首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hyperglycemia is considered as one of the major determinants in the development of diabetic retinopathy, but the progression of retinopathy resists arrest after hyperglycemia is terminated, suggesting a metabolic memory phenomenon. Diabetes alters the expression of retinal genes, and this continues even after good glycemic control is re‐instituted. Since the expression of genes is affected by chromatin structure that is modulated by post‐translational modifications of histones, our objective is to investigate the role of histone acetylation in the development of diabetic retinopathy, and in the metabolic memory phenomenon. Streptozotocin‐induced rats were maintained either in poor glycemic control (PC, glycated hemoglobin, GHb >11%) or good glycemic control (GC, GHb <6%) for 12 months, or allowed to be in PC for 6 months followed by in GC for 6 months (PC‐GC). On a cellular level, retinal endothelial cells, the target of histopathology of diabetic retinopathy, were incubated in 5 or 20 mM glucose for 4 days. Activities of histone deacetylase (HDAC) and histone acetyltransferase (HAT), and histone acetylation were quantified. Hyperglycemia activated HDAC and increased HDAC1, 2, and 8 gene expressions in the retina and its capillary cells. The activity HAT was compromised and the acetylation of histone H3 was decreased. Termination of hyperglycemia failed to provide any benefits to diabetes‐induced changes in retinal HDAC and HAT, and histone H3 remained subnormal. This suggests “in principle” the role of global acetylation of retinal histone H3 in the development of diabetic retinopathy and in the metabolic memory phenomenon associated with its continued progression. J. Cell. Biochem. 110: 1306–1313, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
The clonal distribution and stable expression of killer cell Ig-like receptor (KIR) genes is epigenetically regulated. To assess the epigenetic changes that occur during hemopoietic development we examined DNA methylation and chromatin structure of the KIR locus in early hemopoietic progenitor cells and major lymphocyte lineages. In hemopoietic progenitor cells, KIR genes exhibited the major hallmarks of epigenetic repression, which are dense DNA methylation, inaccessibility of chromatin to Micrococcus nuclease digest, and a repressive histone signature, characterized by strong H3K9 dimethylation and reduced H4K8 acetylation. In contrast, KIR genes of NK cells showed active histone signatures characterized by absence of H3K9 dimethylation and presence of H4K8 acetylation. Histone modifications correlated well with the competence of different lymphocyte lineages to express KIR; whereas H4K8 acetylation was high in NK and CD8+ T cells, it was almost absent in CD4+ T cells and B cells and, in the latter case, replaced by H3K9 dimethylation. In KIR-competent lineages, active histone signatures were also observed in silent KIR genes and in this case found in combination with dense DNA methylation of the promoter and nearby regions. The study suggests a two-step model of epigenetic regulation in which lineage-specific acquisition of euchromatic histone marks is a prerequisite for subsequent gene-specific DNA demethylation and expression of KIR genes.  相似文献   

5.
Histone acetylation is a vital mechanism for the post-translational modifications of chromatin components. Histone acetyltransferases (HATs) are critical elements that determine histone acetylation and regulate chromatin dynamics and gene expression. While histone acetyltransferases have been well studied in mammals and Drosophila melanogaster, information from agriculturally important insect pests is still limited. In our effort to understand the epigenetic mechanisms regulating development in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Geometroidea), a major rice pest in many parts of Asia, two full-length cDNA sequences encoding HAT members of the GNAT and MYST family, namely NlElp3 and NlMof, respectively, were isolated and structurally and phylogenetically characterized. The NlElp3 contains an open reading frame (ORF) of 1656 bp encoding a protein of 551 amino acids. The NlMof contains a 1353 bp ORF encoding a protein of 450 amino acids. Sequence analysis showed that NlElp3 contains GNAT-type HAT domain and Radical SAM domain, and NlMof contains chromodomain and MOZ-SAS acetyltransferase domain. Multiple sequence alignments showed that NlElp3 and NlMof have high amino acid sequence identity with other insect homologues. Expression analysis of the NlElp3 and NlMof revealed significant differences in mRNA expression levels among N. lugens developmental stages, suggesting that HAT activities of NlElp3 and NlMof may be controlled, at least in part, by their developmental regulation. Remarkably, the mRNA expression levels of NlElp3 and NlMof in female adults were significantly higher than that in male adults, supporting an important role for both genes in female reproductive function in N. lugens.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
浅谈干扰素(及其诱导物poly 1:C)抗病毒作用的分子基基础   总被引:2,自引:0,他引:2  
陈婷  陆军  孙晖  董梅  韩松岩  黄百渠 《遗传》2003,25(5):567-572
《遗传》杂志是全国性中级学术刊物。其专业领域涉及遗传学各个分支学科。凡有关人类与医学A传、植物遗 传、动物遗传、微生物遗传方面的研究报告、快讯、实验技术与方法、综述、讲座、争鸣、讨论、教学心得等文章,均受 本刊欢迎。质量优秀者优先发表。来稿暂不收审稿费,发表后暂不收版面费,而且照付稿酬,质量优秀的文章稿 酬从优。目前尤其欢迎微生物遗传学方面的稿件,发表优先。  相似文献   

