首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
BACKGROUND: Ring-hydroxylating dioxygenases are multicomponent systems that initiate biodegradation of aromatic compounds. Many dioxygenase systems include Rieske-type ferredoxins with amino acid sequences and redox properties remarkably different from the Rieske proteins of proton-translocating respiratory and photosynthetic complexes. In the latter, the [Fe2S2] clusters lie near the protein surface, operate at potentials above +300 mV at pH 7, and express pH- and ionic strength-dependent redox behavior. The reduction potentials of the dioxygenase ferredoxins are approximately 150 mV and are pH-independent. These distinctions were predicted to arise from differences in the exposure of the cluster and/or interactions of the histidine ligands. RESULTS: The crystal structure of BphF, the Rieske-type ferredoxin associated with biphenyl dioxygenase, was determined by multiwavelength anomalous diffraction and refined at 1.6 A resolution. The structure of BphF was compared with other Rieske proteins at several levels. BphF has the same two-domain fold as other Rieske proteins, but it lacks all insertions that give the others unique structural features. The BphF Fe-S cluster and its histidine ligands are exposed. However, the cluster has a significantly different environment in that five fewer polar groups interact strongly with the cluster sulfide or the cysteinyl ligands. CONCLUSIONS: BphF has structural features consistent with a minimal and perhaps archetypical Rieske protein. Variations in redox potentials among Rieske clusters appear to be largely the result of local electrostatic interactions with protein partial charges. Moreover, it appears that the redox-linked ionizations of the Rieske proteins from proton-translocating complexes are also promoted by these electrostatic interactions.  相似文献   

2.
Mitchell KH  Studts JM  Fox BG 《Biochemistry》2002,41(9):3176-3188
Toluene 4-monooxygenase (T4MO) is a diiron hydroxylase that exhibits high regiospecificity for para hydroxylation. This fidelity provides the basis for an assessment of the interplay between active site residues and protein complex formation in producing an essential biological outcome. The function of the T4MO catalytic complex (hydroxylase, T4moH, and effector protein T4moD) is evaluated with respect to effector protein concentration, the presence of T4MO electron-transfer components (Rieske ferredoxin, T4moC, and NADH oxidoreductase), and use of mutated T4moH isoforms with different hydroxylation regiospecificities. Steady-state kinetic analyses indicate that T4moC and T4moD form complexes of similar affinity with T4moH. At low T4moD concentrations, the steady-state hydroxylation rate is linearly dependent on T4moD-T4moH complex formation, whereas regiospecificity and the coupling efficiency between NADH consumption and hydroxylation are associated with intrinsic properties of the T4moD-T4moH complex. The optimized complex gives both efficient coupling and high regiospecificity with p-cresol representing >96% of total products from toluene. Similar coupling and regiospecificity for para hydroxylation are obtained with T3buV (an effector protein from a toluene 3-monooxygenase), demonstrating that effector protein binding does not uniquely determine or alter the regiospecificity of toluene hydroxylation. The omission of T4moD causes an approximately 20-fold decrease in hydroxylation rate, nearly complete uncoupling, and a decrease in regiospecificity so that p-cresol represents approximately 60% of total products. Similar shifts in regiospecificity are observed in oxidations of alternative substrates in the absence or upon the partial removal of either T4moD or T3buV from toluene oxidations. The mutated T4moH isoforms studied have apparent V(max)/K(M) specificities differing by approximately 2-4-fold and coupling efficiencies ranging from 88% to 95%, indicating comparable catalytic function, but also exhibit unique regiospecificity patterns for all substrates tested, suggesting unique substrate binding preferences within the active site. The G103L isoform has enhanced selectivity for ortho hydroxylation with all substrates tested except nitrobenzene, which gives only m-nitrophenol. The regiospecificity of the G103L isoform is comparable to that observed from naturally occurring variants of the toluene/benzene/o-xylene monooxygenase subfamily. Evolutionary and mechanistic implications of these findings are considered.  相似文献   

