首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following ozone (O3) exposure, airways reactivity increases. We investigated the possibility that exposure to O3 causes a decrease in pulmonary perfusion, and that this decrease is associated with the increase in reactivity. Perfusion was measured with radiolabeled microspheres. A wedged bronchoscope was used to isolate sublobar segments in the middle and lower lobes of anesthetized dogs. Isolated segments were exposed to either O3 or an elevated alveolar pressure. Although increased alveolar pressure decreased microsphere density, exposure to 1 ppm O3 did not. Collateral system resistance rose significantly following exposure to O3 and to high pressure. These studies do not support the hypothesis that pulmonary perfusion is decreased following O3 exposure and is associated with subsequent increases in reactivity.  相似文献   

2.
We studied the effects of the flow of dry air on collateral tone in the lung periphery. A bronchoscope was wedged in sublobar segments of anesthetized dogs, and measurements of collateral resistance (Rcs) were recorded before and after flow was increased from 200 to 2,000 ml/min for a 5-min period. Five minutes after exposure was completed, Rcs increased by an average of 117 +/- 25.2% (SE) over control. Maximum Rcs occurred 5 min after the challenge was concluded and required 48 +/- 10.5 min to return to base line. When flow rate was held constant and exposure period varied, Rcs increased with increased stimulus duration. With exposure times held constant, the response of the collateral system was positively associated with changes in stimulus strength (flow rate). No refractory period was observed with repetitive challenges. Finally, when dry air (delivered at 22 degrees C) and conditioned air (i.e., delivered at 28 degrees C; relative humidity = 80%) challenges were alternated in the same wedged segment, dry air produced a mean increase in Rcs of 93.2%, whereas challenge with warm moist air increased Rcs only 33.5%. Regardless of which challenge was presented first, dry air consistently produced a greater constrictor response. This response is similar to that observed in cold air- and exercise-induced asthma and indicates that the lung periphery in dogs, like larger airways in asthmatic subjects, has the potential to increase tone when exposed to dry air. Peripheral airways in dogs thus constitute a model that can be used for the investigation of exercise-induced asthma.  相似文献   

3.
The increase in airway responsiveness induced by O3 exposure in dogs is associated with airway epithelial inflammation, as evidenced by an increase in the number of neutrophils (polymorphonuclear leukocytes) found in epithelial biopsies and in bronchoalveolar lavage fluid. We investigated in 10 healthy, human subjects whether O3-induced hyperresponsiveness was similarly associated with airway inflammation by examining changes in the types of cells recovered in bronchoalveolar lavage fluid obtained after exposure to air or to O3 (0.4 or 0.6 ppm). We also measured the concentrations of cyclooxygenase and lipoxygenase metabolites of arachidonic acid in lavage fluid. We measured airway responsiveness to inhaled methacholine aerosol before and after each exposure and performed bronchoalveolar lavage 3 h later. We found more neutrophils in the lavage fluid from O3-exposed subjects, especially in those in whom O3 exposure produced an increase in airway responsiveness. We also found significant increases in the concentrations of prostaglandins E2, F2 alpha, and thromboxane B2 in lavage fluid from O3-exposed subjects. These results show that in human subjects O3-induced hyperresponsiveness to methacholine is associated with an influx of neutrophils into the airways and with changes in the levels of some cyclooxygenase metabolites of arachidonic acid.  相似文献   

4.
In preliminary studies of antigen-induced airway inflammation, we noted an apparent increase in peribronchiolar mast cell number. Experiments were thus undertaken to investigate the nature of this migration of mast cells into the central and peripheral airway epithelium and to determine its time course. The tracheae and small airways of 10 anesthetized mongrel dogs were exposed via a bronchoscope to Ascaris suum antigen (Ag), fMet-Leu-Phe (fMLP), ovalbumin (OVA), and isotonic saline (SAL). In the central airways, all stimuli provoked a significant increase (P less than 0.05) in mast cell numbers at the base of the airway epithelium within 3 h. In the peripheral airways, only Ag aerosol stimulated a significant mast cell increase compared with unexposed tissue. In a second series of experiments, the trachea of seven dogs were exposed to 0.026, 0.26, and 2.6 micrograms of Ag. The tissue was collected at 1, 3, 6, and 10 h after exposure. In these experiments, there was a significant mast cell increase seen within 1 h but it was not dose dependent. By 6-10 h after exposure, mast cell counts were not significantly different from the unexposed condition, which is consistent with the idea that some of the cells either degranulated or migrated into the airway lumen. We conclude that mast cell migration is an acute response that can be demonstrated within 1 h of stimulation with Ag. The observation that nonimmunological stimuli may, in some cases, also stimulate mast cell movement affords the possibility that this process represents a generalized response to airway irritation.  相似文献   

