首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants produce reactive oxygen species (ROS) when exposed to low oxygen (O2). Much experimental evidence has demonstrated the existence of an oxidative burst when there is an O2 shortage. This originates at various subcellular sites. The activation of NADPH oxidase(s), in complex with other proteins, is responsible for ROS production at the plasma membrane. Another source of low O2‐dependent ROS is the mitochondrial electron transport chain, which misfunctions when low O2 limits its activity. Arabidopsis mutants impaired in proteins playing a role in ROS production display an intolerant phenotype to anoxia and submergence, suggesting a role in acclimation to stress. In rice, the presence of the submergence 1A (SUB1A) gene for submergence tolerance is associated with a higher capacity to scavenge ROS. Additionally, the destabilization of group VII ethylene responsive factors, which are involved in the direct O2 sensing mechanism, requires nitric oxide (NO). All this evidence suggests the existence of a ROS and NO – low O2 mechanism interplay which likely includes sensing, anaerobic metabolism and acclimation to stress. In this review, we summarize the most recent findings on this topic, formulating hypotheses on the basis of the latest advances.  相似文献   

2.
3.
目的: 观察TNF-α预处理对缺血/再灌注心脏功能和酶学指标的影响及其可能机制.方法: 采用心脏Langendorff灌流模型.结果:与单独缺血/再灌注组相比,TNF-α(104U/L)预处理明显减弱缺血/再灌注对左室发展压、左室舒张末压、最大收缩/舒张速率和左室发展压与心率乘积的抑制作用(P<0.05),并显著降低复灌后冠脉流出液中乳酸脱氢酶(LDH)含量,增加线粒体中锰超氧化物歧化酶(Mn-SOD)活性(P<0.05);分别使用抗氧化剂2-MPG(0.3 mmol/L)、一氧化氮合酶抑制剂L-NAME(0.5 mmol/L)或线粒体ATP敏感钾通道抑制剂5-HD(100 μmol/L)预处理,减弱了TNF-α改善缺血/再灌注后心功能、抑制心肌LDH释放和诱导Mn-SOD活性增高的作用.结论: TNF-α预处理具有减轻心脏缺血/再灌注损伤的作用,这一作用可能与其诱导Mn-SOD活性增高有关,活性氧、一氧化氮和线粒体ATP敏感钾通道参与介导TNF-α的心肌保护作用.  相似文献   

4.
No是一种易扩散的生物活性分子,是生物体内重要的信号分子。植物细胞通过NO合酶,硝酸还原酶,或非生化反应途径产生NO。NO参与植物生长发育调控和对生物和非生物胁迫的应答反应。主要通过讨论No的产生,对植物生长发育的影响及在抗逆反应中的信号调节来阐述No在植物中的作用。  相似文献   

5.
Safingol is a sphingolipid with promising anticancer potential, which is currently in phase I clinical trial. Yet, the underlying mechanisms of its action remain largely unknown. We reported here that safingol-induced primarily accidental necrotic cell death in MDA-MB-231 and HT-29 cells, as shown by the increase in the percentage of cells stained positive for 7-aminoactinomycin , collapse of mitochondria membrane potential and depletion of intracellular ATP. Importantly, safingol treatment produced time- and concentration-dependent reactive oxygen species (ROS) generation. Autophagy was triggered following safingol treatment, as reflected by the formation of autophagosomes, acidic vacuoles, increased light chain 3-II and Atg biomarkers expression. Interestingly, scavenging ROS with N-acetyl--cysteine could prevent the autophagic features and reverse safingol-induced necrosis. Our data also suggested that autophagy was a cell repair mechanism, as suppression of autophagy by 3-methyladenine or bafilomycin A1 significantly augmented cell death on 2-5 μ safingol treatment. In addition, Bcl-xL and Bax might be involved in the regulation of safingol-induced autophagy. Finally, glucose uptake was shown to be inhibited by safingol treatment, which was associated with an increase in p-AMPK expression. Taken together, our data suggested that ROS was the mediator of safingol-induced cancer cell death, and autophagy is likely to be a mechanism triggered to repair damages from ROS generation on safingol treatment.  相似文献   

