首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Cryobiology》2013,66(3):270-277
There is an undisputed need for temperature-field reconstruction during minimally invasive cryosurgery. The current line of research focuses on developing miniature, wireless, implantable, temperature sensors to enable temperature-field reconstruction in real time. This project combines two parallel efforts: (i) to develop the hardware necessary for implantable sensors, and (ii) to develop mathematical techniques for temperature-field reconstruction in real time—the subject matter of the current study. In particular, this study proposes an approach for temperature-field reconstruction combining data obtained from medical imaging, cryoprobe-embedded sensors, and miniature, wireless, implantable sensors, the development of which is currently underway. This study discusses possible strategies for laying out implantable sensors and approaches for data integration. In particular, prostate cryosurgery is presented as a developmental model and a two-dimensional proof-of-concept is discussed. It is demonstrated that the lethal temperature can be predicted to a significant degree of certainty with implantable sensors and the technique proposed in the current study, a capability that is yet unavailable.  相似文献   

2.
The purpose of this research was to evaluate a new wireless and battery-free sensor technology for invasive product temperature measurement during freeze-drying. Product temperature is the most critical process parameter in a freeze-drying process, in particular during primary drying. The product temperature over time profile and a precise detection of the endpoint of ice sublimation is crucial for comparison of freeze-drying cycles. Traditionally, thermocouples are used in laboratory scale units whereas resistance thermal detectors are applied in production scale freeze-dryers to evaluate temperature profiles. However, both techniques show demerits with regard to temperature comparability and biased measurements relative to vials without sensors. A new generation of wireless temperature sensors (Temperature Remote Interrogation System, TEMPRIS) were used in this study to investigate for the first time their value when applied to freeze-drying processes. Measurement accuracy, capability of accurate endpoint detection and effect of positioning were delineated by using product runs with sucrose, mannitol and trehalose. Data were compared to measurements with 36-gauge thermocouples as well as to non-invasive temperature measurement from Manometric Temperature Measurements. The results show that the TEMPRIS temperature profiles were in excellent agreement to thermocouple data when sensors were placed center bottom in a vial. In addition, TEMPRIS sensors revealed more reliable temperature profiles and endpoint indications relative to thermocouple data when vials in edge position were monitored. The results of this study suggest that TEMPRIS may become a valuable tool for cycle development, scale-up and routine manufacturing in the future.  相似文献   

3.
Numerical simulation for heat transfer in prostate cancer cryosurgery   总被引:2,自引:0,他引:2  
A comprehensive computational framework to simulate heat transfer during the freezing process in prostate cancer cryosurgery is presented. Tissues are treated as nonideal materials wherein phase transition occurs over a temperature range, thermophysical properties are temperature dependent and heating due to blood flow and metabolism are included. Boundary conditions were determined at the surfaces of the commercially available cryoprobes and urethral warmer by experimental study of temperature combined with a mathematical optimization process. For simulations, a suitable computational geometry was designed based on MRI imaging data of a real prostate. An enthalpy formulation-based numerical solution was performed for a prescribed surgical protocol to mimic a clinical freezing process. This computational framework allows for the individual planning of cryosurgical procedures and objective assessment of the effectiveness of prostate cryosurgery.  相似文献   

4.
The current study presents a computerized planning scheme for prostate cryosurgery using a variable insertion depth strategy. This study is a part of an ongoing effort to develop computerized tools for cryosurgery. Based on typical clinical practices, previous automated planning schemes have required that all cryoprobes be aligned at a single insertion depth. The current study investigates the benefit of removing this constraint, in comparison with results based on uniform insertion depth planning as well as the so-called “pullback procedure”. Planning is based on the so-called “bubble-packing method”, and its quality is evaluated with bioheat transfer simulations. This study is based on five 3D prostate models, reconstructed from ultrasound imaging, and cryoprobe active length in the range of 15-35 mm. The variable insertion depth technique is found to consistently provide superior results when compared to the other placement methods. Furthermore, it is shown that both the optimal active length and the optimal number of cryoprobes vary among prostate models, based on the size and shape of the target region. Due to its low computational cost, the new scheme can be used to determine the optimal cryoprobe layout for a given prostate model in real time.  相似文献   