5.
Tonic beta-sympathetic activity in the lung periphery in anesthetized dogs   总被引:1,自引:0,他引:1  
The present study was undertaken to determine whether beta-adrenoceptors could be physiologically detected in the lung periphery and whether they were under tonic stimulation in the resting state in anesthetized dogs. A fiberoptic bronchoscope was wedged in a sublobar segment of lung in anesthetized male mongrel dogs for measurement of resistance through the collateral system (Rcs). beta-Agents were delivered locally as aerosols through the bronchoscope, and the response was evaluated by changes in Rcs. Distilled water alone produced a mean increase of 8.5 +/- 2.43% (SE) in Rcs at 2 min in six dogs, whereas dl-isoproterenol produced a mean decrease of 8.9 +/- 2.10% (P less than 0.03), thus demonstrating the presence of submaximally stimulated beta-receptors. To test whether the beta-receptors were under tonic stimulation, we compared the effect of aerosolized d- and dl-propranolol in 5 dogs. d-Propranolol that lacks significant beta-blocking activity and dl-propranolol both produced large transient increases in Rcs. However, with d-propranolol, Rcs had returned to base line at 15 min, whereas with dl-propranolol Rcs remained elevated at a mean of 20% above base line for greater than 2 h (P less than 0.01). Local timolol aerosol also produced a sustained increase in Rcs. After pretreatment with reserpine or after bilateral adrenalectomy, both d- and dl-propranolol still produced large transient increases in Rcs, but dl-propranolol no longer produced a sustained increase. Neither isoproterenol nor atropine affected Rcs in the presence of dl-propranolol, nor did pretreatment with atropine affect the response of Rcs to dl-propranolol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.

Background

Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR.

Methods

To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or 12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization.

Results

Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models.

Conclusions

This study demonstrates that arginase is upregulated following environmental exposures in murine models of asthma, and contributes to the pollution-induced exacerbation of airways responsiveness. Thus arginase may be a therapeutic target to protect susceptible populations against the adverse health effects of air pollution, such as fine particles and ozone, which are two of the major contributors to smog.  相似文献   

7.
Earlier studies from our laboratory have shown myocardial dysfunction subsequent to chronic O(3) exposure in rats may be associated with a decrease in antioxidant reserve and increased activity of inflammatory mediators. The present study tested the hypothesis that O(3)-induced cardiac dysfunction in healthy adult rats may be due to changes in caveolin-1 and caveolin-3 levels. Sprague-Dawley rats were exposed 8?h/day for 28 and 56?days to filtered air or 0.8?ppm O(3). In order to assess the chronic effects to O(3), in vivo cardiac function was assessed by measuring LVDP, 24?h after termination of O(3) exposure. Compared to rats exposed to filtered air, LVDP values significantly decreased in all O(3)-exposed animals. This attenuation of cardiac function was associated with increased myocardial TNF-α levels and decreased myocardial activities of superoxidase dismutase. Progressive increases in the expression of myocardial TNF-α in 28?days and 56?days O(3)-exposed animals were followed by decreases in cardiac caveolin-1 levels. On the other hand, differential changes in the expression of caveolin-3 in hearts from 28 and 56?days O(3)-exposed animals were independent of intra-cardiac TNF-α levels. These novel findings suggest the interesting possibility that a balance between caveolin-1 and caveolin-3 may be involved in O(3)-mediated cardiac toxicity.  相似文献   