6.
Ischemic preconditioning (IP) is a cardioprotective mechanism against myocellular death and cardiac dysfunction resulting from reperfusion of the ischemic heart. At present, the precise list of mediators involved in IP and the pathways of their mechanisms of action are not completely known. The aim of the present study was to investigate the role of platelet-activating factor (PAF), a phospholipid mediator that is known to be released by the ischemic-reperfused heart, as a possible endogenous agent involved in IP. Experiments were performed on Langendorff-perfused rat hearts undergoing 30 min of ischemia followed by 2 h of reperfusion. Treatment with a low concentration of PAF (2 x 10(-11) M) before ischemia reduced the extension of infarct size and improved the recovery of left ventricular developed pressure during reperfusion. The cardioprotective effect of PAF was comparable to that observed in hearts in which IP was induced by three brief (3 min) periods of ischemia separated by 5-min reperfusion intervals. The PAF receptor antagonist WEB-2170 (1 x 10(-9) M) abrogated the cardioprotective effect induced by both PAF and IP. The protein kinase C (PKC) inhibitor chelerythrine (5 x 10(-6) M) or the phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 (5 x 10(-5) M) also reduced the cardioprotective effect of PAF. Western blot analysis revealed that following IP treatment or PAF infusion, the phosphorylation of PKC-epsilon and Akt (the downstream target of PI3K) was higher than that in control hearts. The present data indicate that exogenous applications of low quantities of PAF induce a cardioprotective effect through PI3K and PKC activation, similar to that afforded by IP. Moreover, the study suggests that endogenous release of PAF, induced by brief periods of ischemia and reperfusion, may participate to the triggering of the IP of the heart.  相似文献   

7.
Phagocytes such as macrophages are capable of detecting and killing pathogenic bacteria by producing reactive oxygen and nitrogen species. Formation of free radicals in macrophages may be regulated by probiotics or by factors released by probiotics but yet to be identified. Thus, studies were carried out to determine whether cell-free conditioned medium obtained from cultures of Lactobacillus rhamnosus GG (LGG-CM) regulate production of reactive oxygen species (ROS) and/or nitric oxide (NO) in macrophages. J774 macrophages in culture were loaded with either H2DCFDA for monitoring ROS or with DAFFM-DA for NO detection. Free radical production was measured on a fluorescence microplate reader and changes were analysed by Cumulative sum (CuSum) calculations. Low concentration of LGG-CM (10% LGG-CM) or LPS did not cause any significant change in basal levels of ROS or NO production. In contrast, high concentration of LGG-CM (75% and 100%) significantly enhanced ROS generation but also significantly reduced NO level. These findings are novel and suggest for the first time that probiotics may release factors in culture which enhance ROS production and may additionally reduce deleterious effects associated with excessive nitrogen species by suppressing NO level. These events may account, in part, for the beneficial bactericidal and anti-inflammatory actions ascribed to probiotics and may be of clinical relevance.  相似文献   

8.
Protein kinase C (PKC) is a family of serine/threonine protein kinases that plays a central role in transducing extracellular signals into a variety of intracellular responses ranging from cell proliferation to apoptosis. Nine PKC genes have been identified in the human genome, which encode 10 proteins. Each member of this protein kinase family displays distinct biochemical characteristics and is enriched in different cellular and subcellular locations. Activation of PKC has been implicated in the regulation of cell growth and differentiation. This review summarizes works of the past years in the field of PKC biochemistry that covers regulation and activation mechanism of different PKC isoforms.  相似文献   

9.
 The biological relevance of each of the three inorganic species – iron, oxygen, and nitric oxide (NO) – is crucial. Moreover, their metabolic pathways cross each other and thus create a complex network of connections responsible for the regulation of many essential biological processes. The iron storage protein ferritin, one of the main regulators of iron homeostasis, influences oxygen and NO metabolism. Here, examples are given of the biological interactions of the ferritin molecule (ferritin iron and ferritin shell) with reactive oxygen species (ROS) and NO. The focus is the regulation of ferritin expression by ROS and NO. From these data, ferritin emerges as an important cytoprotective component of the cellular response to ROS and NO. Also, by its ability to alter the amount of intracellular "free" iron, ferritin may affect the metabolism of ROS and NO. It is proposed that this putative activity of ferritin may constitute a missing link in the regulatory loop between iron, ROS, and NO. Received: 2 January 1997 / Accepted: 9 June 1997  相似文献   

10.
Immunosenescence is an age-associated dysregulation of the immune function, which contributes to increased susceptibility to disease in the elderly. Alveolar macrophages (AM) are known phagocytes that generate reactive oxygen species (ROS) and nitric oxide (NO), essential mediators for host defence. We studied phagocytosis, ROS and NO production in AM obtained from young, adult and senescent rats (1-2, 9-12 and 18-24 months old, respectively) after exposure to lipopolysaccharide (LPS, 0.1-10 microg mL(-1)), 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.1 microg mL(-1)) or LPS + TPA in culture. Phagocytosis was significantly lower in control AM from adult rats than in AM from young animals. Nevertheless, AM from adult animals pretreated with LPS exhibited higher phagocytic capacity than AM from younger animals. ROS was identified by the NBT test at single cell level and quantified by automated image analysis. When TPA was added to all three populations, AM from adult and senescent animals responded more than AM from young animals. All LPS-stimulated AM produce more NO than controls. However, NO production increased three-, four- and two-fold in young, adult and senescent animals, respectively. Our results demonstrate that AM from young, adult and senescent animals display differential responsiveness to inflammatory mediators. Therefore, aging processes markedly affect AM metabolic functions and may further compromise the lung immune defence response, increasing adverse long-term health effects.  相似文献   