3.
Moe LA  McMartin LA  Fox BG 《Biochemistry》2006,45(17):5478-5485
A fluorophore-labeled form of the T4moD, the catalytic effector protein of the toluene 4-monooxygenase complex, was prepared by engineering the N-terminal region to contain a tetraCys motif and treatment with biarsenical fluorescein. Fluorescence anisotropy was used to study the protein-protein interactions among various combinations of the four components of the complex. Binding interactions were detected between T4moD and the hydroxylase component T4moH [K(D) value of 83 nM for interaction with the alphabetagamma protomer] and between T4moD and the Rieske [2Fe-2S] ferredoxin component T4moC (K(D) value of 78 nM). No binding interactions were detected between T4moD and the NADH oxidoreductase component T4moF, but T4moF was able to disrupt binding between T4moC and T4moD. The detected binding interactions suggest an intermediary electron transfer complex between T4moC and T4moD that excludes T4moF. The results indicate that specialization of effector protein function may include specific protein-protein interactions with [2Fe-2S] domains as well as the hydroxylase component.  相似文献   

4.
Hemmi H  Studts JM  Chae YK  Song J  Markley JL  Fox BG 《Biochemistry》2001,40(12):3512-3524
Toluene 4-monooxygenase (T4MO) from Pseudomonas mendocina catalyzes the NADH- and O(2)-dependent hydroxylation of toluene to form p-cresol. The complex consists of an NADH oxidoreductase (T4moF), a Rieske ferredoxin (T4moC), a diiron hydroxylase [T4moH, with (alphabetagamma)(2) quaternary structure], and a catalytic effector protein (T4moD). The solution structure of the 102-amino acid T4moD effector protein has been determined from 2D and 3D (1)H, (13)C, and (15)N NMR spectroscopic data. The structural model was refined through simulated annealing by molecular dynamics in torsion angle space (DYANA software) with input from 1467 experimental constraints, comprising 1259 distance constraints obtained from NOEs, 128 dihedral angle constraints from J-couplings, and 80 hydrogen bond constraints. Of 60 conformers that met the acceptance criteria, the 20 that best satisfied the input constraints were selected to represent the solution structure. With exclusion of the ill-defined N- and C-terminal segments (Ser1-Asn11 and Asp99-Met102), the atomic root-mean-square deviation for the 20 conformers with respect to the mean coordinates was 0.71 A for the backbone and 1.24 A for all non-hydrogen atoms. The secondary structure of T4moD consists of three alpha-helices and seven beta-strands arranged in an N-terminal betaalphabetabeta and a C-terminal betaalphaalphabetabetabeta domain topology. Although the published NMR structures of the methane monooxygenase effector proteins from Methylosinus trichosporium OB3b and Methylococcus capsulatus (Bath) have a similar secondary structure topology, their three-dimensional structures differ from that of T4moD. The major differences in the structures of the three effector proteins are in the relative orientations of the two beta-sheets and the interactions between the alpha-helices in the two domains. The structure of T4moD is closer to that of the methane monooxygenase effector protein from M. capsulatus (Bath) than that from M. trichosporium OB3b. The specificity of T4moD as an effector protein was investigated by replacing it in reconstituted T4MO complexes with effector proteins from monooxygenases from other bacterial species: Pseudomonas pickettii PKO1 (TbuV, toluene 3-monooxygenase); Pseudomonas species JS150 (TbmC, toluene 2-monooxygenase); and Burkeholderia cepacia G4 (S1, toluene 2-monooxygenase). The results showed that the closely related TbuV effector protein (55% sequence identity) provided partial activation of the complex, whereas the more distantly related TbmC (34% sequence identity) and S1 (29% sequence identity) did not. The (1)H NMR chemical shifts of the side-chain amide protons of Asn34, a conserved, structurally relevant amino acid, were found to be similar in spectra of effector proteins T4moD and TbuV but not in the spectrum of TbmC. This suggests that the region around Asn34 may be involved in structural aspects contributing to functional specificity.  相似文献   