8.
Airways inflammation and epithelial injury induced by chronic ozone (O(3)) in genetically mast cell-deficient mice (Kit(W)/Kit(W-v)) were compared with those in mast cell-sufficient mice (+/+) and Kit(W)/Kit(W-v) mice repleted of mast cells (Kit(W)/Kit(W-v)-BMT). Mice were exposed to 0.26 ppm O(3) 8 h/day, 5 days/wk, for 1-90 days. Background was 0.06 ppm O(3). Age-matched mice were exposed to filtered air for O(3) controls. Reversibility of lesions was evaluated 35 days after exposure. Compared with Kit(W)/Kit(W-v), O(3) caused greater increases in lavageable macrophages, epithelial cells, and polymorphonuclear leukocytes in +/+ and Kit(W)/Kit(W-v)-BMT mice. O(3) also caused lung hyperpermeability, but the genotypic groups were not different. Cells and permeability returned to air control levels after O(3). O(3) induced lung cell proliferation only in +/+ and Kit(W)/Kit(W-v)-BMT mice; proliferation remained elevated or increased in +/+ and Kit(W)/Kit(W-v)-BMT mice after O(3). Greater O(3)-induced cell proliferation was found in nasal epithelium of +/+ and Kit(W)/Kit(W-v)-BMT mice compared with Kit(W)/Kit(W-v) mice. Results are consistent with the hypothesis that mast cells affect airway responses induced by chronic O(3) exposure.  相似文献   

9.

Background

Exposure to chlorine (Cl2) causes airway injury, characterized by oxidative damage, an influx of inflammatory cells and airway hyperresponsiveness. We hypothesized that Cl2-induced airway injury may be attenuated by antioxidant treatment, even after the initial injury.

Methods

Balb/C mice were exposed to Cl2 gas (100 ppm) for 5 mins, an exposure that was established to alter airway function with minimal histological disruption of the epithelium. Twenty-four hours after exposure to Cl2, airway responsiveness to aerosolized methacholine (MCh) was measured. Bronchoalveolar lavage (BAL) was performed to determine inflammatory cell profiles, total protein, and glutathione levels. Dimethylthiourea (DMTU;100 mg/kg) was administered one hour before or one hour following Cl2 exposure.

Results

Mice exposed to Cl2 had airway hyperresponsiveness to MCh compared to control animals pre-treated and post-treated with DMTU. Total cell counts in BAL fluid were elevated by Cl2 exposure and were not affected by DMTU treatment. However, DMTU-treated mice had lower protein levels in the BAL than the Cl2-only treated animals. 4-Hydroxynonenal analysis showed that DMTU given pre- or post-Cl2 prevented lipid peroxidation in the lung. Following Cl2 exposure glutathione (GSH) was elevated immediately following exposure both in BAL cells and in fluid and this change was prevented by DMTU. GSSG was depleted in Cl2 exposed mice at later time points. However, the GSH/GSSG ratio remained high in chlorine exposed mice, an effect attenuated by DMTU.

Conclusion

Our data show that the anti-oxidant DMTU is effective in attenuating Cl2 induced increase in airway responsiveness, inflammation and biomarkers of oxidative stress.  相似文献   

10.
Adenosine-induced bronchoconstriction is a well-recognized feature of atopic asthma. Adenosine acts through four different G protein-coupled receptors to produce a myriad of physiological effects. To examine the contribution of the A(3) adenosine receptor to adenosine-induced bronchoconstriction and to assess the contribution of mast cells to this process, we quantified airway responsiveness to aerosolized adenosine in wild-type, A(3) receptor-deficient, and mast cell-deficient mice. Compared with the robust airway responses elicited by adenosine in wild-type mice, both A(3)-deficient and mast cell-deficient mice exhibited a significantly attenuated response compared with their respective wild-type controls. Histological examination of the airways 4 h after adenosine exposure revealed extensive degranulation of airway mast cells as well as infiltration of neutrophils in wild-type mice, whereas these findings were much diminished in A(3)-deficient mice and were not different from those in PBS-treated controls. These data indicate that the airway responses to aerosolized adenosine in mice occur largely through A(3) receptor activation and that mast cells contribute significantly to these responses, but that activation of additional adenosine receptors on a cell type(s) other than mast cells also contributes to adenosine-induced airway responsiveness in mice. Finally, our findings indicate that adenosine exposure can result in A(3)-dependent airway inflammation, as reflected in neutrophil recruitment, as well as alterations in airway function.  相似文献   