5.
Sedimentation velocity is a classical method for measuring the hydrodynamic, translational friction coefficient of biological macromolecules. In a recent study comparing various analytical ultracentrifuges, we showed that external calibration of the scan time, radial magnification, and temperature is critically important for accurate measurements (Anal. Biochem. 440 (2013) 81–95). To achieve accurate temperature calibration, we introduced the use of an autonomous miniature temperature logging integrated circuit (Maxim Thermochron iButton) that can be inserted into an ultracentrifugation cell assembly and spun at low rotor speeds. In the current work, we developed an improved holder for the temperature sensor located in the rotor handle. This has the advantage of not reducing the rotor capacity and allowing for a direct temperature measurement of the spinning rotor during high-speed sedimentation velocity experiments up to 60,000 rpm. We demonstrated the sensitivity of this approach by monitoring the adiabatic cooling due to rotor stretching during rotor acceleration and the reverse process on rotor deceleration. Based on this, we developed a procedure to approximate isothermal rotor acceleration for better temperature control.  相似文献   

6.
This paper introduces passive wireless telemetry based operation for high frequency acoustic sensors. The focus is on the development, fabrication, and evaluation of wireless, battery-less SAW-IDT MEMS microphones for biomedical applications. Due to the absence of batteries, the developed sensors are small and as a result of the batch manufacturing strategy are inexpensive which enables their utilization as disposable sensors. A pulse modulated surface acoustic wave interdigital transducer (SAW-IDT) based sensing strategy has been formulated. The sensing strategy relies on detecting the ac component of the acoustic pressure signal only and does not require calibration. The proposed sensing strategy has been successfully implemented on an in-house fabricated SAW-IDT sensor and a variable capacitor which mimics the impedance change of a capacitive microphone. Wireless telemetry distances of up to 5 centimeters have been achieved. A silicon MEMS microphone which will be used with the SAW-IDT device is being microfabricated and tested. The complete passive wireless sensor package will include the MEMS microphone wire-bonded on the SAW substrate and interrogated through an on-board antenna. This work on acoustic sensors breaks new ground by introducing high frequency (i.e., audio frequencies) sensor measurement utilizing SAW-IDT sensors. The developed sensors can be used for wireless monitoring of body sounds in a number of different applications, including monitoring breathing sounds in apnea patients, monitoring chest sounds after cardiac surgery, and for feedback sensing in compression (HFCC) vests used for respiratory ventilation. Another promising application is monitoring chest sounds in neonatal care units where the miniature sensors will minimize discomfort for the newborns.  相似文献   

7.
Daniels CS  Rubinsky B 《PloS one》2011,6(11):e26219
This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to ablate cells in the high subzero freezing region of a cryosurgical lesion.  相似文献   

8.
Recent advances in tracking technology are based on the use of miniature sensors for recording new aspects of individual migratory behaviour. In this study, we have used activity data loggers with barometric and temperature sensors to record the flight altitudes as well as ground elevations during stationary periods of migratory songbirds. We tracked one individual of red‐backed shrike and one great reed warbler along their autumn migration from Europe to Africa. Both individuals performed their migration stepwise in travel segments and climbed most metres during the passage across the Mediterranean Sea and the Sahara Desert and least metres during the first flight segment in Europe. The great reed warbler reached its highest flight altitude of 3950 m a.s.l. during the travel segment from Europe to west Africa, while the red‐backed shrike reached 3650 m a.s.l as maximum flight altitude during its travel segment from Sahel to southern Africa. Both individuals used both lowlands and highlands for resting periods along their migrations. Furthermore, temperature decreased with increasing altitude during migratory flights for both individuals, highlighting the potential to determine flight duration from temperature measurements. Finally, we discuss how barometric data could be used to investigate birds’ responses to changes in air pressure as a cue for departures on migratory flights. This new technique, i.e. using a miniature data logger with barometric pressure sensor to estimate flight altitudes and ground elevations, will open up new avenues for research and importantly advance our understanding on how small birds behave during migratory flights.  相似文献   

