首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Summary Cystic fibrosis (CF) is an autosomal recessive disease caused by different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The frequency of the major mutation (F508) in the Hungarian population is 64%. To identify other common mutations in CF families from Hungary, 30 nonF508 CF chromosomes were analyzed for selected mutations in exon 11 (G551D, R553X, G542X), intron 4 (621+1GT), intron 10 (1717–1GA), exon 20 (W1282X), and in exon 21 (N1303K) of the CFTR gene. In 6 of the 30 non-F508 CF chromosomes the following mutations were detected: R553X, G542X, 1717–1GA, W1282X, and N1303K. After analysis of the above eight mutations, 30% of CF chromosomes are as yet undefined and further analysis is planned.  相似文献   

2.
The major cystic fibrosis (CF) mutation, F508, is associated with one haplotype (B) determined by the two polymorphic markers, XV2C and KM19. This haplotype is rare (15%) among non-F chromosomes. Its frequency among non-F508 CF chromosomes is 50% with variation between populations. One hypothesis for the high frequency of CF haplotype B chromosomes suggests that there was a selective advantage for CF mutations on this specific background as a result of epistatic selection at other closely linked loci. Since the XV2C and KM19 markers are located 200kb 5 to the CF gene and span only 60 kb, an extended haplotype analysis was needed to test this hypothesis. Haplotypes were determined for 183 CF and 120 non-CF Israeli chromosomes at the XV2C and KM19 loci and at three intragenic polymorphic sites (GATT in intron 6A, TUB18 in intron 19, and 24M in exon 24). Among the studied chromosomes the frequency of non-F508 CF chromosomes associated with haplotype B was 70% (88% among Ashkenazi CF chromosomes). Nine mutations (F508, W1282X, G542X, N1303K, 3849+10 kb CT, Q359K/T360K, S549I, S549R, and 1717-1GA) were identified among the studied chromosomes. These mutations accounted for 96% of CF chromosomes of Ashkenazi origin. Haplotype B was associated with seven of these (F508, W1282X, G542X, N1303K, Q359K/ T360K, S549R, and 1717-1GA). The extended haplotype analysis revealed that in five of the seven mutations associated with the haplotype B, 97% of the chromosomes shared the same intragenic haplotype, 212. The variation found in 3% of the chromosomes was only in the GATT repeat. Two mutations, W1282X and 1717-1GA, were associated with a completely different intragenic haplotype, 121. The results of this study indicate that grouping of CF chromosome by haplotype analysis spanning a small extragenic region might not be sufficient. In addition, the results of the extended haplotype analysis indicate that all the studied CF chromosomes that carry the same mutation derived from the same origin. Furthermore, the results indicate that the majority of the CF mutations are associated with the same extended haplotype, supporting the selective advantage hypothesis.  相似文献   

3.
Mutations of CFTR were studied in patients with cystic fibrosis (CF) from Bashkortostan. In total, 15 mutations were observed and 51% of all mutant alleles identified. The most diagnostically significant mutations were delF508 (33.8%), 394delTT (3.52%), CFTRdele2,3(21kb) (1.41%), R334W (1.41%), 3849 + 10kbC T (1.41%), and N1303K (1.41%). Mutations G542X, 2184insA, S1196X, and W1282X were each found in less than 1% patients. Five new mutations and two neutral substitutions were revealed. These were I488M (exon 10), 1811 + 12A C (intron 11), T663S (exon 13), I1226R (exon 19), 4005 + 9A C (intron 20), 2097A C (A655A, exon 13), and 3996G C (V1288V, exon 20). Bashkortostan was shown to differ in the CFTR mutation spectrum from other regions of Russia. The results will allow direct DNA diagnostics of CF in far more families. Molecular screening of probands" relatives will contribute to identification and medical genetic counseling of heterozygous carriers, which is essential for CF prevention.  相似文献   