11.
The actions of specific humoral mediators in the immediate response of the canine peripheral airways to antigen challenge are not well understood. Using a method which allows localized exposure of the peripheral lung to antigen, we investigated the role of locally released thromboxane A2 (TxA2) in the immediate response of collateral airways to aerosolized antigen. In dogs with native sensitivity to Ascaris suum antigen, resistance to flow through the collateral system (Rcs) was measured using a wedged bronchoscope technique. Local administration of antigen aerosol (25 microliters, 1:10,000 dilution) produced a gradual increase in Rcs which reached a maximum of 365% of base line in 4-8 min. Analysis of bronchoalveolar lavage fluid obtained from the exposed segment at the peak of the response demonstrated significantly more TxB2 compared with control lavage samples (41.8 +/- 7.8 pg/ml vs. 27.9 +/- 8.3; P less than 0.025). After inhibition of thromboxane synthase with UK-37,248 (3 mg/kg iv) or OKY-046 (5 mg/kg iv), the increase in Rcs was significantly reduced at 40 s (P less than 0.001) and 2 min (P less than 0.01) after antigen delivery, and the maximal increase was attenuated by 41% (P less than 0.005). In contrast, the magnitude and time course of the airway response to aerosols of a stable thromboxane analog (U-46619) were not affected by blockade. Despite a similar attenuation (42%) of the maximal increase in Rcs by sodium meclofenamate (3 mg/kg iv), this cyclooxygenase inhibitor had no effect on the time course of the antigenic response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We tested the hypothesis that oxidative stress and biological effect after ozone (O3) exposure are dependent on changes in iron homeostasis. After O3 exposure, healthy volunteers demonstrated increased lavage concentrations of iron, transferrin, lactoferrin, and ferritin. In normal rats, alterations of iron metabolism after O3 exposure were immediate and preceded the inflammatory influx. To test for participation of this disruption in iron homeostasis in lung injury following O3 inhalation, we exposed Belgrade rats, which are functionally deficient in divalent metal transporter 1 (DMT1) as a means of iron uptake, and controls to O3. Iron homeostasis was disrupted to a greater extent and the extent of injury was greater in Belgrade rats than in control rats. Nonheme iron and ferritin concentrations were higher in human bronchial epithelial (HBE) cells exposed to O3 than in HBE cells exposed to filtered air. Aldehyde generation and IL-8 release by the HBE cells was also elevated following O3 exposure. Human embryonic kidney (HEK 293) cells with elevated expression of a DMT1 construct were exposed to filtered air and O3. With exposure to O3, elevated DMT1 expression diminished oxidative stress (i.e., aldehyde generation) and IL-8 release. We conclude that iron participates critically in the oxidative stress and biological effects after O3 exposure.  相似文献   

13.
We examined the effects of ozone (O(3)) and endogenous antioxidant transport on canine peripheral airway function, central airway function, epithelial integrity, and inflammation. Dogs were either untreated or pretreated with probenecid (an anion-transport inhibitor) and exposed for 6 h to 0.2 parts/million O(3). Peripheral airway resistance (Rpa) and reactivity (DeltaRpa) were monitored in three sublobar locations before and after exposure to either air or O(3). Pulmonary resistance and transepithelial potential difference in trachea and bronchus were also recorded. Bronchoalveolar lavage fluid (BALF) was collected before, during, and after exposure. O(3) increased Rpa and DeltaRpa only in probenecid-treated dogs and in a location-dependent fashion. Pulmonary resistance and potential difference in bronchus increased after O(3) exposure regardless of treatment. O(3) markedly increased BALF neutrophils only in untreated dogs. With the exception of hexanal, O(3) did not alter any BALF constituent examined. Probenecid reduced BALF ascorbate, BALF protein, and plasma urate. We conclude that 1) a 6-h exposure to 0.2 parts/million O(3) represents a subthreshold stimulus in relation to its effects on peripheral airway function in dogs, 2) antioxidant transport contributes to the maintenance of normal airway tone and reactivity under conditions of oxidant stress, 3) O(3)-induced changes in Rpa and DeltaRpa are dependent on location, and 4) peripheral airway hyperreactivity and inflammation reflect independent responses to O(3) exposure. Finally, although anion transport mitigates the effect of O(3) on peripheral airway function, it contributes to the development of airway inflammation and may represent a possible target for anti-inflammatory prevention or therapy.  相似文献   