5.
The diiron enzyme toluene 4-monooxygenase from Pseudomonas mendocina KR1 catalyzes the NADH- and O(2)-dependent hydroxylation of toluene. A combination of sequence alignments and spectroscopic studies indicate that T4MO has an active site structure closely related to the crystallographically characterized methane monooxygenase hydroxylase. In the methane monooxygenase hydroxylase, active site residue T213 has been proposed to participate in O(2) activation by analogy to certain proposals made for cytochrome P450. In this work, mutagenesis of the comparable residue in the toluene 4-monooxygenase hydroxylase, T201, has been used to investigate the role of an active site hydroxyl group in catalysis. Five isoforms (T201S, T201A, T201G, T201F, and T201K) that retain catalytic activity based on an in vivo indigo formation assay were identified, and detailed characterizations of the purified T201S, T201A, and T201G variants are reported. These isoforms have k(cat) values of 1.2, 1.0, and 0.6 s(-)(1), respectively, and k(cat)/K(M) values that vary by only approximately 4-fold relative to that of the native isoform. Moreover, these isoforms exhibit 80-90% coupling efficiency, which also compares favorably to the >94% coupling efficiency determined for the native isoform. For the T201S, T201A, and T201G isoforms, the regiospecificity of toluene hydroxylation was nearly identical to that of the natural isoform, with p-cresol representing 90-95% of the total product distribution. In contrast, the T201F isoform caused a substantial shift in the product distribution, and gave o- and p-cresol in a 1:1 ratio. In addition, the amount of benzyl alcohol was increased approximately 10-fold with the T201F isoform. For reaction with p-xylene, previous studies have shown that the native isoform reacted to give 4-methybenzyl alcohol and 2, 5-dimethylphenol in a 4:1 ratio [Pikus, J. D., Studts, J. M., McClay, K., Steffan, R. J., and Fox, B. G. (1997) Biochemistry 36, 9283-9289]. For comparison, the T201S, T201A, and T201F isoforms gave a slightly relaxed 3:1 ratio of these products, while the T201G isoform gave a dramatically relaxed 1:1 ratio. On the basis of these studies, we conclude that the hydroxyl group of T201 is not essential to maintaining the turnover rate or the coupling of the toluene 4-monooxygenase complex. However, changing the volume occupied by the side chain at the position of T201 can lead to alterations in the regiospecificity of the hydroxylation, presumably by producing different orientations for substrate binding during catalysis.  相似文献   

6.
The amino acid in position 49 in bovine adrenodoxin is conserved among vertebrate [2Fe-2S] ferredoxins as hydroxyl function. A corresponding residue is missing in the cluster-coordinating loop of plant-type [2Fe-2S] ferredoxins. To probe the function of Thr-49 in a vertebrate ferredoxin, replacement mutants T49A, T49S, T49L, and T49Y, and a deletion mutant, T49Delta, were generated and expressed in Escherichia coli. CD spectra of purified proteins indicate changes of the [2Fe-2S] center geometry only for mutant T49Delta, whereas NMR studies reveal no transduction of structural changes to the interaction domain. The redox potential of T49Delta (-370 mV) is lowered by approximately 100 mV compared with wild type adrenodoxin and reaches the potential range of plant-type ferredoxins (-305 to -455 mV). Substitution mutants show moderate changes in the binding affinity to the redox partners. In contrast, the binding affinity of T49Delta to adrenodoxin reductase and cytochrome P-450 11A1 (CYP11A1) is dramatically reduced. These results led to the conclusion that Thr-49 modulates the redox potential in adrenodoxin and that the cluster-binding loop around Thr-49 represents a new interaction region with the redox partners adrenodoxin reductase and CYP11A1. In addition, variations of the apparent rate constants of all mutants for CYP11A1 reduction indicate the participation of residue 49 in the electron transfer pathway between adrenodoxin and CYP11A1.  相似文献   

7.
Midpoint redox potentials of plant and algal ferredoxins.   总被引:4,自引:0,他引:4       下载免费PDF全文
Midpoint potentials of plant-type ferredoxins from a range of sources were measured by redox titrations combined with electron-paramagnetic-resonance spectroscopy. For ferredoxins from higher plants, green algae and most red algae, the midpoint potentials (at pH 8.0) were between --390 and --425 mV. Values for the major ferredoxin fractions from blue-green algae were less negative (between --325 and --390 mV). In addition, Spirulina maxima and Nostoc strain MAC contain second minor ferredoxin components with a different potential, --305 mV (the highest so far measured for a plant-algal ferrodoxin) for Spirulina ferrodoxin II, and --455 mV (the lowest so far measured for a plant-algal ferredoxin) for Nostoc strain MAC ferredoxin II. However, two ferredoxins extracted from a variety of the higher plant Pisum sativum (pea) had midpoint potentials that were only slightly different from each other. These values are discussed in terms of possible roles for the ferredoxins in addition to their involvement in photosynthetic electron transport.  相似文献   