4.
Mutations in the cystic fibrosis (CF) conductance transmembrane regulator (CFTR) gene have been detected in patients with CF and in males with infertility attributable to congenital bilateral absence of the vas deferens (CBAVD). Thirty individuals with CBAVD and 10 with congenital unilateral absence of the vas deferens (CUAVD) were analyzed by single-strand conformation analysis and denaturing gradient gel electrophoresis for mutations in most of the CFTR gene. All 40 individuals were pancreatic sufficient, but twenty patients had recurrent or sporadic respiratory infections, asthma/asthmatic bronchitis, and/or rhino-sinusitis. Agenesia or displasia of one or both seminal vesicles was detected in 30 men and other urogenital malformations were present in six subjects. Among the 40 samples, we identified 13 different CFTR mutations, two of which were previously unknown. One new mutation in exon 4 was the deletion of glutamic acid at codon 115 (E115). A second new mutation was found in exon 17b, viz., an AC substitution at position 3311, changing lysine to threonine at codon 1060 (K1060T). CFTR mutations were detected in 22 out of 30 (73.3%) CBAVD patients and in one out of 10 (10%) CUAVD individuals, showing a significantly lower incidence of CFTR mutations in CBAVD/CUAVD patients (P 0.0001), compared with that found in the CF patient population. Only three CBAVD patients were found with more than one CFTR mutation (F508/L206W, F508/R74W+D1270N, Rl 17H/712-1GT), highlighting L206W, R74W/ D1270N, and R117H as benign CF mutations. Sweat electrolyte values were increased in 76.6% of CBAVD patients, but three individuals without CFTR mutations had normal sweat electrolyte levels (10% of the total CBAVD patients), suggesting that factors other than CFTR mutations are involved in CBAVD. The failure to identify a second mutation in exons and their flanking regions of the CFTR gene suggests that these mutations could be located in introns or in the promoter region of CFTR. Such mutations could result in CFTR levels below the minimum 6%–10% necessary for normal protein function.  相似文献   

5.
The cystic fibrosis (CF) gene has been cloned and a major mutation identified (F508). This 3-bp deletion has been found in approximately 70% of CF chromosomes. We have used the strategy of denaturing gradient gel electrophoresis followed by direct sequencing of the polymerase chain reaction products, in order to detect other mutations in exons 10, 11 and 20 of the CF transmembrane conductance regulator gene. A new mutation, F1286-S, was found in exon 20. It involves a nucleotide change of TC at nucleotide 3989 and changes a phenylalanine into serine at position 1286 of the protein.  相似文献   

6.
Summary We have identified different -thalassemia mutations in 93 members of 34 families of Czech or Slovakian descent using gene amplification, hybridization with specific 32P-labeled oligonucleotide probes, sequencing of amplified DNA, and gene mapping. The GA mutation at IVS-I-1 was found in 18 families; other Mediterranean mutations were IVS-II-1 (GA), IVS-II-745 (CG), IVS-I-110 (GA), and codon 39 (CT); these were present in 9 additional families. The GT mutation at codon 121, known to cause Heinzbody -thalassemia, was present in 3 families, and the frameshift at codons 82/83 (-G), first described in the Azerbaijanian population, in 2 families. A newly discovered allele was a frameshift at codons 38/39 (-C). One -thalassemia allele was incompletely characterized. We observed in 2 families a TC mutation at position +96 UTR (untranslated region) relative to the termination codon; this mutation likely is a rare polymorphism, -Thalassemia was rare; only one person carried the -3.7 heterozygosity, and one other had a yet to be identified -thalassemia-1, while seven had the anti 3.7 triplication.  相似文献   