9.
Cryosurgery planning using bubble packing in 3D   总被引:1,自引:0,他引:1  
As part of an ongoing project to develop automated tools for cryosurgery planning, the current study focuses on the development of a 3D bubble packing method. A proof-of-concept for the new method is demonstrated on five prostate models, reconstructed from ultrasound images. The new method is a modification of an established method in 2D. Ellipsoidal bubbles are packed in the volume of the prostate in the current study; such bubbles can be viewed as a first-order approximation of a frozen region around a single cryoprobe. When all cryoprobes are inserted to the same depth, optimum planning was found to occur at about 60% of the length of the prostate (measured from its apex), which leads to cooling of approximately 75% of the prostate volume below a specific temperature threshold of - 22 degrees C. Bubble packing has the potential to dramatically reduce the run time for automated planning.  相似文献   

10.
To study behavioral thermoregulation, it is useful to use thermal sensors and physical models to collect environmental temperatures that are used to predict organism body temperature. Many techniques involve expensive or numerous types of sensors (cast copper models, or temperature, humidity, radiation, and wind speed sensors) to collect the microhabitat data necessary to predict body temperatures. Expense and diversity of requisite sensors can limit sampling resolution and accessibility of these methods. We compare body temperature predictions of small lizards from iButtons, DS18B20 sensors, and simple copper models, in both laboratory and natural conditions. Our aim was to develop an inexpensive yet accurate method for body temperature prediction. Either method was applicable given appropriate parameterization of the heat transfer equation used. The simplest and cheapest method was DS18B20 sensors attached to a small recording computer. There was little if any deficit in precision or accuracy compared to other published methods. We show how the heat transfer equation can be parameterized, and it can also be used to predict body temperature from historically collected data, allowing strong comparisons between current and previous environmental temperatures using the most modern techniques. Our simple method uses very cheap sensors and loggers to extensively sample habitat temperature, improving our understanding of microhabitat structure and thermal variability with respect to small ectotherms. While our method was quite precise, we feel any potential loss in accuracy is offset by the increase in sample resolution, important as it is increasingly apparent that, particularly for small ectotherms, habitat thermal heterogeneity is the strongest influence on transient body temperature.  相似文献   

11.
《Biosensors》1987,3(6):335-346
The special requirements for implantable glucose sensors which differ from laboratory analysers and in vitro probes include continuous operation without drift, compatibility with in vivo body conditions, electrical and toxicological safety and patient acceptability. We have studied the effect of oxygen tension, operating temperature and pH, and the stability of various potentially implantable amperometric glucose sensors so as to aid the choice of the technologies most suitable for in vivo application.  相似文献   

12.
Advances in smart technologies, wireless networking, and the increased interest in services have led to the emergence of ubiquitous and pervasive computing as one of the most promising areas of computing in recent years. Researchers have become specifically interested in smart spaces and the significant improvements it can introduce to our lives. Most smart spaces rely on physical components such as sensors to sense and acquire information about the real world environment and surroundings. Although sensor networks can provide useful contextual information, they are known for their high degree of unreliability and limited resources. We believe that it is necessary to augment physical sensors with other kinds of data to create more reliable and truly context-aware smart spaces. In this paper we therefore utilize mobile devices and social networks to acquire more detailed and useful contextual information that can help create smarter spaces. We then propose a smart spaces architecture that utilizes these new contexts and in particular the social context.  相似文献   

13.
提出了一种植入式装置无线数据传输方法,以射频电磁波作为信息传输媒介,实现体内植入式装置与体外程控仪的双向通信。文中提出的"b it-by-b it"遥测方式可以显著降低起搏器等植入式装置的功耗,延长其使用寿命。  相似文献   