8.
The diiron ferredoxins have a common diamond-core structure with two bridging sulfides, but differ in the nature of their terminal ligands: either four cysteine thiolates in the Fe(2)S(2) ferredoxins or two cysteine thiolates and two histidine imidazoles in the Rieske ferredoxins. Contributions of the bridging (b) and terminal (t) ligands to the resonance Raman spectra of the Fe(2)S(2) ferredoxins have been distinguished previously by isotopic substitution of the bridging sulfides. We now find that uniform (15)N-labeling of Anabaena Fe(2)S(2) ferredoxin results in shifts of -1 cm(-1) in the Fe-S(t) stretching modes at 282, 340, and 357 cm(-1). The (15)N dependence is ascribed to kinematic coupling of the Fe-S(Cys) stretch with deformations of the cysteine backbone, including the amide nitrogen. No (15)N dependence occurs for the nu(Fe-S(b)) modes at 395 and 426 cm(-1). Similar effects are observed for the Rieske center in T4MOC ferredoxin from the toluene-4-monooxygenase system of Pseudomonas mendocina. Upon selective (15)N-labeling of the alpha-amino group of cysteine, the vibrational modes at 321, 332, 350, and 362 cm(-1) all undergo shifts of -1 to -2 cm(-1), thereby identifying them as combinations of nu(Fe-S(t)) and delta(Cys). These same four modes undergo similar isotope shifts when T4MOC ferredoxin is selectively labeled with (15)N-histidine ((15)N in either the alpha1,delta1 or delta1,epsilon2 positions). Thus, the Fe-S(Cys) stretch must also be undergoing kinematic coupling with vibrations of the Fe-His moiety. The extensive kinematic coupling of iron ligand vibrations observed in both the Fe(2)S(2) and Rieske ferredoxins presumably arises from the rigidity of the protein framework and is reminiscent of the behavior of cupredoxins. In both cases, the structural rigidity is likely to play a role in minimizing the reorganization energy for electron transfer.  相似文献   

9.
BphF is a small, soluble, Rieske-type ferredoxin involved in the microbial degradation of biphenyl. The rapid, anaerobic purification of a heterologously expressed, his-tagged BphF yielded 15 mg of highly homogeneous recombinant protein, rcBphF, per liter of cell culture. The reduction potential of rcBphF, determined using a highly oriented pyrolytic graphite (HOPG) electrode, was -157+/- 2 mV vs the standard hydrogen electrode (SHE) (20 mM MOPS, 80 mM KCl, and 1 mM dithiothreitol, pH 7.0, 22 degrees C). The electron paramagnetic resonance spectrum of the reduced rcBphF is typical of a Rieske cluster while the close similarity of the circular dichroic (CD) spectra of rcBphF and BedB, a homologous protein from the benzene dioxygenase system, indicates that the environment of the cluster is highly conserved in these two proteins. The reduction potential and CD spectra of rcBphF were relatively independent of pH between 5 and 10, indicating that the pK(a)s of the cluster's histidinyl ligands are not within this range. Gel filtration studies demonstrated that rcBphF readily oligomerizes in solution. Crystals of rcBphF were obtained using sodium formate or poly(ethylene glycol) (PEG) as the major precipitant. Analysis of the intermolecular contacts in the crystal revealed a head-to-tail interaction that occludes the cluster, but is very unlikely to be found in solution. Oligomerization of rcBphF in solution was reversed by the addition of dithiothreitol and is unrelated to the noncovalent crystallographic interactions. Moreover, the oligomerization state of rcBphF did not influence the latter's reduction potential. These results indicate that the 450 mV spread in reduction potential of Rieske clusters of dioxygenase-associated ferredoxins and mitochondrial bc(1) complexes is not due to significant differences in their solvent exposure.  相似文献   

10.
BACKGROUND: [2Fe-2S] ferredoxins, also called plant-type ferredoxins, are low-potential redox proteins that are widely distributed in biological systems. In photosynthesis, the plant-type ferredoxins function as the central molecule for distributing electrons from the photolysis of water to a number of ferredox-independent enzymes, as well as to cyclic photophosphorylation electron transfer. This paper reports only the second structure of a [2Fe-2S] ferredoxin from a eukaryotic organism in its native form. RESULTS: Ferredoxin from the green algae Chlorella fusca has been purified, characterised, crystallised and its structure determined to 1.4 A resolution - the highest resolution structure published to date for a plant-type ferredoxin. The structure has the general features of the plant-type ferredoxins already described, with conformational differences corresponding to regions of higher mobility. Immunological data indicate that a serine residue within the protein is partially phosphorylated. A slightly electropositive shift in the measured redox potential value, -325 mV, is observed in comparison with other ferredoxins. CONCLUSIONS: This high-resolution structure provides a detailed picture of the hydrogen-bonding pattern around the [2Fe-2S] cluster of a plant-type ferredoxin; for the first time, it was possible to obtain reliable error estimates for the geometrical parameters. The presence of phosphoserine in the protein indicates a possible mechanism for the regulation of the distribution of reducing power from the photosynthetic electron-transfer chain.  相似文献   