7.
The cystic fibrosis transmembrane conductance regulator (CFTR) gene of 110 cystic fibrosis (CF) patients from the south-west of Germany was screened for 12 different mutations. This analysis resulted in an identification of 79% of all CF mutations and a complete genotype in 66% of the families. The most common mutation found was F508 (67%). Another 5 mutations accounted for a further 12.5% (4% G542X; 3% R553X; 3% N1303K; 2% 1717-1 GA; 0.5% G551D) whereas 6 mutations (R117H, A455E, I507, S549I, S549N, and R1162X) were not found. Fifty-four (49%) patients were AF508 homozygotes and 18 (16.5%) were compound heterozygotes for F508 and one of the rarer mutations. These frequencies differ slightly from those found in the north of Germany and considerably from those reported from the south of Europe, which seems to be consistent with a north to south decline of the relative abundance of F508. Two patients, age 6 and 25 years, were compound heterozygotes for G542X and N1303K. The clinical features of the 6 year old were characterised by severe gastrointestinal and as yet only mild pulmonary complications whereas the 25 year old manifested severe pulmonary and gastrointestinal symptoms indicating that the N1303K mutation of the C-terminal CFTR nucleotide binding fold significantly impairs protein function in both the pancreas and the lungs.  相似文献   

8.
Summary Three mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene were discovered in a pancreas-insufficient patient with cystic fibrosis (CF) who displayed an uncommon combination of almost normal chloride concentration in sweat tests and typical symptoms of gastrointestinal and pulmonary disease. The R553Q mutation was found on the maternal F508-CFTR gene. Codon 553 is located within a consensus motif of the ATP-binding cassette transport proteins at a less conserved position. Other members of this protein superfamily contain a glutamine instead of arginine at the homologous position, suggesting a modulating rather than disease-causing role of the R553Q mutation in CFTR. The amplification refractory mutation system did not detect the R553Q mutation in a further 65 normal, 113 F508, and 91 non-F508 CF chromosomes. The index case carried the R553X nonsense mutation on the paternal chromosome. The R553X mutation was present on a further 9 out of 86 German nonF508 CF chromosomes linked with the XV2c-KM19Mp6d9-J44-GATT haplotypes 2-2-2-1-1 and 1-1-2-1-2. The location of R553X on separate haplotypes including both alleles of the intragenic GATT repeat suggests an ancient and/or multiple origins of the R553X mutations. The association of the genotype of the CFTR mutation and the clinical phenotype was assessed for the patients carrying the related genotypes F508/F508 (n = 80), F508/R553X (n = 9) and F508-R553Q/R553X (n = 1). In compound heterozygotes, the median chloride concentration in pilocarpine iontophoresis sweat tests was significantly lower than in the F508 homozygotes (P < 0.01). The patient groups were significantly different with respect to the distributions of the centiles for height (P < 0.001) and weight (P < 0.01) as the most sensitive predictors of the course and prognosis in CF. Growth retardation was more pronounced in the compound heterozygotes.  相似文献   

9.
The fatal autosomal recessive disease cystic fibrosis (CF) is caused by mutations in the gene which encodes the cystic fibrosis transmembrane conductance regulator (CFTR). Many of these disease-causing mutations, including the deletion of F508 (F508) which accounts for approximately 70% of the disease alleles, occur in one of the two consensus nucleotide binding sequences. Peptide studies have directly demonstrated that the N-terminal nucleotide binding sequences bind adenine nucleotides. Structurally, circular dichroism spectropolarimetry indicates that this region of CFTR assumes a -stranded structure in solution. The F508 mutation causes a diminution in the amount of -stranded structure and a concomitant increase in the amount of random coil structure present, indicating that either the mutant peptide has a different native structure or that the conformational equilibrium is shifted toward a more disordered form. Furthermore, the mutant peptide is more sensitive to denaturation, indicating that F508 is a stability, or protein-folding mutant. Here we review these results and discuss their implications for interpreting the behavior of F508in situ and for the rational design of new CF drugs.  相似文献   

10.
Summary We describe the implementation of a modified version of the reverse dot blot hybridization technology to detect eight cystic fibrosis mutations. The method is simple, quick, reliable, inexpensive, and nonradioactive and utilizes the sensitivity of the polymerase chain reaction coupled with colored or chemiluminescent substrates for mutation detection. We have used this system in a clinical laboratory to identify the F508, G542X, G551D, R553X, 621 + 1GT, W1282X, N1303K, and 1717GA mutations. The technique is practical for genotyping individuals at many potential mutation sites, as in cystic fibrosis and -thalassemia, in which over 95 mutations can cause disease. This technology appears to be the method of choice for the widespread carrier screening of multiple cystic fibrosis mutations.  相似文献   