14.
Reconstruction of sibling relationships from genetic data is an important component of many biological applications. In particular, the growing application of molecular markers (microsatellites) to study wild populations of plant and animals has created the need for new computational methods of establishing pedigree relationships, such as sibgroups, among individuals in these populations. Most current methods for sibship reconstruction from microsatellite data use statistical and heuristic techniques that rely on a priori knowledge about various parameter distributions. Moreover, these methods are designed for data with large number of sampled loci and small family groups, both of which typically do not hold for wild populations. We present a deterministic technique that parsimoniously reconstructs sibling groups using only Mendelian laws of inheritance. We validate our approach using both simulated and real biological data and compare it to other methods. Our method is highly accurate on real data and compares favorably with other methods on simulated data with few loci and large family groups. It is the only method that does not rely on a priori knowledge about the population under study. Thus, our method is particularly appropriate for reconstructing sibling groups in wild populations.  相似文献   

15.
Mediterranean high-relief karst areas are very vulnerable to changes in temporal patterns of precipitation and temperature. Understanding climate change in these areas requires current climate trends to be assessed within the context of the variability of rainfall and temperature trends in the recent past. A major difficulty is that the instrumental record in these high-relief areas is very limited and the use of data from paleoclimatic proxies, such as tree-ring data, is required to infer past climate variability. Furthermore, for complex relationships between tree-ring data and climatic variables, it is almost impossible to infer past inter-annual variations in temperature or precipitation, and the inference is limited to the reconstruction of low-frequency variability (i.e., the trend). To do so, in this work, we propose a new method based on detecting trends (by kernel smoothing) in tree variables that show maximum correlation with the trends (also estimated by kernel smoothing) of climate variables. This enables a standard regression framework to be established to reconstruct past climate. We have used tree-ring proxy data from Abies pinsapo to evaluate past climate trends in the Sierra de las Nieves karst massif in Southern Spain. Our analysis has found that during the last three hundred years the smoothed mean annual rainfall steadily decreased until the beginning of the 20th century and thereafter it remained more or less constant until the end of the century. On the other hand, the smoothed mean annual temperature has steadily increased since the beginning of the 18th century until recent times. These trends are also suggested by the climate projections for the latter part of the current 21st century. As the study area is a high-relief karst massif of significant hydrologic and ecologic interest, the implications of these trends should be taken into account when formulating effective action plans to mitigate the impact of climate change.  相似文献   

16.
The thermal and moisture behaviour of the microclimate of textiles is crucial in determining the physiological comfort of apparel, but it has not been investigated sufficiently due to the lack of particular evaluation techniques. Based on sensing, temperature controlling and wireless communicating technology, a specially designed tester has been developed in this study to evaluate the thermal and moisture behaviour of the surface of textiles in moving status. A temperature acquisition system and a temperature controllable hotplate have been established to test temperature and simulate the heat of human body, respectively. Relative humidity of the surface of fabric in the dynamic process has been successfully tested through sensing. Meanwhile, wireless communication technology was applied to transport the acquired data of temperature and humidity to computer for further processing. Continuous power supply was achieved by intensive contact between an elastic copper plate and copper ring on the rotating shaft. This tester provides the platform to evaluate the thermal and moisture behaviour of textiles. It enables users to conduct a dynamic analysis on the temperature and humidity together with the thermal and moisture transport behaviour of the surface of fabric in moving condition. Development of this tester opens the door of investigation on the micro-climate of textiles in real time service, and eventually benefits the understanding of the sensation comfort and wellbeing of apparel wearers.  相似文献   