14.
Histone modifications impact various processes. In examining histone acetyltranferase HAT3 of Leishmania donovani, we find elimination of HAT3 causes decreased cell viability due to defects in histone deposition, and aberrant cell cycle progression pattern. HAT3 associates with proliferating cell nuclear antigen (PCNA), helping load PCNA onto chromatin in proliferating cells. HAT3-nulls show heightened sensitivity to UV radiation. Following UV exposure, PCNA cycles off/on chromatin only in cells expressing HAT3. Inhibition of the ubiquitin-proteasome pathway prior to UV exposure allows accumulation of chromatin-bound PCNA, and reveals that HAT3-nulls are deficient in PCNA monoubiquitination as well as polyubiquitination. While poor monoubiquitination of PCNA may adversely affect translesion DNA synthesis-based repair processes, polyubiquitination deficiencies may result in continued retention of chromatin-bound PCNA, leading to genomic instability. On suppressing the proteasome pathway we also find that HAT3 mediates PCNA acetylation in response to UV. HAT3-mediated PCNA acetylation may serve as a flag for PCNA ubiquitination, thus aiding DNA repair. While PCNA acetylation has previously been linked to its degradation following UV exposure, this is the first report linking a HAT-mediated PCNA acetylation to PCNA monoubiquitination. These findings add a new dimension to our knowledge of the mechanisms regulating PCNA ubiquitination post-UV exposure in eukaryotes.  相似文献   

15.
16.
Bottomley MJ 《EMBO reports》2004,5(5):464-469
DNA is packed together with histone proteins in cell nuclei to form a compact structure called chromatin. Chromatin represents a scaffold for many genetic events and shows varying degrees of condensation, including a relatively open form (euchromatin) and a highly condensed form (heterochromatin). Enzymes such as histone acetyltransferases (HATs) and methylases covalently label the amino-termini of histones, thereby creating a 'histone code' of modifications that is interpreted by the recruitment of other proteins through recognition domains. Ultimately, this network of interacting proteins is thought to control the degree of chromatin condensation so that DNA is available when it is required for genomic processes. Reviewed here are the structures of HAT and SET domains, which mediate the acetylation and methylation of histones, respectively, and bromodomains and chromodomains, which recognize the modified histones. How these structures have increased our understanding of DNA regulation is also discussed.  相似文献   

17.
18.
Histone acetyltransferases (HATs) are a class of enzymes that participate in modulating chromatin structure and gene expression. Altered HAT activity has been implicated in a number of diseases, yet little is known about the regulation of HATs. In this study, we report that glycosaminoglycans (GAGs) are potent inhibitors of p300 and pCAF HAT activities in vitro, with heparin and heparan sulfate proteoglycans (HSPGs) being the most potent inhibitors. The mechanism of inhibition by heparin was investigated. The ability of heparin to inhibit HAT activity was in part dependent upon its size and structure, as small heparin-derived oligosaccharides (>8 sugars) and N-desulfated or O-desulfated heparin showed reduced inhibitory activity. Heparin was shown to bind to pCAF; and enzyme assays indicated that heparin shows the characteristics of a competitive-like inhibitor causing an approximately 50-fold increase in the apparent Km of pCAF for histone H4. HSPGs isolated from corneal and pulmonary fibroblasts inhibited HAT activity with similar effectiveness as heparin. As evidence that endogenous GAGs might be involved in modulating histone acetylation, the direct addition of heparin to pulmonary fibroblasts resulted in an approximately 50% reduction of histone H3 acetylation after 6 h of treatment. In addition, Chinese hamster ovary cells deficient in GAG synthesis showed increased levels of acetylated histone H3 compared to wild-type parent cells. GAGs represent a new class of HAT inhibitors that might participate in modulating cell function by regulating histone acetylation.  相似文献   

19.
《Fly》2013,7(1):22-28
Disruption of epigenetic gene control mechanisms involving histone acetylation in the brain causes cognitive impairment, a debilitating hallmark of most neurodegenerative disorders. Histone acetylation regulates cognitive gene expression via chromatin packaging control in neurons. Unfortunately, the histone acetyltransferases (HATs) that generate such neural epigenetic signatures and their mechanisms of action remain unclear. Our recent findings provide insight into this question by demonstrating that Tip60 HAT action is critical for morphology and function of the mushroom body (MB), the learning and memory center in the Drosophila brain. We show that Tip60 is robustly produced in MB Kenyon cells and extending axonal lobes and that targeted MB Tip60 HAT loss results in axonal outgrowth disruption. Functional consequences of loss and gain of Tip60 HAT levels in the MB are evidenced by defects in memory. Tip60 ChIP-Seq analysis reveals enrichment for genes that function in cognitive processes and accordingly, key genes representing these pathways are misregulated in the Tip60 HAT mutant fly brain. Remarkably, increasing levels of Tip60 in the MB rescues learning and memory deficits resulting from Alzheimer's disease associated amyloid precursor protein (APP) induced neurodegeneration. Our studies highlight the potential of HAT activators as a therapeutic option for cognitive disorders.  相似文献   

20.
Songjun Xu  Felice Elefant 《Fly》2015,9(1):22-28
Disruption of epigenetic gene control mechanisms involving histone acetylation in the brain causes cognitive impairment, a debilitating hallmark of most neurodegenerative disorders. Histone acetylation regulates cognitive gene expression via chromatin packaging control in neurons. Unfortunately, the histone acetyltransferases (HATs) that generate such neural epigenetic signatures and their mechanisms of action remain unclear. Our recent findings provide insight into this question by demonstrating that Tip60 HAT action is critical for morphology and function of the mushroom body (MB), the learning and memory center in the Drosophila brain. We show that Tip60 is robustly produced in MB Kenyon cells and extending axonal lobes and that targeted MB Tip60 HAT loss results in axonal outgrowth disruption. Functional consequences of loss and gain of Tip60 HAT levels in the MB are evidenced by defects in memory. Tip60 ChIP-Seq analysis reveals enrichment for genes that function in cognitive processes and accordingly, key genes representing these pathways are misregulated in the Tip60 HAT mutant fly brain. Remarkably, increasing levels of Tip60 in the MB rescues learning and memory deficits resulting from Alzheimer''s disease associated amyloid precursor protein (APP) induced neurodegeneration. Our studies highlight the potential of HAT activators as a therapeutic option for cognitive disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号