首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ability of Bacillus subtilis A-50 to sporulate in the medium containing high glucose concentrations is caused by at least two mutation types: pts mutations and cat (or tgl) mutations, both of them affecting differently the level of alkaline proteinase synthesis. The decrease of the level of enzyme activity in the case of pts mutation (gluR3 mutant) occurs at the expense of glucose transport disturbance. The mutation cat (tgl) (mutant gluR5) causes the increase in enzyme synthesis at the expense of catabolic resistance to glucose of genes controlling alkaline proteinase synthesis and the spore formation in Bac. subtilis A-50. cat5(gluR5) and pts3(gluR3) mutations are located on the chromosome of Bac. subtilis in the region metD and argC respectively. The over-synthesis of alkaline proteinase characteristic of Bac. subtilis A-50 is controlled by the polygenic system, as the level of alkaline proteinase synthesis in argA+ transformants makes up 25% of the level of activity of the original strain. The productivity of Bac. subtilis A-50 can be enhanced by introducing an additional cat mutation.  相似文献   

3.
4.
Studies of two temperature-sensitive Escherichia coli topA strains AS17 and BR83, both of which were supposed to carry a topA amber mutation and a temperature-sensitive supD43,74 amber-suppressor, led to conflicting results regarding the essentiality of DNA topoisomerase I in cells grown in media of low osmolarity. We have therefore reexamined the molecular basis of the temperature sensitivity of strain AS17. We find that the supD allele in this strain had lost its temperature sensitivity. The temperature sensitivity of the strain, in media of all osmolarity, results from the synthesis of a mutant DNA topoisomerase I that is itself temperature-sensitive. Nucleotide sequencing of the AS17 topA allele and studies of its expected cellular product show that the mutant enzyme is not as active as its wild-type parent even at 30 degrees C, a permissive temperature for the strain, and its activity relative to the wild-type enzyme is further reduced at 42 degrees C, a nonpermissive temperature. Our results thus implicate an indispensable role of DNA topoisomerase I in E. coli cells grown in media of any osmolarity.  相似文献   

5.
The ts8 mutant of Escherichia coli has previously been shown to preferentially inhibit stable RNA synthesis when shifted to the nonpermissive temperature. We demonstrate in this report that the ts8 mutation is an allele of fda, the gene that encodes the glycolytic enzyme fructose-1,6-diphosphate aldolase. We show that ts8 and a second fda mutation, h8, isolated and characterized by A. B?ck and F. C. Neidhardt, are dominant mutations and that they encode a thermolabile aldolase activity.  相似文献   

6.
A new Escherichia coli mutant allele, named dnaR, that causes thermosensitive initiation of chromosome replication has been identified to be an allele of the prs gene, the gene for phosphoribosylpyrophosphate synthetase (Y. Sakakibara, J. Mol. Biol. 226:979-987, 1992; Y. Sakakibara, J. Mol. Biol. 226:989-996, 1992). The dnaR mutant became temperature resistant by acquisition of a mutation in the dnaA gene that did not affect the intrinsic activity for the initiation of replication. The suppressor mutant was capable of initiating replication from oriC at a high temperature restrictive for the dnaR single mutant. The thermoresistant DNA synthesis was inhibited by the presence of the wild-type dnaA allele at a high but not a low copy number. The synthesis was also inhibited by an elevated dose of a mutant dnaR allele retaining dnaR activity. Therefore, thermoresistant DNA synthesis in the suppressor mutant was dependent on both the dnaA and the dnaR functions. On the basis of these results, I conclude that the initiation of chromosome replication requires cooperation of the prs and dnaA products.  相似文献   

7.
Expression of catabolite-sensitive operons in mutants devoid of HPr (a component of the glucose transport system) is severely repressed. ptsH mutants do not utilize substrates of the phosphoenolpyruvate: carbohydrate system (PTS) and many other sugars. Analysis of mutations suppressing the effect of the delta ptsH mutation revealed a new class of reversions which restore the growth of bacteria on different substrates. This mutation (named ptsS) intensifies the growth rate of ptsH mutants and increases the differential rate of beta-galactosidase production. ptsS mutation was mapped in the region of ptsF gene (coding for the fructose specific enzyme II of the PTS) on the 46th min. of the E. coli chromosome map. The effect of the ptsS mutation on the expression of catabolite-sensitive operons manifests only in the presence of the intact enzyme I of the PTS.  相似文献   

8.
Patterns of chemotaxis by Salmonella typhimurium strain LT-2 to l-amino acids and to several sugars were quantitated by the Adler capillary procedure. Competition experiments indicated that LT-2 possesses three predominant receptors, or interacting sets of receptors, for amino acids. These were termed the aspartate, serine, and alanine classes, respectively. Studies with strains carrying point and deletion mutations affecting components of the phosphoenolpyruvate: glycose phosphotransferase system (PTS) made unlikely a role in primary reception of d-glucose by the three soluble PTS components, namely HPr, enzyme I, and factor III. A ptsG mutant defective in membrane-bound enzyme IIB' of the high-affinity glucose transport system was shown to exhibit normal chemotaxis providing pleiotropic effects of the mutation were eliminated by its genotypic combination with other pts mutations or, phenotypically, by addition of cyclic AMP and substrate. A correlation was demonstrated between chemotaxis to glucose and activity of the low-affinity glucose transport complex, membrane-bound enzymes IIB:IIA, and an enzyme IIB:IIA mutant was shown to have a preponderant defect in chemotaxis to glucose and mannose. Of four systems capable of galactose transport, only the beta-methylgalactoside transport system was implicated in chemotaxis to galactose. Some properties of a mutant possibly defective in processing of signals for chemotaxis to sugars is described.  相似文献   