17.
《IRBM》2009,30(4):150-152
Improvement in quality and efficiency of health and medicine, at home and in hospital, has become of paramount importance. The solution to this problem would require the continuous monitoring of several key patient parameters, including the assessment of autonomic nervous system (ANS) activity using non-invasive sensors, providing information for emotional, sensorial, cognitive and physiological analysis of the patient. Recent advances in embedded systems, microelectronics, sensors and wireless networking enable the design of wearable systems capable of such advanced health monitoring. The subject of this article is an ambulatory system comprising of a small wrist device connected to several sensors for the detection of the autonomic nervous system activity. It affords monitoring of skin resistance, skin temperature and heart activity. It is also capable of recording the data on a removable media or sending it to computer via a wireless communication. The wrist device is based on a programmable system-on-chip (PSoC) from Cypress.  相似文献   

18.
An in vitro monitoring system for simulated thermal process in cryosurgery   总被引:2,自引:0,他引:2  
Yang WH  Peng HH  Chang HC  Shen SY  Wu CL  Chang CH 《Cryobiology》2000,40(2):159-170
This paper describes a new in vitro experimental model that records temperature changes over a culture plate, which then can be used to assess the biological effects of cryosurgery. A cryoprobe and 16 thermocouples set up by a computer control system were used to monitor the temperature changes during freezing and thawing in a culture plate, and the data were used to create a temperature profile of the entire plate. Location of the thermocouples was confirmed by a digital camera viewing from under the plate, and temperature changes at any point in the interpolated areas were estimated using a curve fitting method. The estimated temperature was checked by sampling with four additional randomly placed thermocouples. Linear regression analysis showed that the estimated temperature and measured temperature were very close (correlation coefficients 0.98-0.99). MBT-2 tumor cells were cultured and then subjected to simulated cryosurgery. The surviving cells were stained with crystal violet and the cell death boundary was detected by image processing. Temperature history at the cell death boundary was retrieved and analyzed. With this system it is possible to recreate the temperature changes that result in a certain biological effect (such as cell death) during the process of simulated cryosurgery.  相似文献   

19.
This paper describes the preparation method as well as the in vitro and in vivo evaluation of a novel flexible glucose biosensor designed for long-term subcutaneous implantation. An epoxy-enhanced polyurethane membrane, which includes ca. 30–40% epoxy resin adhesive and 50–70% polyurethane, has been developed and used for the first time as the outer protective membrane of the sensor. This new membrane was developed to increase the in vivo durability and lifetime of implantable biosensors. This epoxy-polyurethane membrane was shown to be porous and is of excellent durability. A sensor with such a membrane shows excellent long-term stability and can last for 4–8 months in solutions at room temperature. To verify the in vivo performance of the sensor, nine sensors were implanted in three rats and tested regularly. Eight sensors kept functioning well in the rats for 10–56 days. The ninth sensor was damaged during implantation. All original sensitivity data as well as four response curves obtained at days 7, 17, 52 and 56, respectively are presented.  相似文献   

20.
BACKGROUND: Cryosurgery is the destruction of undesired tissues by freezing, as in prostate cryosurgery, for example. Minimally invasive cryosurgery is currently performed by means of an array of cryoprobes, each in the shape of a long hypodermic needle. The optimal arrangement of the cryoprobes, which is known to have a dramatic effect on the quality of the cryoprocedure, remains an art held by the cryosurgeon, based on the cryosurgeon's experience and "rules of thumb." An automated computerized technique for cryosurgery planning is the subject matter of the current paper, in an effort to improve the quality of cryosurgery. METHOD OF APPROACH: A two-phase optimization method is proposed for this purpose, based on two previous and independent developments by this research team. Phase I is based on a bubble-packing method, previously used as an efficient method for finite element meshing. Phase II is based on a force-field analogy method, which has proven to be robust at the expense of a typically long runtime. RESULTS: As a proof-of-concept, results are demonstrated on a two-dimensional case of a prostate cross section. The major contribution of this study is to affirm that in many instances cryosurgery planning can be performed without extremely expensive simulations of bioheat transfer, achieved in Phase I. CONCLUSIONS: This new method of planning has proven to reduce planning runtime from hours to minutes, making automated planning practical in a clinical time frame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号