14.
Ozone (O(3)), a common air pollutant, induces airway inflammation and airway hyperresponsiveness. In mice, the neutrophil chemokines KC and macrophage inflammatory protein-2 (MIP-2) are expressed in the lungs following O(3) exposure. The purpose of this study was to determine whether CXCR2, the receptor for these chemokines, is essential to O(3)-induced neutrophil recruitment, injury to lungs, and increases in respiratory system responsiveness to methacholine (MCh). O(3) exposure (1 ppm for 3 h) increased the number of neutrophils in the bronchoalveolar lavage fluid (BALF) of wild-type (BALB/c) and CXCR2-deficient mice. However, CXCR2-deficient mice had significantly fewer emigrated neutrophils than did wild-type mice. The numbers of neutrophils in the blood and concentrations of BALF KC and MIP-2 did not differ between genotypes. Together, these data suggest CXCR2 is essential for maximal chemokine-directed migration of neutrophils to the air spaces. In wild-type mice, O(3) exposure increased BALF epithelial cell numbers and total protein levels, two indirect measures of lung injury. In contrast, in CXCR2-deficient mice, the number of BALF epithelial cells was not increased by O(3) exposure. Responses to inhaled MCh were measured by whole body plethysmography using enhanced pause as the outcome indicator. O(3) exposure increased responses to inhaled MCh in both wild-type and CXCR2-deficient mice 3 h after O(3) exposure. However, at 24 h after exposure, responses to inhaled MCh were elevated in wild-type but not CXCR2-deficient mice. These results indicate CXCR2 is essential for maximal neutrophil recruitment, epithelial cell sloughing, and persistent increases in MCh responsiveness after an acute O(3) exposure.  相似文献   

15.

Background

Although mast cells are regarded as important regulators of inflammation and tissue remodelling, their role in cystic fibrosis (CF) and idiopathic pulmonary fibrosis (IPF) has remained less studied. This study investigates the densities and phenotypes of mast cell populations in multiple lung compartments from patients with CF, IPF and never smoking controls.

Methods

Small airways, pulmonary vessels, and lung parenchyma were subjected to detailed immunohistochemical analyses using lungs from patients with CF (20 lung regions; 5 patients), IPF (21 regions; 7 patients) and controls (16 regions; 8 subjects). In each compartment the densities and distribution of MCT and MCTC mast cell populations were studied as well as the mast cell expression of IL-6 and TGF-β.

Results

In the alveolar parenchyma in lungs from patients with CF, MCTC numbers increased in areas showing cellular inflammation or fibrosis compared to controls. Apart from an altered balance between MCTC and MCT cells, mast cell in CF lungs showed elevated expression of IL-6. In CF, a decrease in total mast cell numbers was observed in small airways and pulmonary vessels. In patients with IPF, a significantly elevated MCTC density was present in fibrotic areas of the alveolar parenchyma with increased mast cell expression of TGF-β. The total mast cell density was unchanged in small airways and decreased in pulmonary vessels in IPF. Both the density, as well as the percentage, of MCTC correlated positively with the degree of fibrosis. The increased density of MCTC, as well as MCTC expression of TGF-β, correlated negatively with patient lung function.