9.
Phage Mu-1 cts61 was used for transposition of pts1 and ptsH genes. The received F'-factors AUF2 and AUF3 carry short fragments of the bacterial chromosome. Merodiploid strains with double pts genes were selected in sexduction crosses with the appropriate recA recipients. Effect of the gene dose was not registered in pts+/pts+ strains in the case of accumulation of the substrates of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and in the case of bacterial growth in the presence of these carbohydrates. This indicates that the enzyme (enzymes) II of the PTS is the limiting step in the transpost process. Induction of beta-galactosidase and the growth on carbohydrates not transported via the PTS (maltose, lactose) were greatly reduced in pts mutant. Introduction of the pts+ allele with episome lead to the restoration of the two above processes. These data show that the phospho approximately HPr generating system of the PTS is directly (or in indirect manner) involved in the regulation of catabolite-sensitive operons. Glucose repression was markedly increased in pts+/pts+ merodiploids as compared with pts+/pts- ones and with pts+ bacteria. Possible mechanisms of this effect are discussed.  相似文献   

10.
Abstract The Escherichia coli ptsI and ptsH genes code for the synthesis of two proteins of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), namely enzyme I and protein HPr. A number of ptsI + ptsH +/F' ptsI + ptsH merodiploids was obtained. It was shown in experiments in vivo that ptsH mutations in the transposition are dominant. Bacterial extracts from these merodiploids supported [14C]methyl glucoside (MG) phosphorylation at the expense of phosphoenolpyruvate only half as much as extracts from the pts + cells. ptsI + ptsH /F' ptsI + ptsH + merodiploids appeared to be non-viable; the reason for this lack of viability is discussed.  相似文献   

11.
Mutants of Escherichia coli K-12 defective in the mannitol-specific enzyme II complex of the phosphoenolpyruvate phosphotransferase system (PTS) or lacking mannitol-1-phosphate dehydrogenase have been isolated. These mutants fail only to grow on mannitol. Growth of the dehydrogenase-negative mutant on casein hydrolysate can be abruptly inhibited by exposure to mannitol. A mutant with constitutive expression of both of these enzymes has also been isolated. All three mutations are clustered in a region represented at min 71 of the Taylor map. In a mutant with less than 5% of the activity of enzyme I of the PTS, both the enzyme II complex and the dehydrogenase remain inducible by mannitol. In the mutant defective in the enzyme II complex, mannitol is able to induce the dehydrogenase. Thus, mannitol, rather than its phosphorylated product, seems to be the inducer.  相似文献   

12.
Pseudomonas aeruginosa transports and phosphorylates fructose via a phosphoenolpyruvate-dependent fructose phosphotransferase system (PTS). Mutant strains deficient in both PTS activity and glucose-6-phosphate dehydrogenase activity were isolated and were used to select mannitol-utilizing revertant strains singly deficient in PTS activity. These mutants were unable to utilize fructose as a carbon source and failed to accumulate exogenously provided [14C]fructose, and crude cell extracts lacked phosphoenolpyruvate-dependent fructose PTS activity. Thus, the PTS was essential for the uptake and utilization of exogenously provided fructose by P. aeruginosa. Mutations at a locus designated pts, which resulted in a loss of PTS activity, exhibited 57% linkage to argF at 55 min on the chromosome in plasmid R68.45-mediated conjugational crosses. The pts mutations in four independently isolated mutant strains exhibited from 11 to 20% linkage to argF, and one of these mutations exhibited 3% linkage to lys-9015 in phage F116L-mediated transductional crosses.  相似文献   

13.
The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span approximately 7 kb. Fibroblast DNA from 64 unrelated glutaric acidemia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms found in 7 of its 11 exons. Several mutations were found in more than one patient, but no one prevalent mutation was detected in the general population. As expected from pedigree analysis, a single mutant allele causes GA1 in the Old Order Amish of Lancaster County, Pennsylvania. Several mutations have been expressed in Escherichia coli, and all produce diminished enzyme activity. Reduced activity in GCD encoded by the A421V mutation in the Amish may be due to impaired association of enzyme subunits.  相似文献   