11.
The coupling protein and ferredoxin from Xanthobacter autotrophicus Py2 alkene monooxygenase (Xamo) have been functionally expressed in both N-terminal affinity tagged fusion and native forms in Escherichia coli. However, attempts to express the NADH-oxidoreductase and oxygenase, always resulted in the production of inactive, insoluble proteins. Nevertheless, the recombinant reductase from the toluene 4-monooxygenase of Pseudomonas mendocina KR1 was found to functionally complement the Xamo system. In vitro reconstitution, using the recombinant coupling protein and other components purified from the wild type, showed that steady-state epoxidation rate and coupling efficiency were dependent on the relative concentration of Xamo components in the reaction. The optimal molar stoichiometric ratio of Xamo components was determined to be approximately 1:0.25-0.3:2:2 (oxygenase hexamer:reductase:ferredoxin:coupling protein), suggesting the formation of an efficient catalytic complex at the minimal stoichiometric ratio to saturate the probable two-fold symmetry binding sites on the oxygenase.  相似文献   

12.
Optimized plant-microbe bioremediation processes in which the plant initiates the metabolism of xenobiotics and releases the metabolites in the rhizosphere to be further degraded by the rhizobacteria is a promising alternative to restore contaminated sites in situ. However, such processes require that plants produce the metabolites that bacteria can readily oxidize. The biphenyl dioxygenase is the first enzyme of the bacterial catabolic pathway involved in the degradation of polychlorinated biphenyls. This enzyme consists of three components: the two sub-unit oxygenase (BphAE) containing a Rieske-type iron-sulfur cluster and a mononuclear iron center, the Rieske-type ferredoxin (BphF), and the FAD-containing ferredoxin reductase (BphG). In this work, based on analyses with Nicotiana benthamiana plants transiently expressing the biphenyl dioxygenase genes from Burkholderia xenovorans LB400 and transgenic Nicotiana tabacum plants transformed with each of these four genes, we have shown that each of the three biphenyl dioxygenase components can be produced individually as active protein in tobacco plants. Therefore, when BphAE, BphF, and BphG purified from plant were used to catalyze the oxygenation of 4-chlorobiphenyl, detectable amounts of 2,3-dihydro-2, 3-dihydroxy-4'-chlorobiphenyl were produced. This suggests that creating transgenic plants expressing simultaneously all four genes required to produce active biphenyl dioxygenase is feasible.  相似文献   

13.
Boll M  Fuchs G  Tilley G  Armstrong FA  Lowe DJ 《Biochemistry》2000,39(16):4929-4938
A reduced ferredoxin serves as the natural electron donor for key enzymes of the anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica. It contains two [4Fe-4S] clusters and belongs to the Chromatium vinosum type of ferredoxins (CvFd) which differ from the "clostridial" type by a six-amino acid insertion between two successive cysteines and a C-terminal alpha-helical amino acid extension. The electrochemical and electron paramagnetic resonance (EPR) spectroscopic properties of both [4Fe-4S] clusters from T. aromatica ferredoxin have been investigated using cyclic voltammetry and multifrequency EPR. Results obtained from cyclic voltammetry revealed the presence of two redox transitions at -431 and -587 mV versus SHE. X-band EPR spectra recorded at potentials where only one cluster was reduced (greater than -500 mV) indicated the presence of a spin mixture of S = (3)/(2) and (5)/(2) spin states of one reduced [4Fe-4S] cluster. No typical S = (1)/(2) EPR signals were observed. At lower potentials (less than -500 mV), the more negative [4Fe-4S] cluster displayed Q-, X-, and S-band EPR spectra at 20 K which were typical of a single S = (1)/(2) low-spin [4Fe-4S] cluster with a g(av) of 1.94. However, when the temperature was decreased stepwise to 4 K, a magnetic interaction between the two clusters gradually became observable as a temperature-dependent splitting of both the S = (1)/(2) and S = (5)/(2) EPR signals. At potentials where both clusters were reduced, additional low-field EPR signals were observed which can only be assigned to spin states with spins of >(5)/(2). The results that were obtained establish that the common typical amino acid sequence features of CvFd-type ferredoxins determine the unusual electrochemical properties of the [4Fe-4S] clusters. The observation of different spin states in T. aromatica ferredoxin is novel among CvFd-type ferredoxins.  相似文献   