Conclusions

The present study reveals that altered mast cell populations, with increased numbers of MCTC in diseased alveolar parenchyma, represents a significant component of the histopathology in CF and IPF. The mast cell alterations correlated to the degree of tissue remodelling and to lung function parameters. Further investigations of mast cells in these diseases may open for new therapeutic strategies.  相似文献   

16.
This study sought to examine the role of interleukin-6 (IL-6) in ozone (O(3))-induced airway injury, inflammation, and hyperresponsiveness (AHR). Subacute (72 h) exposure to 0.3 ppm O(3) significantly elevated bronchoalveolar lavage fluid (BALF) protein, neutrophils, and soluble TNF receptors (sTNFR1 and sTNFR2) in wild-type C57BL/6 (IL-6(+/+)) mice; however, all four outcome indicators were significantly reduced in IL-6-deficient (IL-6(-/-)) compared with IL-6(+/+) mice. Acute O(3) exposure (2 ppm for 3 h) increased BALF protein, KC, macrophage inflammatory protein(MIP)-2, eotaxin, sTNFR1, and sTNFR2 in IL-6(+/+) mice. However, MIP-2 and sTNFR2 were not significantly increased following O(3) exposure in IL-6(-/-) mice. Increases in BALF neutrophils induced by O(3) (2 ppm for 3 h) were also significantly reduced in IL-6(-/-) vs. IL-6(+/+) mice. Airway responsiveness to methacholine was measured by whole body plethysmography before and following acute (3 h) or subacute (72 h) exposure to 0.3 ppm O(3). Acute O(3) exposure caused AHR in both groups of mice, but there was no genotype-related difference in the magnitude of O(3)-induced AHR. AHR was absent in mice of either genotype exposed for 72 h. Our results indicate that IL-6 deficiency reduces airway neutrophilia, as well as the levels of BALF sTNFR1 and sTNFR2 following acute high dose and/or subacute low-dose O(3) exposure, but has no effect on O(3)-induced AHR.  相似文献   

17.
Ozone (O3) exposure of humans and animals induces an inflammatory response in the lung, which is associated with macrophage stimulation, release of chemotactic agents, and recruitment of polymorphonuclear leukocytes (PMNs). This study was designed to investigate the functional aspects of the macrophages that impact inflammatory processes in the lung. Macrophages recovered by bronchoalveolar lavage (BAL) from rats exposed to purified air or 0.8 ppm O3 were studied for their chemotactic activity, adhesive interactions with alveolar epithelial cells in culture, surface morphology, and surface expression of cell adhesion molecules. The macrophages isolated from O3-exposed rats exhibited a greater motility in response to a chemotactic stimulus than the macrophages isolated from rats exposed to purified air. The macrophages from O3-exposed animals also displayed greater adhesion when placed in culture with epithelial cells isolated from adult rat lung (ARL-14) than the macrophages from control rats. Both chemotactic motility and cell adhesion stimulated by O3 exposure were attenuated when the macrophages were incubated in the presence of monoclonal antibodies to leukocyte adhesion molecules, CD11b, or epithelial cell adhesion molecules, ICAM-1. Flow cytometry revealed a modest increase in the surface expression of CD11b but no change in ICAM-1 expression in macrophages from O3-exposed rats when compared to those from the air-exposed controls. The results demonstrate an alteration of macrophage functions following O3 exposure and suggest the dependence of these functions on the biologic characteristics, rather than the absolute expression, of the cell adhesion molecules. © 1996 Wiley-Liss, Inc.  相似文献   

18.

Background

Smoking is associated with a mixed inflammatory infiltrate in the airways. We evaluated whether airway inflammation in smokers is related to lung function parameters and inflammatory markers in exhaled breath.

Methods

Thirty-seven smokers undergoing lung resection for primary lung cancer were assessed pre-operatively by lung function testing including single-breath-nitrogen washout test (sb-N2-test), measurement of fractional exhaled nitric oxide (FeNO) and pH/8-isoprostane in exhaled breath condensate (EBC). Lung tissue sections containing cancer-free large (LA) and small airways (SA) were stained for inflammatory cells. Mucosal (MCT) respectively connective tissue mast cells (MCTC) and interleukin-17A (IL-17A) expression by mast cells was analysed using a double-staining protocol.