14.
Gartner, T. K. (University of California, Santa Barbara), and E. Orias. Effects of mutations to streptomycin resistance on the rate of translation of mutant genetic information. J. Bacteriol. 91:1021-1028. 1966.-The effects of mutations to streptomycin resistance of independent origin upon the translation of suppressible mutant information were studied in an isogenic series of strains of Escherichia coli. The group of suppressible mutants included 1 mutation in the z gene of the lac operon of E. coli (O(0) (2) allele), 12 mutations distributed among the two rII cistrons of T4, and 13 mutations distributed among at least five cistrons of phage T7. It was concluded that the mutations to streptomycin resistance cause a significant decrease in the rate of translation of the suppressible codons, and that this effect is limited to a few types of codons.  相似文献   

15.
Mutations that uncouple glucose transport from phosphorylation were isolated in plasmid-encoded Escherichia coli enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). The uncoupled enzymes IIGlc were able to transport glucose in the absence of the general phosphoryl-carrying proteins of the PTS, enzyme I and HPr, although with relatively low affinity. Km values of the uncoupled enzymes IIGlc for glucose ranged from 0.5 to 2.5 mM, 2 orders of magnitude higher than the value of normal IIGlc. Most of the mutant proteins were still able to phosphorylate glucose and methyl alpha-glucoside (a non-metabolizable glucose analog specific for IIGlc), indicating that transport and phosphorylation are separable functions of the enzyme. Some of the uncoupled enzymes IIGlc transported glucose with a higher rate and lower apparent Km in a pts+ strain than in a delta ptsHI strain lacking the general proteins enzyme I and HPr. Since the properties of these uncoupled enzymes IIGlc in the presence of PTS-mediated phosphoryl transfer resembled those of wild-type IIGlc, these mutants appeared to be conditionally uncoupled. Sequencing of the mutated ptsG genes revealed that all amino acid substitutions occurred in a hydrophilic segment within the hydrophobic N-terminal part of IIGlc. These results suggest that this hydrophilic loop is involved in binding and translocation of the sugar substrate.  相似文献   

16.
17.
Two previously described chromosomal mutant alleles, alaS4 and alaS5, of Escherichia coli Ala-tRNA synthetase have been analyzed. Each causes a sharp diminution in aminoacylation activity and disrupts the alpha 4 tetramer structure of identical chains of 875 amino acids; neither mutation significantly disturbs the activity for synthesis of alanyladenylate. The location of each mutation within the structural gene has been mapped by marker rescue with specific gene fragments. Each mutant allele was cloned from the genome by reciprocal recombination with a multicopy plasmid that contains segments of alaS which flank the respective mutations. Further analysis established: 1) a single G----A transition results in a Gly----Asp change for each mutant allele at codon 674 (alaS4) and at codon 677 (alaS5). 2) The mutations are in the oligomerization domain, about 200 amino acids beyond the C-terminal side of the catalytic domain that previously was mapped by deletion analysis; the mutations are, thus, in a part of the polypeptide which is dispensable for catalytic activity. 3) For both mutant enzymes, there is little effect of the mutation on the Km for tRNAAla; kcat for aminoacylation is decreased by an order of magnitude. These point mutations reveal a subtle integration of the catalytic core with parts of the polypeptide that are not essential for catalytic activity.  相似文献   

18.
19.
The phosphotransferase system (PTS) of the phototrophic bacterium Rhodopseudomonas sphaeroides consists of a component located in the cytoplasmic membrane and a membrane-associated enzyme called "soluble factor" (SF) [Saier, M. H., Feucht, B. U., & Roseman, S. (1971) J. Biol. Chem. 246, 7819--7821]. SF has been partially purified by a combination of hydrophobic interaction and ion-exchange and gel-permeation chromatography. SF is similar to Escherichia coli enzyme I in its molecular characteristics and enzymatic properties. It has a molecular weight of 85 000 and readily dimerizes. Phosphoenolpyruvate and Mg2+ stabilize the dimer. The enzyme catalyzes the conversion of phosphoenolpyruvate into pyruvate and becomes phosphorylated in the process. The phosphoryl group is subsequently transferred to fructose in the presence of R. sphaeroides membranes. SF substitutes for E. coli enzyme I in fructose or glucose phosphorylation with E. coli enzyme II and HPr. The activities of SF with the R. sphaeroides PTS and the E. coli PTS reside on structurally distinct molecules as shown by their response to limited proteolytic digestion and by immunochemical studies. The activity of SF with the E. coli PTS arises during the isolation procedure and is most likely due to the removal of HPr-like protein from SF.  相似文献   

20.
Directed evolution has been widely applied for gene improvement through random mutagenesis of coding sequences. Through error-prone PCR both in the coding sequence and the regulatory sequence of E. coli alkaline phosphatase, the cellular enzyme activity has been efficiently enhanced. Sequence analysis revealed that the resultant mutant 34-B12, which showed a sevenfold increased enzyme activity at the cellular level, contains three mutations in the regulatory sequence and another three mutations in the coding sequence. Activity assays of the enzyme containing the corresponding amino acid substitutions proved that the amino acid mutations contribute only to a small portion to the increased cellular enzyme activity. So the mutations in the 5'-untranslated region were analyzed separately and combinationally. The results suggested that one mutation yielded a stronger promoter and the other two mutations both elevated the E. coli alkaline phosphatase expression at the translational level; moreover, a stronger Shine-Dalgarno sequence was generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号