14.
Xylene monooxygenase, encoded by the TOL plasmid of Pseudomonas putida, catalyzes the oxidation of toluene and xylenes and consists of two different subunits encoded by xylA and xylM. In this study, the complete nucleotide sequences of these genes were determined and the amino acid sequences of the xylA and xylM products were deduced. The XylM sequence had a 25% homology with alkane hydroxylase, which catalyzes the omega-hydroxylation of fatty acids and the terminal hydroxylation of alkanes. The sequence of the first 90 amino acids of XylA exhibited a strong similarity to the sequence of chloroplast-type ferredoxins, whereas the rest of the XylA sequence resembled that of ferredoxin-NADP+ reductases. Based on this information, the structure and function of xylene monooxygenase were deduced. XylM may be a catalytic component for the hydroxylation of the carbon side chain of toluene and xylenes and, as is the alkane hydroxylase protein, may be a membrane-bound protein containing ferrous ion as a prosthetic group. XylA may have two domains consisting of an N-terminal region similar to chloroplast-type ferredoxins and a C-terminal region similar to ferredoxin-NADP+ reductases. The ferredoxin portion of XylA may contain a [2Fe-2S] cluster and reduce the oxidized form of the XylM hydroxylase. The activity determined by the C-terminal region of the XylA sequence may be the reduction of the oxidized form of ferredoxin by concomitant oxidation of NADH.  相似文献   

15.
Oscillatoria agardhii contained a single ferredoxin. It was a [2Fe-2S] protein of MW 11 075, with a midpoint redox potential (? 380 mV) characteristic of ferredoxins from non-nitrogen-fixing cyanobacteria and different from that of the nitrogen-fixing Oscillatoria limnetica.  相似文献   

16.
Two ferredoxins were isolated from the cyanobacterium Nostoc strain MAC grown autotrophically in the light or heterotrophically in the dark. In either case approximately three times as much ferredoxin I as ferredoxin II was obtained. Both ferredoxins had absorption maxima at 276, 282 (shoulder), 330, 423 and 465 nm in the oxidized state, and each possessed a single 2 Fe-2S active centre. Their isoelectric points were approx. 3.2. The midpoint redox potentials of the ferredoxins differed markedly; that of ferredoxin I was --350mV and that of ferredoxin II was --445mV, at pH 8.0. The midpoint potential of ferredoxin II was unusual in being pH dependent. Ferredoxin I was most active in supporting NADP+ photoreduction by chloroplasts, whereas ferredoxin II was somewhat more active in pyruvate decarboxylation by the phosphoroclastic system of Clostridum pasteurianum. Though the molecular weights of the ferredoxins determined by ultracentrifugation were the same within experimetnal error, the amino acid compositions showed marked differences. The N-terminal amino acid sequences of ferredoxins I and II were determined by means of an automatic sequencer. There are 11--12 differences between the sequences of the first 32 residues. It appears that the two ferredoxins have evolved separately to fulfil different roles in the organism.  相似文献   

17.
A novel pink [2Fe-2S] protein has been purified from the cytosol fraction of the thermoacidophilic archaeon Sulfolobus sp. strain 7 (originally named Sulfolobus acidocaldarius 7) and called "sulredoxin." Its absorption, circular dichroism, and electron paramagnetic resonance spectra suggest the presence of a Rieske-type [2Fe-2S] cluster (g-factors of 2.01, 1.91, and 1.79; average g-factor [gav] = 1.90) which is remarkably similar to that of Thermus thermophilus respiratory Rieske FeS protein (J. A. Fee, K. L. Findling, T. Yoshida, R. Hille, G. E. Tarr, D. O. Hearshen, W. R. Dunham, E. P. Day, T. A. Kent, and E. Münck, J. Biol. Chem. 259:124-133, 1984) and distinctively different from those of the plant-type ferredoxins (gav = 1.96). Sulredoxin, which is the first Rieske-type [2Fe-2S] protein isolated from an archaeal species, does not function as an electron acceptor of the cognate 2-oxoacid:ferredoxin oxidoreductase. Whether sulredoxin is derived from the archaeal membrane-bound respiratory Rieske-type FeS center (gy = 1.91) is the subject of further investigation.  相似文献   