11.
The redox environment of the cell is currently thought to be extremely important to control either apoptosis or autophagy. This study reported that reactive oxygen species (ROS) and nitric oxide (NO) generations were induced by evodiamine time-dependently; while they acted in synergy to trigger mitochondria-dependent apoptosis by induction of mitochondrial membrane permeabilization (MMP) through increasing the Bax/Bcl-2 or Bcl-xL ratio. Autophagy was also stimulated by evodiamine, as demonstrated by the positive autophagosome-specific dye monodansylcadaverine (MDC) staining as well as the expressions of autophagy-related proteins, Beclin 1 and LC3. Pre-treatment with 3-MA, the specific inhibitor for autophagy, dose-dependently decreased cell viability, indicating a survival function of autophagy. Importantly, autophagy was found to be promoted or inhibited by ROS/NO in response to the severity of oxidative stress. These findings could help shed light on the complex regulation of intracellular redox status on the balance of autophagy and apoptosis in anti-cancer therapies.  相似文献   

12.
Neha Diwanji 《Fly》2017,11(1):46-52
Apoptosis-induced proliferation (AiP) maintains tissue homeostasis following massive stress-induced cell death. During this phenomenon, dying cells induce proliferation of the surviving cells to compensate for the tissue loss, and thus restore organ size. Along with wound healing and tissue regeneration, AiP also contributes to tumor repopulation following radiation or chemotherapy. There are several models of AiP. Using an “undead” AiP model that causes hyperplastic overgrowth of Drosophila epithelial tissue, we recently demonstrated that extracellular reactive oxygen species (eROS) are produced by undead epithelial cells, and are necessary for inducing AiP and overgrowth. Furthermore, hemocytes, the Drosophila blood cells, are seen adjacent to the undead epithelial tissue, and may secrete the TNF ortholog Eiger that signals through the TNF receptor to active Jun-N-terminal kinase (JNK) in the undead tissue and induce proliferation. We propose that undead epithelial tissue triggers an inflammatory response that resembles recruitment of macrophages to human epithelial tumors, and that these tumor-associated macrophages release signals for proliferation and tumor growth of the epithelium. This Extra View article summarizes these recent findings with a focus on the role of eROS for promoting regeneration and inflammation-induced tumorigenesis.  相似文献   

13.
目的:探讨乙醇后处理心肌保护作用是否与一氧化氮生成有关。方法:局部结扎冠状动脉左前降支30min,复灌120 min复制离体大鼠心肌缺血/复灌模型。心肌缺血末5 min,复灌初期10min给予乙醇50mmol/L,共灌流15 min进行乙醇后处理干预。实验随机分为五组,正常组,缺血/复灌组,乙醇后处理组,乙醇后处理+L-NAME组和乙醇后处理+苍术苷组。测定心室动力学指标和复灌期间冠脉流出液中乳酸脱氢酶(LDH)含量,TTC染色法测定心肌梗死面积,硝酸还原法测定心肌组织一氧化氮(NO)含量。RT-PCR检测左心室前壁心尖组织Bc-l2和BaxmRNA的表达。结果:与单纯缺血/复灌相比,乙醇后处理明显促进了左室发展压、左室做功的恢复,降低复灌期冠脉流出液中LDH的释放和心肌梗死面积,心肌组织NO释放减少,Bc-l 2/Bax mRNA比值增高。一氧化氮合酶抑制剂L-NAME和线粒体渗透性转换孔道开放剂苍术苷均抑制了乙醇后处理心室功能的恢复、LDH释放的减少和梗死面积的降低,心肌组织NO释放进一步减少,Bc-l 2/Bax mRNA比值降低。结论:乙醇后处理的心肌保护作用可能与减少NO的释放、抑制线粒体渗透性转换孔道的开放和抑制细胞凋亡的发生有关。  相似文献   