Results

The median number of neutrophils, macrophages and mast cells infiltrating the lamina propria and adventitia of SA was higher than in LA. Both MCTC and MCT were higher in the lamina propria of SA compared to LA (MCTC: 49 vs. 27.4 cells/mm2; MCT: 162.5 vs. 35.4 cells/mm2; P<0.005 for both instances). IL-17A expression was predominantly detected in MCTC of LA. Significant correlations were found for the slope of phase III % pred. of the sb-N2-test (rs= -0.39), for the FEV1% pred. (rs= 0.37) and for FEV1/FVC ratio (rs=0.38) with MCT in SA (P<0.05 for all instances). 8-isoprostane concentration correlated with the mast cells in the SA (rs=0.44), there was no correlation for pH or FeNO with cellular distribution in SA.

Conclusions

Neutrophils, macrophages and mast cells are more prominent in the SA indicating that these cells are involved in the development of small airway dysfunction in smokers. Among these cell types, the best correlation was found for mast cells with lung function parameters and inflammatory markers in exhaled breath. Furthermore, the observed predominant expression of IL-17A in mast cells warrants further investigation to elucidate their role in smoking-induced lung injury, despite the lack of correlation with lung function and exhaled breath parameters.  相似文献   

19.
CCL1 is the predominant chemokine secreted from IgE-activated human and mouse mast cells in vitro, colocalizes to mast cells in lung biopsies, and is elevated in asthmatic airways. CCR8, the receptor for CCL1, is expressed by approximately 70% of CD4(+) T lymphocytes recruited to the asthmatic airways, and the number of CCR8-expressing cells is increased 3-fold in the airways of asthmatic subjects compared with normal volunteers. In vivo, CCL1 expression in the lung is reduced in mast cell-deficient mice after aeroallergen provocation. Neutralization of CCL1 or CCR8 deficiency results in reduced mucosal lung inflammation, airway hyperresponsiveness, and mucus hypersecretion to a similar degree as detected in mast cell-deficient mice. Adenoviral delivery of CCL1 to the lungs of mast cell-deficient mice restores airway hyperresponsiveness, lung inflammation, and mucus hypersecretion to the degree observed in wild-type mice. The consequences of CCR8 deficiency, including a marked reduction in Th2 cytokine levels, are comparable with those observed by depletion of CD4(+) T lymphocytes. Thus, mast cell-derived CCL1- and CCR8-expressing CD4(+) effector T lymphocytes play an essential role in orchestrating lung mucosal inflammatory responses.  相似文献   

20.
Vascular immunotargeting to Platelet-Endothelial Cell Adhesion Molecule-1 (PECAM) facilitates drug delivery to endothelium. We used human PECAM-transfected REN cells (REN/PECAM) as a model to compare targeting of antioxidant enzyme catalase conjugated with PECAM antibody (anti-PECAM/catalase) with adenoviral catalase delivery. Anti-PECAM/(125)I-catalase bound to REN/PECAM, but not to REN cells (70 vs. 1 ng/well vs. < 2 ng/well of unmodified catalase). At a virus-to-cell ratio of 1, elevated levels of catalase protein were detected by immunoblotting after adenoviral transfection of REN/PECAM and REN cells alike; H(2)O(2)-degrading activity of cell lysates was elevated at ratios of 10 and higher. REN/PECAM cells internalize 66% of cell-bound anti-PECAM/(125)I-catalase. Confocal microscopy localized anti-PECAM/catalase to intracellular vesicles, while catalase expressed by adenovirus was distributed in vesicles and throughout the cytosol. Within 15 min of delivery, anti-PECAM/catalase augmented H(2)O(2)-degrading activity and survival of H(2)O(2)-exposed REN/PECAM cells. The effects of conjugate delivery reached a plateau within 1 h and declined to the basal level within 12 h. In contrast, adenoviral delivery required several hours for transduction and development of the effects, but permitted much longer duration of protection (at least 48 h). Simultaneous exposure of REN/PECAM cells to anti-PECAM/catalase and catalase-encoding adenovirus afforded protection against H(2)O(2) with a rapid onset and a prolonged duration. Therefore, PECAM-directed immunotargeting provides a specific, antigen-directed intracellular delivery of catalase that affords a rapid but transient protection against H(2)O(2) and may complement gene delivery strategies for antioxidant protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号