18.
Toluene 4-monooxygenase (T4MO) is a four-component complex that catalyzes the regiospecific, NADH-dependent hydroxylation of toluene to yield p-cresol. The catalytic effector (T4moD) of this complex is a 102-residue protein devoid of metals or organic cofactors. It forms a complex with the diiron hydroxylase component (T4moH) that influences both the kinetics and regiospecificity of catalysis. Here, we report crystal structures for native T4moD and two engineered variants with either four (DeltaN4-) or 10 (DeltaN10-) residues removed from the N-terminal at 2.1-, 1.7-, and 1.9-A resolution, respectively. The crystal structures have C-alpha root-mean-squared differences of less than 0.8 A for the central core consisting of residues 11-98, showing that alterations of the N-terminal have little influence on the folded core of the protein. The central core has the same fold topology as observed in the NMR structures of T4moD, the methane monooxygenase effector protein (MmoB) from two methanotrophs, and the phenol hydroxylase effector protein (DmpM). However, the root-mean-squared differences between comparable C-alpha positions in the X-ray structures and the NMR structures vary from approximately 1.8 A to greater than 6 A. The X-ray structures exhibit an estimated overall coordinate error from 0.095 (0.094) A based on the R-value (R free) for the highest resolution DeltaN4-T4moD structure to 0.211 (0.196) A for the native T4moD structure. Catalytic studies of the DeltaN4-, DeltaN7-, and DeltaN10- variants of T4moD show statistically insignificant changes in k(cat), K(M), k(cat)/K(M), and K(I) relative to the native protein. Moreover, there was no significant change in the regiospecificity of toluene oxidation with any of the T4moD variants. The relative insensitivity to changes in the N-terminal region distinguishes T4moD from the MmoB homologues, which each require the approximately 33 residue N-terminal region for catalytic activity.  相似文献   

19.
Alkene monooxygenase from Xanthobacter autotrophicus Py2 (XAMO) catalyses the asymmetric epoxidation of a broad range of alkenes. As well as the electron transfer components (a NADH-oxidoreductase and a Rieske-type ferredoxin) and the terminal oxygenase containing the binuclear non-haem iron active site, it requires a small catalytic coupling/effector protein, AamD. The effect of changing AamD stoichiometry and substitution with effector protein homologues on the regioselectivity of toluene hydroxylation and stereoselectivity of styrene epoxidation has been studied. At sub-optimal stoichiometries, there was a marked change in regioselectivity, but no significant change in epoxidation stereoselectivity. Recombinant coupling proteins from a number of phylogenetically related oxygenases were investigated for their ability to functionally replace AamD. Substitution of AamD with IsoD, the coupling protein from the closely related isoprene monooxygenase, changed the regioselectivity of toluene hydroxylation and stereoselectivity of styrene epoxidation, although this was accompanied by a high level of uncoupling. This indicates the importance of coupling protein interaction in controlling the catalytic specificity. Sequence analysis suggests that interaction between Asn34 and Arg57 is important for complementation specificity of the coupling proteins, providing a candidate for site-directed mutagenesis studies.  相似文献   

20.
Pyrococcus furiosus glyceraldehyde 3-phosphate oxidoreductase has been characterized using EPR-monitored redox titrations. Two different W signals were found. W(1)(5+) is an intermediate species in the catalytic cycle, with the midpoint potentials E(m)(W(6+/5+))=-507 mV and E(m)(W(5+/4+))=-491 mV. W(2)(5+) represents an inactivated species with E(m)(W(6+/5+))=-329 mV. The cubane cluster exhibits both S=3/2 and S=1/2 signals with the same midpoint potential: E(m)([4Fe-4S](2+/1+))=-335 mV. The S=1/2 EPR signal is unusual with all g values below 2.0. The titration results combined with catalytic voltammetry data are consistent with electron transfer from glyceraldehyde 3-phosphate first to the tungsten center, then to the cubane cluster and finally to the ferredoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号