14.
Signalling by protein kinase C isoforms in the heart   总被引:11,自引:0,他引:11  
Understanding transmembrane signalling process is one of the major challenge of the decade. In most tissues, since Fisher and Krebs's discovery in the 1950's, protein phosphorylation has been widely recognized as a key event of this cellular function. Indeed, binding of hormones or neurotransmitters to specific membrane receptors leads to the generation of cytosoluble second messengers which in turn activate a specific protein kinase. Numerous protein kinases have been so far identified and roughly classified into two groups, namely serine/threonine and tyrosine kinases on the basis of the target amino acid although some more recently discovered kinases like MEK (or MAP kinase kinase) phosphorylate both serine and tyrosine residues.Protein kinase C is a serine/threonine kinase that was first described by Takai et al. [1] as a Ca- and phospholipid-dependent protein kinase. Later on, Kuo et al. [2] found that PKC was expressed in most tissues including the heart. The field of investigation became more complicated when it was found that the kinase is not a single molecular entity and that several isoforms exist. At present, 12 PKC isoforms and other PKC-related kinases [3] were identified in mammalian tissues. These are classified into three groups. (1) the Ca-activated -, -,and -PKCs which display a Ca-binding site (C2); (2) the Ca-insensitive -, -, -, -, and -PKCs. The kinases that belong to both of these groups display two cystein-rich domains (C1) which bind phorbol esters (for recent review on PKC structure, see [4]). (3) The third group was named atypical PKCs and include , , and -PKCs that lack both the C2 and one cystein-rich domain. Consequently, these isoforms are Ca-insensitive and cannot be activated by phorbol esters [5]. In the heart. evidence that multiple PKC isoforms exist was first provided by Kosaka et al. [6] who identified by chromatography at least two PKC-related isoenzymes. Numerous studies were thus devoted to the biochemical characterization of these isoenzymes (see [7] for review on cardiac PKCs) as well as to the identification of their substrates.This overview aims at updating the present knowledge on the expression, activation and functions of PKC isoforms in cardiac cells. (Mol Cell Biochem 157: 65–72, 1996)  相似文献   

15.
16.
This study addresses mechanisms by which interleukin-1beta (IL-1beta) regulates human chondrocyte apoptosis induced by a combination of the anti-CD95 antibody CH-11 and the proteasome inhibitor (PSI). The effect of IL-1beta on apoptosis varied among tissue samples. IL-1beta either enhanced (16/22 samples) or inhibited (6/22 samples) DNA fragmentation and caspase-3 processing. The protective effect of IL-1beta was abrogated by the nitric oxide (NO) synthesis inhibitor N-monomethyl-l-arginine (L-NMMA) while apoptosis stimulation was not affected. The NO-donors sodium nitroprusside (SNP) and S-nitroso-N-acetyl penicillamine (SNAP) blocked DNA fragmentation, and this was associated with partial inhibition of caspase-3 processing. Pyrrolidine dithiocarbamate (PDTC), a scavenger of reactive oxygen species (ROS) blocked apoptosis induction by CH-11/PSI as well as the enhancement by IL-1beta. The pro-apoptotic effects of IL-1beta were also abrogated by the p38 inhibitor SB 202190. In conclusion, IL-1beta augments CH-11/PSI induced apoptosis in the majority of chondrocyte samples. The pro-apoptotic effect of IL-1beta is not dependent on NO. In contrast, the anti-apoptotic effect of IL-1beta observed in a minority of samples is partially NO-dependent.  相似文献   

17.
In order to examine the endoplasmic reticulum responses in macrophages, we stimulate macrophage cell line RAW 264.7 by LPS. We found the phosphorylation of eukaryotic initiation factor eIF2α and the expression of ATF4, GADD34, and GADD153 in RAW 264.7 cells in late time by the relatively large amount of LPS stimulation. Unexpectedly LPS in the presence of ROS inhibitor N-acetyl-l-cysteine rapidly induced phosphorylation of eIF2α and induction of GADD34 expression. We measured intra-cytoplasmic TNFα production in LPS stimulated RAW 264.7 cells. TNFα production induced by LPS stimulation was greatly suppressed by N-acetyl-l-cysteine. This suppression occurred relatively early, which correlated with early eIF2α phosphorylation indicating ER stress mediated shutoff of protein synthesis.  相似文献   