11.
Analysis of 14 cystic fibrosis mutations in five South European populations   总被引:12,自引:3,他引:9  
Summary We have analysed five Southern European populations (Albanian, Greek, Italian, Spanish and Yugoslavian) for 14 cystic fibrosis (CF) mutations. The most frequent mutations, apart from F508, were G542X (6.04%), R1162X (3.61%) and N1303K (3.24%). Each of the other analysed mutations were present at a frequency of less than 1% (R347P, R334W, S549RA, S549I, G551D, R553X and W1282X), and four mutations (D110H, I507, S549RT, and S1255X) were not found in this sample. The data presented here allows the use of mutation analysis in 69.5% of Spanish, 58% of Greek, and 56.5% of Italian CF cases.  相似文献   

12.
German patients with cystic fibrosis (CF) were screened for molecular lesions in exon 13 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by single strand conformation polymorphism (SSCP) and chemical cleavage of mismatch analyses. Direct sequencing of four samples that displayed the same SSCP pattern and that were susceptible to cleavage of heteroduplexes by osmium tetroxide revealed, in all cases, a deletion of a single T residue at nucleotide position 2143 within codon 671 of the CFTR gene. As a result, leucine codon 671 is changed into a termination codon. In total, the 2143delT mutation was confirmed in 6 out of 271 German non-F508 CF chromosomes by artificial restriction fragment length polymorphism analysis, indicating that this frameshift mutation accounts for about 2% of German non-508 mutations. The 6 pancreas insufficient patients who are compound heterozygous for 2143-delT suffer from the typical features of pulmonary and gastrointestinal CF disease. The 2143delT mutation completes the panel of the more frequent CFTR mutations that reside on the F508 haplotype and that contribute to its overpresentation among German non-F508 alleles that are associated with severe forms of disease.  相似文献   

13.
Summary A woman presented a complex chromosome rearrangement with translocation between chromosome 2 and 4 in addition to an insertion of the band 4q12q13 in the long arm of chromosome 18. The authors present a case study of the daughter who displayed the abnormal chromosome 18 and trisomy of band 4q12q13.  相似文献   

14.
The alternatively spliced exon 9 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene codes for the initial part of the amino-terminal nucleotide-binding fold of CFTR. A unique feature of the acceptor splice site preceding this exon is a variable length polymorphism within the polypyrimidine tract influencing the extent of exon 9 skipping in CFTR mRNA. We investigated this repeat for its relationship to CFTR mutations and intragenic markers on 200 chromosomes from German patients with cystic fibrosis (CF). Four frequent length variations were strongly associated with the four predominant haplotypes previously defined by intragenic marker dimorphisms. One of these alleles displayed absolute linkage disequilibrium to the major CF mutation F508. Other frequent CFTR mutations were linked to one particular splice site haplotype indicating that differential exon 9 skipping contributes little to the clinical heterogeneity among CF patients with an identical mutation. We also identified a novel missense mutation (V456F) and a novel nonsense mutation (Q414X) within the coding region of exon 9. The missense mutation V456F adjacent to Walker motif A was present in a pancreas-sufficient CF patient. In contrast, the pancreas-insufficient Q414X/F508 compound heterozygote suffered from a severe form of the disease, indicating that alternative splicing of exon 9 does not overcome the deleterious effect of a stop codon within this exon.  相似文献   

15.
Five point mutations were identified in unrelated Japanese Fabry disease hemizygotes: three new missense mutations, C142Y (425 G A), A156V (467 C T), and L166V (496 C G) in exon 3; one new splice site mutation at the 3 end of the consensus sequence in exon 4; one previously reported nonsense mutation, W44X (131 G A). C142Y expressed 50% of the normal enzyme protein in COS-1 cells, but catalytic activity was not detected. Both A156V and L166V expressed significant amounts of residual enzyme activity (6.7% and 9.8%) and enzyme proteins (10% each), the latter were more thermolabile at neutral pH than at acid pH, in vitro.  相似文献   

