (dG-AA), however, was detected only in the kidney of rats that were dosed at 30mg AA/kg body weight for three consecutive days. The amount of AA-DNA adducts found in the rats correlated well with the dosage.  相似文献   

20.
A method for quantifying indole-3-acetic acid (IAA) and its conjugates with the six amino acids, Ala, -Asp, -Ile, -Glu, -Phe and -Val, in rice (Oryza sativa) by using high-performance liquid chromatography coupled with electrospray ionization and tandem mass spectrometry (HPLC-ESI-MS/MS) is described. Samples from the rice plant or callus were treated with 80% acetone in water containing 2.5 mM diethyl dithiocarbamate. Each extract was partially purified in C18 cartridge column for solid-phase extraction (SPE) and subjected to HPLC-ESI-MS/MS without converting the product. The detection limit was 3.8 fmol for IAA, and 0.4-2.9 fmol for the IAA amino acid conjugates. The method was applied to the analysis of IAA and its conjugates in rice seedlings, dehulled rice and calli, using 20-100 mg tissue samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号