18.
The carotid body is an arterial chemoreceptor organ that senses arterial pO(2) and pH. Previous studies have indicated that both reactive oxygen species (ROS) and nitric oxide (NO) are important potential mediators that may be involved in the response of the carotid body to hypoxia. However, whether their production by the chemosensitive elements of the carotid body is indeed oxygen-dependent is currently unclear. Thus, we have investigated their production under normoxic (20% O(2)) and hypoxic (1% O(2)) conditions in slice preparations of the rat carotid body by using fluorescent indicators and confocal microscopy. NO-synthesizing enzymes were identified by immunohistochemistry and histochemistry, and the subcellular localization of the NO-sensitive indicator diaminofluorescein was determined by a photoconversion technique and electron microscopy. Glomus cells of the carotid body responded to hypoxia by increases in both ROS and NO production. The hypoxia-induced increase in NO generation required (to a large extent, but not completely) extracellular calcium. Glomus cells were immunoreactive to endothelial NO synthase but not to the neuronal or inducible isoforms. Ultrastructurally, the NO-sensitive indicator was observed in mitochondrial membranes after exposure to hypoxia. The data show that glomus cells respond to exposure to hypoxia by the enhanced production of both ROS and NO. NO production by glomus cells is probably mediated by endothelial NO synthase, which is activated by calcium influx. The presence of NO indicator in mitochondria suggests the hypoxic regulation of mitochondrial function via NO in glomus cells.  相似文献   

19.
Production of reactive oxygen species (ROS) by macrophages derived from blood monocytes of healthy donors (MPN) and patients with ischemic heart disease (IHD) (MPIHD) before, during, and after their incubation with low-density lipoprotein (LDL) isolated from blood plasma of healthy donors (LDLN) and patients with a high cholesterol level (LDLH) was investigated by the method of luminol-dependent (spontaneous) and stimulated chemiluminescence (CL) using opsonized zymosan (OZ) or phorbol-12-myristate-13-acetate (PMA) as the CL stimulators. It was shown that proper, luminol-dependent, and zymosan-or PMA-stimulated chemiluminescence of MPIHD was 1.4-, 1.8-, 2.7-, and 1.6-fold higher than the same types of chemiluminescence of MPN, respectively, (p<0.05–0.01). Although the effect of OZ on MPN and MPIHD was more potent than that of PMA (by 4.3- and 3.2-fold, respectively), but it appeared in 2.5–3.0 times slower than that of PMA. LDLN and LDLH incubated with MPN for the first 15 and 60 min caused the 1.4- and 2.5-increase of the luminol-dependent CL of MPN; the same treatment of MPIHD did not influence ROS production by these cells. Repeated increase in the OZ-stimulated CL of MPN was also observed after preincubation for 15–180 min with LDLN and LDLH followed by LDL removal, subsequent MPN washing and addition of Hanks solution and OZ; the repeated increase in OZ-stimulated CL of MPN was only observed after incubation with LDLH than with LDLN. No increase of CL was observed in experiments with MPIHD. Thus, more intensive chemiluminescence of macrophages obtained from blood of patients with IHD suggests their in vivo stimulation. LDLN and LDLH may cause both primary and secondary (after preincubation) stimulating effect on CL of MPN but not of MPIHD. Thus, the analysis of macrophage chemiluminescence is a sensitive test for evaluation the degree of macrophage stimulation; it may be effectively used for monitoring of effectiveness of medical treatment of patients.  相似文献   

20.
Interferon-gamma (Ifnγ), a known immunomodulatory cytokine, regulates cell proliferation and survival. In this study, the mechanisms leading to the selective susceptibility of some tumor cells to Ifnγ were deciphered. Seven different mouse tumor cell lines tested demonstrated upregulation of MHC class I to variable extents with Ifnγ; however, only the cell lines, H6 hepatoma and L929 fibrosarcoma, that produce higher amounts of nitric oxide (NO) and reactive oxygen species (ROS) are sensitive to Ifnγ-induced cell death. NO inhibitors greatly reduce Ifnγ-induced ROS; however, ROS inhibitors did not affect the levels of Ifnγ-induced NO, demonstrating that NO regulates ROS. Consequently, NO inhibitors are more effective, compared to ROS inhibitors, in reducing Ifnγ-induced cell death. Further analysis revealed that Ifnγ induces peroxynitrite and 3-nitrotyrosine amounts and a peroxynitrite scavenger, FeTPPS, reduces cell death. Ifnγ treatment induces the phosphorylation of c-jun N-terminal kinase (Jnk) in H6 and L929 but not CT26, a colon carcinoma cell line, which is resistant to Ifnγ-mediated death. Jnk activation downstream to NO leads to induction of ROS, peroxynitrite and cell death in response to Ifnγ. Importantly, three cell lines tested, i.e. CT26, EL4 and Neuro2a, that are resistant to cell death with Ifnγ alone become sensitive to the combination of Ifnγ and NO donor or ROS inducer in a peroxynitrite-dependent manner. Overall, this study delineates the key roles of NO as the initiator and Jnk, ROS, and peroxynitrite as the effectors during Ifnγ-mediated cell death. The implications of these findings in the Ifnγ-mediated treatment of malignancies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号