16.
The molecular basis of familial hypercholesterolemia (FH) in three families of Spanish descent from La Habana was investigated by the candidate gene approach. The Arg3500Gln mutation of apolipoprotein B-100 was not found. Identification of low density lipoprotein receptor (LDLR) gene haplotypes segregating with FH guided the characterisation of three point mutations by automated sequencing. One, a Val408Met missense mutation, a founder mutation in Afrikaner FH patients, was recurrent, being associated with a distinct DNA haplotype. The other two, Glu256Lys and Val776Met missense mutations, were novel and modified highly conserved residues. These mutations were absent in normolipidemic subjects and were associated in heterozygous carriers with twice the cholesterol levels observed in noncarriers. Noticeably, cardiovascular complications were rarely observed in older heterozygotes, even in those with the Afrikaner FH-2 mutation. These findings confirm the molecular heterogeneity of LDLR gene mutations causing FH and the variability of their expression across different populations.  相似文献   

17.
    
Oxidative damage to guanine in DNA results in the formation of 8-oxoguanine, which has been shown to induce G T transversions targeted to this site. The mutagenicity of this lesion was studied in several mutator strains of Escherichia coli, using single-stranded DNA containing a single 8-oxoguanine residue. The frequencies of targeted G T transversions increased markedly in mutY strains, while this mutagenic event was not affected in mutM or mutS strains. Introdution of a mutM mutation into a mutY strain caused a somewhat higher frequency of G T transversions than that in the mutY strain and the effect of a mutS mutation was marginal. We conclude that the mutY gene plays a crucial role in preventing targeted G T mutations derived from misreplication of the 8-oxoguanine-containing template DNA.  相似文献   

18.
Summary Gene dosage studies yielded results consistent with assignment of the locus for nucleoside phosphorylase to band 14q13. The red blood cells from a patient with the karyotype 47,XX,+der(14),t(8;14)(8qter8q24: :14q2114pter)pat had enzyme activity 50% higher than red cells from 47 normal controls, two trisomies involving chromosomes other than 14, and five balanced translocations involving chromosome 14. On the other hand, the red cells of a case with a karyotype 45,XX,-14,-22,+der(22),t(14;22)(14qter14q11 or 14q12::22p1122qter)mat and a case with a karyotype 47,XX, +der(14),t(14;16)(14pter14q11::16q2416qter)mat had normal activity.  相似文献   

19.
Structural study of fucoidan from Cladosiphon okamuranus tokida   总被引:1,自引:0,他引:1  
A structural study was carried out on a fucoidan isolated from the brown seaweed Cladosiphon okamuranus. The polysaccharide contained fucose, glucuronic acid and sulfate in a molar ratio of about 6.1 : 1.0 : 2.9. The results of Smith degradation showed that this polysaccharide has a linear backbone of 13-linked -fucopyranose with a half sulfate substitution at the 4-positions, and a portion of the fucose residues was O-acetylated. The data obtained from partial acid hydrolysis, a methylation analysis and NMR spectra indicated that the -glucuronic acid residue is linked to the 2-positions of the fucose residues, which were not substituted by a sulfate group. These results indicated that the average structure of this fucoidan is as follows: -[(3Fuc-4(±OSO3-)1–)53[GlcA12]Fuc1–]n–. (Half of each fucose residue was sulfated. One O-acetyl ester was present in every 6 fucose residues.)  相似文献   

20.
Summary A 5-year-old boy with multiple minor anomalies and mental retardation was found to have chromosomal condition of 46,XY,inv dup(9p)(pterp13::p21p24::p13qter). The clinical features of the propositus fit well with those of trisomy 9p which have been established to be a clinical entity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号